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Some remarks on the density of regular mappings
in Sobolev classes of S"-valued functions

MIGUEL ESCOBEDO

ABSTRACT. Some results are given about the density of continuous maps from €, a
bounded regular domain of RN to S in the Sobolev classes W*?(Q, SM).

0. INTRODUCTION

We are interested in the following question: suppose that Q is a regular
domain of RY and M is a submanifold of R¥*!, Consider, for two real
numbers p>1, and s>0, any vector valued function u of the Sobolev space
WP(Q,R™+1!) taking its values in M. Is it possible to approximate u in the
space WSP(QRM+1) by regular functions taking also their values in 9? Or
equivalently is the following subset of C®(Q,RM+1):

C=(Q, M= {ue C*(QRY+!); VxeQ, u(x)e N}
dense in the subset of WSP(QRM+1):
WP(Q, R) = {ue WHP(QRY 1), VxeQ, u(x)e N}?

First of all observe that none of these sets are vector spaces. In particular
smoothing functions of W*?(Q9N) by taking mean values on balls or by
convolution produces functions whose values do not lie in R.

It is known that when p> N, C(Q,S")N WP(Q SM) (where SM is the unit
sphere of RM+!) is dense in W'-?(Q,S™) and this for all values of the integer M.
(See [2], [107, [12].) If p<N this result is no longer true and in fact the
relation between p and M turns out to be determinant. For example, if M is
less than p it may be that there is no density as it is shown in [4], [10] and
[12]. On the other hand, H. Brezis knew how to prove density result for the
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space LP(Q,SM) for every p>1 using stereographic projection. Using similar
ideas, F. Béthuel and D. Zheng in [5] have proved the density in the space
WP(Q,SM) when p<M. The way to do this is to approximate functions of
WL2(Q,SM) in two steps. First by functions of W'P(Q,S) not necessarily
continuous but taking their values on a segment of the sphere S™. Secondly,
since any segment of a sphere S™ is difftomorphic to R it is rather simple to
approximate any function of W'?(Q,S"), taking values on a segment of
sphere, by functions of C*(Q,S¥).

This is also what we do in the more general case of the sets W™?(Q, $¥),
m integer and Aj},(€2,S"), s non negative real. Our main results are:

Theorem 1. Given two integers M, N and three reals s>0, co>p>1 and
00 >q>1 such that sp>= N the set C(Q,SM)N A3 (Q,S™) is dense in A} (Q,5Y).

Theorem 2. Given three reals co>p>=1, co=q=1, s=0 and two integers
N, M such that sp<N, if: max(1,s)-max(p,q)<M, or 0<s<1/p and
1+N/p>s+N/q, then the set C*(Q,SM) is dense in A} ,(Q,S™).

Theorem 3. If R is a compact Riemann manifold of dimension M, BY(0,1)
is the unit ball of RY s>0 and p>1 are two reals such that sp<N and the
[sp]-th homotopy group of R, Il (M), is not the trivial one then
C(B(0,1), )N W=P(BN(0,1), M) is not dense in W*P(B"(0,1), R).

It seems to be quite clear that theorem 2 must be true whenever sp<M
but we do not know how to prove that when 0 <s< 1. On the other hand we
shall see that if sp> M it may be that there is no density even if sg <M. We
do not know if there is density or not when sp<M and sq>M.

In order to prove these density results we need some «stability properties»
for the sets A3Q,SY) with s>1, p>1, ¢>1 under left-composition by
Lipschitz functions. It is well known (see [3] for example) that the spaces
WwmP(Q,RM+1) N L*(Q,RM+!) are algebras for the pointwise product of
functions (for p=2 it is the Schauder algebra). This is a simple consequence of
the Gagliardo and Nirenberg’s inequalities. It turns out that these spaces are
also «stable» under left-composition by Lipschitz functions and not only
these but also the spaces A3, (QRM+*HNL*(Q,RY+!). That is to say: for
any function u of A (QRM*HNL*QRY+!) and any function ® of
W* (RM+! RL), with s’ any real greater than s and no less than one, the
composed ®ou belongs to A} ,(Q,R)NLP(Q,RY). The conditions s'>1 is
necessary as shows a result of J. Simon [13].

Acknowledgements. The author wishes to thank Profesor H. Brezis for
bringing these problems to his attention.
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1. PRELIMINARY RESULTS
First of all let us recall some notations, definitions and well known facts
about the classical functional Banach spaces of Besov Aj, of potential H*?

and of Sobolev W*?. (For all this part see for example H. Triebel [14].)

For any non negative integer m and any real p>1:

Wm2(RY)={feL R"); |fllmp= 2. ID*fllp <o}

laj<m
wer(RY)=LARY) and [|fllo.,=Ilfll»

For +o0>p>1, c0o>g=>1 and s>0, for any integer M greater than s:

| dh \'
Aiq(PN)={f€L"(PN); 1S Nlspia =111 115+ ( j NAY£113 W—+q> < 00}

AM
o )= LB U =1 ] L1 e, s
where
h h
aufoo=5(x+5)-s(x-1)
and

AP+ = AAY f) YMeN

In all the following let Q be any bounded and smooth domain of R". One
can define the corresponding spaces W™?(Q), A3,(Q2) of functions defined on
Q as the restriction to Q of the functions of the spaces W™Z(RYN), Aj(RY).
These spaces have an inner description. Namely the space W™?(Q) has the
same formal characterisation that W™?(R"), changing R" by Q. On the other
hand if 0<k<s and L>s—k, VfeAj(Q)

flloa=Iflp+ 3 ( f( J fA%D“f(x)lde)”“’Wi‘%fm)

el <m
RN apr

where

h
Q= Nk _L{x;x -i—jE eQ}
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When Q is a bounded regular domain we have the following continuous
embeddings between these different spaces. (See H. Triebel [14], page 195.)

Theorem. i) Let 1<p<oo, 1<p' <0, 1<g<o0, 1<g¢<o and
0<s'<s<+4 0. Then A} (Q) = A} Q) if s—N/p>s'—NJp'.

if) Let 1<q<q' <o0,and 1<p< oo and 0<s<00. Then A} 4(Q) < A} ().
The following relations between these spaces are well known:

for 1I<p<oo, and s>0 non integer WS?=A3,

for I<p<oo and meN Wmp=Hm™», ‘

Finally we recall a result about extension of functions of A},(Q)
(respectively H*P(Q) to functions of Aj(R") (respectively H*?(R")):

Theorem. If 1 <p< o0, 1<g< o0 (resp. 1<p<o0, 1<g< +0)and 0<s<
+ 00, then the restriction operator R is a retraction for the space Ay (RY) (resp.
H>?(Q)). If L is a natural number then there is a common coretraction from
AL d(Q) (resp. H¥P(Q)) to ApRY) (resp. HP(RV)) for all s such that |s|<L for
any 1<q< o0 and 1<p< 0.

Remark 1.1. The Besov spaces can be defined in a more general way for
seR, 0<p< + o0 and 0 g< 0. These definitions are equivalent to the ones
we give here only for s>0, 1<p< + o and 1<g< + o which are the cases
we are interested in. (See [14].)

Let us give now a simple result on the stability of the Sobolev spaces of
integer order by left-composition with Lipschitz functions.

Proposition 1.2. Let p be any real number greater or equal than one and m
any non negative integer. Consider any vector valued function ® belonging to
the space W™ *(RM [R) N CYRM) such that ®(0)=0. Then, for any function u of
H™(RN,RE)NL2(RY,RM), ®ou belongs to H ™P(RN,RL)NL*(RN,RL) and
(@t m, p < ClIPllm, o]l p(1 + [l2el] ).

Proof. The proof is based on the inequalities of Gagliardo and Nirenberg
(see [8]). Let u and ® be such as in the hypothesis. We have to estimate the
following norm:

N
[[Pou]|m,p = [|Doull, + ), [IDF Doul|,

j=1

By the hypothesis on @ it is clear that ®ou belongs to L*°(RY,RL).
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On the other hand, almost everywhere in RY:

Dr®@ou)(x)= Y. 3 - Y D x®@u(x) Y  au.r,Dj(x)... Djk(x)

n=1k=1 k.=1 Li+..+L,=m
where the ar,., .1, are non negative integers depending only of m and N.

By Holder’s inequality:

IDP(@ou)]|, < Z 1@l 2 aL,...L..[ > ”DiLlukl”Ir’nj|"'|: > IlDfL"uan’,’nil

Li+++L,=m k=1 ka=1

Finally, using the inequalities of Gagliardo and Nirenberg (see [7]) we get:

IDF(@ou)||p < CN )| |D m, o1l o1 + llul] ")

Remark 1.3. By the same method and using the dominated convergence
theorem one can prove the following: If {u"} is a sequence of functions of
H™P(RN RM)NL2(RN,RM) such that:

i) u"—u in H™?(RN,RM)
i) 3C>0; |[u"|.<C VnelN and |ju|l,<C.
iii) ® e C™(RM,RL).

then there is a subsequence of {®ou"} converging to ®ou in H™P(R",R").

Remark 1.4. Proposition 1.2 and remark 1.3 remain true if we consider u
belonging to W™?(Q;,RM) and @ of W™*(Q,,R") where Q;, Q, are regular
domains of RY and R’ respectively and Im(u) < Q,. If Q; is bounded the
condition @ (0)=0 is not necessary (this condition is only needed in order to
prove that ®ou belongs to L but if Q is bounded that is true as soon as ®ou
belongs to L*®).

In order to extend this simple result to more general spaces we shall need
the following lemma.

Lemma 1.5. Let s be any non negative real. Then for any 1<p<oo and
I<g<oo:

A“;q NL*® < Afg,,.q Vr>=1
and

Yue Ay g N L= | |ullsrrpirg < C,1)| Ul 5/5q |[14]] bl
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Proof. Let M be any integer such that M >s>s/r for any r> 1. Then

AM
ue Apg < lull, + { ” “”“dh}

ThE

1
s A% ullr;
ueA,g,,q©||u||,p+{j T dht " <o

but:

4 1
AR ullrp= {jm‘u(x)r"dx}? <M+ Dl UIA“J u(x)|"dx}"
RN )N
and that gives the inclusion and the inequality for g < c0. For g= oo the proof
is similar.

We can prove now the following:

Proposition 1.6. Let s be any non negative real, 1 <p< o0, 1<qg< 0 and m
the integer part of s. Consider any vector valued function ® of
W*-2(RM,RF YN C°, max(1,5)<s' <m+1, such that ®0)=0. Then for any
function u of the space A3 (R¥,RMYNL®(RY,RM) the function ®ou belongs to
A5 oRYRHNL2(RY,RY) and || @oulls.pig < ClIPls.co [|talls g (14]]% + 1).

Proof. We shall consider on the Besov space A} (R",RM) the norm

AL
||“|ls,p:q=||u||p+{jlll |1yv+‘slq d } where L=m+1
IRN

As ®(0)=0 and ® is Lipschitz it is clear that ®ou belongs to L?. On the
other hand it is simple (but tedious) to see by induction on m that:

m-1

Ay ®ou = Z 2:: Z::

1
o { sy @ DGy s 118y, By 1)
0

Oty =

k=j
Gy.jA;,n_juc;—y.(m+kl»2j-—])A’;‘:1 5ys,u G—y.(m+2kl o 2k ki =2 i+ l))Aj}(J”'éys.

...5ysiﬂu vee G—y-(m+2k1+ m+2k,,l+k,—2j—r)Alfz'6ys, vee 5ys,u dSl ‘..dS'-(»l

where:

by m—1 =17 [i=ka=17] [i—ki—ka— ... =kp—y —1
kiokd T m—j—1] |ki—1 ko—1 k,—1

for any re[0, j], je[0, m—1]
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al| a
b|  bYa—b)

dys u(x)=su(x+y/2)+(1—s) u (x—y/2) for any s€(0,1), xeR", yeR" and

Gyu(x)=u(x+y/2).
By this:

with:

AP 1@ou=A,(A"®ou)=A; + A, +As (1.7

J 1 1
A1= Z Z Z bkl...k,,jg...gd’+lq)(G—y-(m—r—1)5ysl ...5ys,Hu)Gy-(,‘+1)A;,"_’u

=0 r=0 kit . tk=j
G~y-(m+2k1+ +2k,-,—2j—r+1)AI}(z'5ys1 5ys,u dsl ...dSr+1
+1 -j
Az—— Z Z Z bkl k,J§ jd’ q)(G—y (m—r— 1)5ysl . 5ys,.+1u)Gy.jA;" ity
J=0 r=0k+ . k=)
G yimik - D Sys,tt ... Gyim—ko—r 4 ) Oy, ... Oyt dSy ... dSy g

1

J 1
A3= Z Z Z ‘ bkl...k,,jg ...gAy(dr+lq)(G—.y-(m—rvl)éysl e (Sys,ﬂu))

Gy(j_l)A;n_ju G—y(m—k,,—r+I)Al;"éysl ...5ys,u dSl ...dsr+1

Using Holder’s inequalities, the translation invariance of L? norms and
lemma 1.5 one gets:

14illspia < Cll‘bllmwllullstllull' for i=1.2

r=

In order to obtain the same estimate for A3 we have to use also that, by
the hypothesis on @:

VE (eRM Vr<m—1, Vy;eRM i=1,..,r+1:

I 1) — " D)1 .. vy 4] < Ol ol = L ol v
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Remark 1.7. One can prove a result similar to the one of Remark 1.3
for the spaces A} (RY,RM) N L2(RY,RM).

Remark 1.8. Proposition (1.6) remains true if we consider u belonging to
the space Aj4(1,RY) N L*(Q;,RM) of functions defined on a smooth domain
of RY and ® a function of W*-*(Q,,Rl) where €, is a smooth domain of
RMcontaining Im(u). Just using the extension operators from A3 Q;,R¥) to
A3 (RY,RM), from W*2(Q,,RE) to W**(RY,Rt) and their inverse.

As in remark (1.4) if @, is bounded we do not need no more the condition
®(0)=0 in order to have the results of proposition (1.6).

Remark 1.9. The condition s’ > 1 is necessary as shows the following result
of J. Simon [13]:

Theorem. (J. Simon). Given pe(0,1), Vse(0,l]) and Ve>0,
Iwe W (Q) Vre[1,00]; WP~ twg WP+ (Q) Vr' e[1,00].

In fact, J. Simon gives a counterexample where the function w is Lipschitz
of order s on Q.

Remark 1.10. It is well known that for any non negative integer m the
space W™? N L* is an algebra (for p=2 it is the Schauder algebra). The proof
is a simple consequence of the formula of Leibnitz and the Gagliardo and
Nirenberg’s inequalities.

This result remains true for any Besov space A}, with s>0, p>1 and
g>1. We only have to show this for the homogeneous spaces Aj,. But this is
very easy using the characterisation of these spaces given by J. Dorronsoro in
[6]: ue A3, iff there is an integer M >s such that, if Q is any cube in RY and

P¥ (f) is the unique polynomial in P (the space of polynomials of degree less
or equal than M) such that:

J(f—Pé‘Z”(j)) x*dx=0 VoaeNV¥; |o|<M
Q

and if
Qf,M(X,t)=SUP{IQI_l jlf—Pg(f)IdZ; xeQ |Q|=tN}
0

one has:

1
<f(t‘°‘ 1950 (D))~ dt>q =
0
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and the fact that P} satisfies:

1PE (0)ll < CIQI Ilvldzs Clivllo  (see [6])
Q

The same result is true for the space H*? N L* using similar results of J.
Dorronsoro about Bessel-potential spaces (see [7]). The author is grateful to
J. R. Dorronsoro for fruitful conversations about this Remark.

2. DENSITY RESULTS

Let Q be a bounded and regular domain of R¥ and S™ the unit sphere of
R+, As it has been said in the introduction we prove in this section the
density of the set of regular functions defined on Q and taking values on S,

on the sets A}, (Q,S"), when some relations hold between the coeficients
s, p, 4, M, and N.

First we give a simple extension of a density result in [2] and [12]:

Theorem 2.1. Let M, N and m three positive integers and p a real no less
than one such that mp> N. Then C(Q,SM) N W™P(Q,SM) is dense in W™P(Q,SM).

Proof. Any function u of W™?(QS") is bounded and then belongs to
whmr(Q.SM) by the Gagliardo and Nirenberg’s inequalities. Now using the
method of [2] we obtain, by taking averages of u over balls, a sequence of
continuous functions {u.} converging to u in W*™?(Q, S™) when ¢ tends to zero
and such that dist(ug(x),S") tends to zero uniformly on Q with ¢ (using that
mp > N). The result follows as in [2].

Theorem 2.2. Let M and N be two positive integers. For p and q reals

greater than one and any non negative real s such that sp>=N, the set
CQSM)N A (Q,SM) is dense in A3, (Q,SM).

Proof. Here again the idea of the proof is the same as in [2].

Consider any function u of A} ,(Q,S") and its extension to RY, U of
A (RN, R¥+1), Define for any ¢>0:

Ui(x)=|Byx)| ! J U(z) dz  where Byx)={zeR"|z—x|<¢}
By(x)

These functions belong to C(R¥,SY) and if u. = U, then, as e—0, u.—>u in
A3 ((RM+1). On the other hand consider any real r > 1 such that 1/p<s/r<1.
For any x€Q
sp.
|U(z2) - U(z—h)[
|B.|*

[dist(u.(x).5")]7 < B~ j UG — )" dy<C f dz dh

Be(x) B2:(0) By(x)
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Now if g>p: sp
[U@2)—-U(z—h)["
C
J f B s
B2:(0) B(x)
4q 2
‘ se. \' dh )°
B):(0) Bi(x)

using that sp>=N.

Therefore [dist (u(x), $¥)}*?"—O0 when ¢— o0 uniformly for xeQ. -
If g<p, Ay, <A}, and then:

j j[IU(Z)—U(y)!‘”/’/IZ—YIN””] dy dz< o

RY RN
Using again that:

[dist (u(x), S*)]*P" < J j[lU(Z)— U™ /lz = yI¥+7] dy dz

B: B

we get the same conclusion.

Taking now v, = Projs:u, for ¢ small enough we obtain the result.

So we shall consider in all the following that sp < N. In this case our first
purpose is to approximate any function of A3, Q,S™) by functions, not
necessarily continuous taking values only on a segment of sphere. In order to
do this we shall need the following deformation lemma.

Lemma 2.3. For any £¢>0 and x°eS™ let Vo .p=SM NB"+1(x°, ¢/2) and
Weo oo = SM-Int(Vie,e2). There is a C® map ®©, from S™ to Wy such that:

i) (Dg‘W‘OAg/z = Id|Wx°4s/2 .

ii) VLeN, 3C>0; Yae N¥+! |¢| < L; |[D*®]|,, < Ce".

Proof. This is a «regular version» of a lemma proved in [5] (where @ has
only to be Lipschitz). The proof is essentialy the same.

We can prove now our first density result for the particular case of
Sobolev spaces W™?(2,SM) with m an integer.

Theorem 2.4. For any real p, greater or equal than one, for any positive
integer M and any non negative integer m such that mp<M the space
C=(Q,SM) is dense in W™P(QSM).
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Proof. Let ¢>0 be fixed. By lemma 2.1, for any x°eS" there is a C*
function ®, from S¥ to Wi, such that:

1) q)5|Wx°.n,f2 = Id1 Wy er2e
ii) VLeN, 3C>0; Yoe NM+! |o| < L; ||D* D], < Ce .,

In order to apply the results of section 1 we extend this function to all of
RM+!_ For this purpose consider any C® function h from R* to R such that
h(1)=1, supp h =(1/2,3/2) and define W0 . =Dw «(x/|x|) - A(x). This function is
C* and D*'¥P(x)<C-¢~™ for any x of RM*! and « such that |x|<L.

If P, is the maximal number of disjoints sets of the form Ve, contained in
S™ there is a constant K such that P.> K &M, Let {Vi}i=1,..r, such a family
of sets and define

Vie {1, . Ps} Ui = lI"x",eou E(I)xi,aou-

By construction u;,=u on W and u;, goes from Q to Wep.
On the other hand:

P, P, i
Y ||u—u,-,£||£’,,,,,=|:|| Z(u—ui,s)llm,p] =
i=1 i=1

P
=[I| > (d— ‘Pf,e)oullm,pT < (@ oull5,p (2.5
i=1

with @y(x)=Z(x — Wi:(x)) for any x of R¥*+!, @, is a C* function such that
®,(0)=0 and then by proposition (1.2):

P,
O =i gl p < CUDC B, o 11l
i=1

But, by definition of @, and using that the supports of the functions
(Id—Y;,) and (Id— ¥;,) are disjoints for i#j we have:

Hq)snm,oo <max{l|1d— Ti,s“m,oo; l= 19"'3 Pe} ch—m

from this we deduce:

z

Mw

[l — s ellf,p < Ce ™ Pllutl|,p
i=1

It follows that there is at least one i€ {1,. , P;} such that:

([t — thialPrp < Ce™™P(P) ™" - [lt], 5,0 < CeM = [lullF
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This inequality gives us an approximation of any function_u of W™?
taking values on S™ by functions u, of W™? with values only in a segment of
sphere W... We have to approximate now u. by a smooth map from Q to
S™. There is no loss of generality if we suppose that x'=(1,0,...,0). Consider
the stereographic projection B of S on RM with pole x'. Its restriction P to
W, is a C® difftomorphism from W into P(Wxi.).

Let us define now: Vze BM+!(0,1)\BM+!(x',¢), z#0: PE(z)=h(z|)- P(z/|z|)
and PE(0)=0 (where h is as in 2.4). It is a C® extension of P to BM+!(0,1)/
BM+!(x' ). On the other hand the image of [B**+!(0,1))\ B¥*!(x,¢)] by P? is
contained in P(Wi,).

By the results of section 1 PEu.) is now a function of
WmrQ, RM)NL*(Q, RM) and can be approximated by smooth functions viex
of C*(Q,R¥)NL*(Q,RM). Define now wisn= P~ '(tizn). These functions
belongs to C*(Q, RM). We want to show that there is a subsequence tending
to ue in W™?, By remark 1.3 this holds because:

]) Ui,s.n—’PE(Ui,e) in Wm’p(Q, IRM)
Il) EIC>O, Vn “Ui,e,n”oo SC
and then wuizx— P~ '(PE(u.))=u. in W™ for a subsequence of uizn.

In order to prove a similar result for the space A}, we would like to apply
the same method. Unfortunately formula (2.5) is not true for these spaces.
Nevertheless one can, with a slight modification prove the following:

Theorem 2.6. For any bounded smooth domain Q of RN and three reals
1<p<owo, 1<qg< 0w, s=1 such that smax(p,q)<M, the space C*(QSM) is
dense in A3 (Q,SM).

Proof. As in 2.4 consider, for any ¢>0 fixed, a family {Vi.}i=1.., of
disjoints subsets of S such that P,>Ke M and ®«, the corresponding
function from S™ to Wi equals to the identity on We.». Define now Wxio(x)
= h(|x])- Dxe(x/|x]), Pxe(0)=0 where h is as in 2.4. Let U be the image
of u by the extension operator from Aj,(Q,5Y) to A5, (RY,RM*!). Define

Uie=Wx«:0U and consider the function Di.=Fi.oU where we have posed
Fie(z)=h(lzl)" z/z| — Wx:(2).

Observe first of all that
supp D;; = Qi.={xeRY; Ux)/|U(x) € Vis} and Q1N Q.= if i#j
and therefore for any integer L:

supp ALD, = UKz it Qi = A%(y) 2.7
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with:
TyQie={x€RY; x+yke Q;.}
Let be m the integer part of s; arguing as in (1.7), for any i€ {l,..., P.}:
A7 1D, .= Sth + Sk + S5
Now we have to estimate the sum i |Dizc]|3pq- The way to do this is the
i=1

same as for A4;(i=1,2,3) in (1.7) with ; slight modification. As the sets A'(y)

are not translation invariants we have to use the properties of the supports of
the functions D; . in the following way:

& L a dy
Y NGwAL Ullraeoy vy <
i=1 |yl

e

P, L L . dy
< 'Zl k_z_ 1G AT UllEoe 00 i (2.8)
4

1_ a)+ . dy
( " C(L) JHG,,,A’; U||L"(ERN)W+—S,,

<[F]
for any integers r and L and two any finite reals a>1, b>1.

And we obtain for s'>s:

P 1/q ) (L — L)+
(Z ”Disﬁllg,p,'q> N NUllsp:a (2.9
i=1

We choose s’ such that s'max(p,q) <M.
From (2.9) we deduce that, for at least one i of {1,..., P,} we have:
||Dl',£ ”S’p“q < Cs—s’[Ps]—min(l/p,l/q) ”U“s‘p;q < C'g—s’+M min(1/p,1/g) HU”S,!W

Now call u;,=Uiga. Then u;,€ Ay (QWe,) and D;, is an extension of
u—u;, to all of RY. Therefore:

[l — i ellspig <D ellsprg < Ce MGV g

The proof now follows as above using stereographic projection.

Remark 2.10. If sp>M, the conclusion can fail even if sg<M. For
example, it is known (see [2], [5] and [12]) that the function x/|x| belongs to
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H'(B*S?) and can not be approximated by functions of C®(B3S%) in
HY(B3,5%). On the other hand x/|x| belongs to W?'(B3,S?) for any r< 3/2.

Now, using the inclusion properties recalled in the first section:

W2r(B3,8%) = A% (B3S% Ve>0 because 2 —¢/r>(2—&)—¢/r
A% (B3,S*) < H (B, $?) for r>1 and ¢>0 such that (2—g)—r/3>1/2.
(All the inclusions are continuous).

If r=3/2+9) with 1>6>0 and &+d6<1/2 in order to have
(2—&)—r/3= —1/2, this condition implies also that r>2/2—¢). Therefore
suppose that {u,} is a sequence- of C*(B>S?* converging to x/|x| in
A¥* (B%,5%). By continuous injection from this last space on H'(B3S?) the
sequence {u,} should be convergent to x/|x| also in this last space what is
imposible.

As in the proof of proposition 1.5, for proving theorem 2.6 we have
needed M greater than max(s,1). p. So we can not give a general density result
as (2.6) when 0 <s < 1. (In that case with exactly the same proof as in (2.6), we
can prove the density only when 1<p<M). Nevertheless we can prove the
following;

Theorem 2.11. If p and q are no less than one, for any integers N>1 and
M>1 and any s in (0,1/p) such that 1+ N/p>s+ N/q the set C(L,S™) is dense
in A5 (Q,SM).

We shall prove this result in two steps. First showing that the set of step
functions on € taking their values on S is dense in A3,(Q,S™). We conclude
using stereographic projection as above.

The first step will be donne with three simple lemmas.

Lemma 2.12. If se(0,1/p), for any N=1 and M =1, the characteristic
function of a cube Q of RN belongs to A} (RY).

Proof. Using the characterisation of A}, for 0<s<1 given in [9] it is an
elementary calculus to see that if Q =1I; x I, x ... x In where the I; are intervals
of R whith Lebesgue measure L;

1/p

N 1/ ~-s+(1/p)
lxglhos <C(Ns,p@) ¥ Ly%, Ly” . LT L Ly

i=1
where y, is the characteristic function of Q.
Lemma 2.13. Under the hypothesis of theorem 2.11 the set of finite and

linear combinations of characteristic functions of cubes contained in Q, with
vectorial coefficients belonging to RM*! is dense in A}, (€,SY).
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Proof. Given any function u of A5 Q,S") it is well known that for any
e>0 fixed there is a function v of C®(Q,BM(0,1)) such that: |ju — v}y <e.

Now it is easy, using diadic cubes in RY, to construct a sequence {v;} of
step functions of the form:

v ()= Y 00Xtk
kekK;
(where y;,x is the characteristic function of Q(j,k) the k —th cube of the j—th

g}e]:neration, xj, belongs to Q(j,k) and #K; is of order 2V, Q = Q(0,0)) such
that: )

- W
;= 0+ 1]l S C(Qus,pg)2 7o+ 4N

We deduce from this inequality and the hypothesis that {v;} is a Cauchy
sequence in AS(int Q(0,0)). Then defining u;=uje, {u;} is a Cauchy sequence
in A3,(Q). As for almost every x of Q: u{x)—u(x), {u;} converges to v in A3 (<)
and this ends the proof.

Lemma 2.14. Under the same hypothesis that in theorem 2.12 the set of step
functions defined on Q and taking their values on S™ is dense in A} (Q,S").

Proof. Let u be any function of A$,Q,5). By the above lemma we know
that there is a sequence of step functions {v,} from Q to B(0,1) converging to u
in A5, (Q,SY). We can write

va(¥)= Y &nx Ani(¥)

keKy,

where &, ;€ B(0,1). Let ® be a C' non negative function from B(0,1) into itself
such that ®(x)=|x| for any x of B(0,1) such that |x|>1/4 and |®(x)|<1/4 if
|x} < 1/4. Define now:

Wa= 3 Enrdni+ 3. loxmi where {oeS™ is fixed

keK ke K"
With K'={K3j1— [Enell<1/2} and K" = (k"1 — [En erll < 1/2}
Let us prove that {w,} still tends to u in A}(Q,B(0,1)):
[|tt — Wl < Clltt — Valldpig + |10n — WallSpiq

L C|lu—vallépa + Clf Z (i — CO)Xn,k””g,p:q

ke K"

< Cllu—vallpg +C Z 12,k 11pia

k'eK"
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Using now the results of section 1 it is clear that ®ow, tends to one in
A3 (,B(0,1)). So we have:

||1"(D0Wn||g,l7;a.>c Z |1‘(I)(én,k”)lq“Xn,k””?,p;q2

K eK"

2C27% Y lxn i llia

keK”

Therefore:
([t —wall€py < Clltt — 04| + C29||1 — Dowi||4,,

and {w,} tends to u as n goes to + co0. Observe that all the functions w, take
their values on B(0,1)\B(0,1/2) because by construction of ®, ®(x)>1/2
implies |x|>1/2. Letting now u,=Proj ssw, we have the result.

3. NON DENSITY RESULTS

As we said in the introduction, F. Bethuel and X. Zheng have proved that
if : is a compact Riemann manifold of dimension M imbedded in R?, p<N
and T (N)#{0} (where n[,,}(m) is the [p]-homotopy group of ) then
C(B(0,1), ) is not dense in W"-P(BV(0,1), N) (see [4] and [5]). We extend this
result to the following cases:

Theorem 3.1. i) Let 1<p< o0, 1<qg<oo, meN such that mp<N and
T mp(R)# {0}, Then C(B¥(0,1)), R)NW™PBY(0,1), R) is not dense in
W™P(BY(0,1), RN).

ii) If 1<p<o0, 1<g< 0, s>0 are such that sp<N and there are s' >0,
p'=1,q4' €[1,p] for which [sp]=[s'p"], AL((B¥(0,1), ) = A ,(B¥(0,1), R) and
T s M) # {0} then C(BY(0,1), M) N AS(BY(0,1), M) is not dense in
A BN (0,1), N).

In order to prove this theorem we give before two propositions relating
convergence in Sobolev or Besov spaces and homotopy properties.

Proposition 3.2. Let M be a compact Riemann manifold of dimension N, R a
compact Riemann submanifold of RM+! and g:M —>RM+' a W™P map such that
g(x) belongs to M for almost every x of M and mp < N. There is an ¢>0 such
that, if fi and f, from MM to N are functions of W™P and ||f; — gllmp,<e(i=1,2)
then f; and f> are [mp]-homotopic.
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Proof. Since N is bounded in R™+! the maps g, f1 and f belong to L*.
Then by the Gagliardo and Nirenberg’s inequalities:

fi = gll1,mp < Cllfi = Gllmpllfs — 9llco < Cllfi = Gllm,p for i=12.

By Theorem 2 of [15], there is an >0 such that ||f; —glli mp<e (i=1,2)
implies that f; and f, are [mp]-homotopic.

Proposition 3.3. Let 9t be a compact Riemann submanifold of RM+!. Let g
be a A5, map from BY(0,1) into |t whith sp <N and q<p. There is an ¢ >0 such
that if fi and f;, from BY(0,1) to N are in A}, and ||f; —g||sp.e <€ (i=1,2) then
f1 and f, are [sp]-homotopic. .

Proof. Let {f;} be a sequence of A}, maps from BY(0,1) into % such that
i — gllspa <27% Since g<p, AS, = A3, with continuity. On the other hand
since 9%t is bounded the functions f, f; and f, are bounded and then for
r=min(s, s/([s]+ 1))

IIfi — gllsprmsoir < Cllfi — Gllspio < Cllfs — gllipg < C27°F
Using elementary properties of Lebesgue integral on RY and the same

arguments as in [15] we obtain that there are ro€(0,1/2), t; e(—1,1) and
for i=2, .., m (where m=N —[sp]—1),

te(—J1-8..J1-t_,, J1+8..J1+t)

such that, if

[sp]1+1 m
XZ{XIGR[SPI+1; Z x12+ Z tlz__-ro} t=(tl,""tm)
i=1 i=1

. A P spfr —dy— r
1C>0 ; VkelN j <BNJ; i l fk(x at) fk(y)l / I(x',t) _y)|N+sp ) dO'(x )< C (34)
lim j | fir1(X' ) —filx" O do(x')=0 (3.5)
k=

We conclude with the same tools that in [15] using that the [sp]-skeleton
of B¥(0,1) is Strk

Proof of 3.1. i) Let P(,,;+1 be the projection RY to R+ and z radial
projection from RI™P1*! to S'™P1 Define the function g =m0Pmp+1. We have
that ge W™P(BY(0,1), SU"#)) and gjsm» =1d.

On the other hand, since Ty (9t)# {0} there is a C!"P*" map, @ from
Stmrl to 9 which can not be extended continuously to B™P1*1, Let us define
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f =®og. By the results of section 1, fe W™?((BV(0,1), k). Now suppose there is a
sequence {f,} of functions of C((B¥(0,1), %) converging to fin W™P((B"(0,1),R).
By proposition (3.2) f, and f are [mp]-homotopic for n large enough. Since f,,
is smooth on B(0,1), by the homotopy extension theorem we may extend f to
BY(0,1) continuously but that is impossible by construction.

ii) Let us define the function fin the same way as above, with [sp] instead
of [mp]. Suppose again that there is a sequence of continuous functions {f,}
converging to f in Aj4(BY(0,1), ®). By the hypothesis {f,} converges to fin
A} (BY(0,1),9%). The proof follows now as above.

Remark 3.4. Using the inclusions recalled in the first section it is very
simple to see that the conditions in ii) of Theorem (3.1) are satisfied is s- p is
not an integer and IT,(RN)+# {0}. If sp is an integer we must to have g<p.
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