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A survey on models for panel count data
with applications to insurance

Jean-Philippe Boucher and Montserrat Guill én

Abstract. In insurance the expected number of claims per year given theobserved characteristics
of the covered risk is the basis for setting the price of a policy. Companies accumulate information of
clients along several years, but in practice the panel data structure is not exploited. We review panel count
data models that are useful in this context and present a new alternative based on the generalization of a
compound sum.

Una revisi ón de los modelos para paneles de datos de enumeraci ón
con aplicaciones a seguros

Resumen. En seguros, el número esperado de reclamaciones por año dadas las caracterı́sticas del riesgo
cubierto es la base para establecer el precio de una póliza.Las compañı́as de seguros acumulan informa-
ción de clientes a lo largo de varias anualidades, pero en lapráctica la estructura de panel de los datos no
se explota. Revisamos los modelos para paneles de datos de enumeración que son útiles en este contexto
y presentamos una nueva alternativa basada en la generalización de una suma compuesta.

1 Introduction

Modeling count data is an essential part of insurance pricing. Count regression analysis allows identification
of risk factors and prediction of the expected frequency of claims given the characteristics of the policy-
holders. An insurance premium is the amount of money that a client will pay to receive insurance coverage.
A usual way to calculate the premium is to obtain the conditional expectation of the number of claims given
the observable risk characteristics and to combine it with the expected claim amount or economic loss.

The literature on count regression analysis has grown considerably in the past years. Readers can
overview the more general context of models for discrete longitudinal data in the text by Molenberghs and
Verbeke [24, (2005)] where many applications and computational issuesare discussed. For instance, binary
longitudinal data or even the way of handling incomplete longitudinal data, where the observational period
is not the same for all individuals. Another example is the article on the analysis of longitudinal count data
with serial correlation (Xu et al. [36, (2007)]) using a state space model in an application to medical data.
A description of univariate time series count models can be found in the classical book of Cameron and
Trivedi [10, (1998)].
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In Denuit et al. [12, (2007)] the reader can find a comprehensive review of count data models for cross-
sectional data and its applications to automobile insurance rate-making. In this paper we address panel count
data models in the context of insurance, so that we can see theadvantages of using the information on each
policyholder along time for modeling the number of claims. The existing literature has mainly advocated
the use of the classical Poisson regression approach, but little has been said on other model alternatives and
on model selection. We argue that new panel data models presented here that allow for time dependence
between observations are closer to the data generating process that one can find in practice. Moreover,
closed form expressions for future premiums given the past observations and model selection will definitely
help practitioners to find suitable alternatives for modeling insurance portfolios that have accumulated some
years of history.

Consider an insurance policyi overT consecutive years for which the number of claims reported tothe
insurance company are observed. Most often there is no accident, so that the observed number of claims is
zero and note also that accidents may not be reported to the insurer as discussed in Boucher et al. [7, (2009)].
Let us call the vector of random variables(Ni,1, . . . , Ni,T ), which is the random counts to be modeled. For
each individual policyi and yeart, t = 1, . . ., T , some covariate information exists, because the insurer
knowns a vector of observable characteristics(xi,t related to the individual. In automobile insurance, this
is information on the insured driver and the insured vehicle. There are also characteristics that cannot be
observed but they influence the number of accidents and therefore the number of claims. Examples of
unobservable variables are swiftness of reflexes or respectof the driving code. The unobservable part of
the model is called the random effect. We assume that the random effect is different for each individual
and constant over time, so we will denote it byθi. Given the individual-specific random effect termθi,
the claimsNi,1, Ni,2, . . ., Ni,T for each time period are independent. We assume that the covariates are
independent from the random effects (see Mundlak [27, (1978)] or Hsiao [20, (2003)] for a general review).

A wide selection of models can be used to model the dependencethat can exist between contracts of
the same insured, see Boucher et al. [6, (2008)] for example. To account for this dependence that can
exist between all the contracts of the same insured, one of the most popular way is the use of a common
individual term (Hausman et al. [17, (1984)]).

This modeling has some natural interpretation for insurance data. Indeed, insurance data exhibit some
variability that may be caused by the lack of information on some important classification variables (swift-
ness of reflexes, aggressiveness behind the wheel, consumption of drugs or drinking habits). These hidden
features are usually captured by the individual random heterogeneity term. Using the notation of Hausman
et al. [17, (1984)], the joint probability function ofNi,1, . . ., Ni,T is thus given by:

Pr[Ni,1 = ni,1, . . . , Ni,T = ni,T ] =

∫ ∞

0

Pr[Ni,1 = ni,1, . . . , Ni,T = ni,T |θi] g(θi) dθi

=

∫ ∞

0

(
T∏

t=1

Pr[Ni,t = ni,t|θi]
︸ ︷︷ ︸

Conditional Distribution

)

g(θi)
︸ ︷︷ ︸

Random Effects Distribution

dθi,
(1)

whereg(θi) is the density ofθi, i represents an individual unit andt is thet-th observation of this individual.
The first approach proposed by Hausman et al. [17, (1984)] assumed a conditional Poisson distribu-

tion, whereg(θi) is assumed gamma. In the literature, even if gamma random effects is by far the most
popular hypothesis, actuaries also used a conditional Poisson distribution with other random effects distri-
butions. Examples are the inverse Gaussian distribution (Willmot [33, (1987)]) or the lognormal distribution
(Hinde [18, (1982)]). Boucher and Denuit [1, (2006)] compared all the fitting of these distribution withreal
insurance data. Very few papers propose other distributions for random effects. Some papers address time
dependence, such as in Pinquet et al. [28, (2001)] or Purcaru et al. [29, (2004)] who used dynamic lognor-
mal distributions. Boucher et al. [6, (2008)] proposed various transformation of the gamma, lognormal and
inverse-Gaussian distributions by some changes on their parameters. Boucher et al. [7, (2008)] proposed
to use a degenerated random effects distribution, with a mass-point for a zero-value of the random effects.
Boucher and Guillén [8, (2008)] used a nonparametric estimation for the heterogeneity density based on a
squaredKth-order polynomial expansion.
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The second approach proposed by Hausman et al. [17, (1984)] assumed a conditional Negative Binomial
distribution with beta random effects. This model was used in Boucher et al. [6, (2008)] for insurance data
and provided the best fit compared to the Poisson-gamma distribution. In the actuarial literature, Gómez-
Déniz et al. [15, (2008)] proposed another mixing distribution based on an inverse-Gaussian distribution.
Other papers modeled claim severity and claim frequency (see, Frees et al. [13, (2001)] and Frees and
Valdez [14, (2009)]).

Many attempts have recently been made in selecting other conditional distributions for panel data. In
this paper, we propose a review of these conditional distributions as well as their applicability to insurance
data. In the second section of the paper, we review the standard modeling approach of panel count data
models, proposed by Hausman et al. [17, (1984)]. We also discuss some modeling difficulties resulting from
the dependence between regressors and random effects and weobtain the predictive distribution resulting
from observations of past values ofNi,t.

In the third part of the paper, we review the standard Poissondistribution, while in section4 we explore
panel data model for the conditional Negative Binomial distribution. The zero-inflated models proposed
by Boucher et al. [7, (2008)], where an extra parameter is added to the count distribution, is described
in section5. In the sixth section, the hurdle distributions for panel data, proposed by Boucher et al. [4, 5,
(2008)] is used. In the following section, we review a conditional count distribution where the time between
two claims is no longer an exponential distribution, as proposed by Boucher and Denuit [2, (2007)]. In
section8, we propose a generalization for panel data of theNegative Binomial Xintroduced in actuarial
science by Boucher et al. [3, (2007)]. Finally, in the last section, a numerical illustration is presented and
some methods to compare model fits are described.

2 Panel Data Distributions

2.1 Endogeneous Regressors and Fixed Effects

In linear regression, correlation between covariates and the error term leads to inconsistency of the estimated
parameters (Mundlak [27, (1978)] or Hsiao [20, (2003)] present a review in case of longitudinal data). The
same problem exists for the count data regression whenE[θ|xi] 6= E[θ] (Mullahy [26, (1997)]) and it leads
to biased parameter estimates. In insurance, correlation between regressors and the error term is often
present (Boucher and Denuit [1, (2006)]) and it may be caused by omitted variables that are correlated with
the included ones.

As noted in Winkelmann [35, (2003)], consistent estimates may be found if correctionsare made to
the standard estimation procedures. Boucher and Denuit [1, (2006)] compared fixed and random effects
models. they showed that standard estimation methods, likeclassical maximum likelihood, can still be used
on joint distribution based on random effects. Indeed, the resulting parameter estimates, while being biased,
represent the apparent effect on the frequency of claims, which is exactly the interest when the correlated
omitted variables cannot be used in classification.

2.2 A Priori and A Posteriori Ratemaking

Property and liability motor vehicle insurers use classification plans to create risk classes. The classifica-
tion variables introduced to partition risks into cells arecalleda priori variables (as their values can be
determined before the policyholder starts to drive). Premiums for motor liability coverage often vary by the
territory in which the vehicle is garaged, the use of the vehicle (driving to and from work or business use)
and individual characteristics (such as age, gender, occupation and marital status of the main driver of the
vehicle, for instance, if not precluded by legislation or regulatory rules).

As stated in the introduction, many important factors cannot be taken into account in thea priori risk
classification. Consequently, tariff cells are still quiteheterogeneous despite the use of many classification
variables. This heterogeneity can be modeled by a random effect in a statistical model. It seems reasonable
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to believe that the hidden characteristics are partly revealed by the number of claims at fault reported by the
policyholders. Several empirical studies have shown that,if insurers were allowed to use only one rating
variable, it should be some form of merit rating: the best predictor of the number of claims incurred by a
driver in the future is not age or vehicle type but past claimshistory. Hence the adjustment of the premium
from the individual claims experience in order to restore fairness among policyholders. In that respect, the
allowance of past claims in a rating model derives from an exogenous explanation of serial correlation for
longitudinal data. In this case, correlation is only apparent and results from the revelation of hidden features
in the risk characteristics.

As a consequence, for eacht period, the heterogeneity terms (denoted later asθi or φi) can be updated
from past experience. Even if the parameters of the distributions are evaluated using maximum likelihood
estimation, at each successive time period, the random effectsθi can be updated. Indeed, the joint distribu-
tion can be expressed as:

Pr(N1 = n1, N2 = n2, . . . , Nt = nt) =

Pr(N1 = n1) × Pr(N2 = n2|N1 = n1) × · · · × Pr(Nt = nt|N1 = n1, . . . , Nt−1 = nt−1)

Formally, the predictive distribution at timeT + 1 can be computed as:

Pr(Ni,T+1 =ni,T+1|ni,1, . . . , ni,T ) =

=

∫

Pr(Ni,T+1 = ni,T+1|θi)





(
∏T

t=1 Pr(Ni,t = ni,t|θi)
)

g(θi)

∫ (∏T
t=1 Pr(Ni,t = ni,τ |θi)

)

g(θi) dθi



dθi

=

∫

Pr(Ni,T+1 = ni,T+1|θi) g(θi|ni,1, . . . , ni,T ) dθi

(2)

whereg(θi|ni,1, . . . , ni,T ) is called thea posterioridistribution of the random effectsθi, reflecting the past
claims experience of insuredi. If this a posterioridistribution can be expressed in closed form, moments
of the predictive distribution can be found easily conditional on the random effectsθi.

In actuarial science,a priori ratemaking is the premium charged for an insured without individual
experience, i.e. the premium calculated using the distribution of Ni,1, while an experienced insured is
charged usinga posterioriratemaking, i.e. by using the conditional distribution given the previous observed
claims.

Exact predictive and posterior distributions for the random effects can only be expressed in closed
form for some specific distributions. For other models, these distributions cannot be evaluated analytically.
Consequently, a possible approach for evaluating these predictive distributions is the use of numerical com-
putations or simulations, such as Markov chain Monte Carlo (MCMC) simulations.

3 Poisson

The simplest random effects model for count data is based on the Poisson distribution with an individual
heterogeneity term that follows a specified distribution. Formally, we can express the classical Poisson
random effects model as:

Ni,t|θi ∼ Poisson(θiλi,t), i = 1, . . . , N t = 1, . . . , T,

wherei represent an insured andt the period of coverage,λi,t is a positive parameter that will usually be
related to individual known characteristics. If the gamma distribution of mean1 and varianceα is used, the
joint distribution is equal to (Hausman et al. [17, (1984)]):

Pr[Ni,1 = ni,1, . . . , Ni,T = ni,T ] =

[
T∏

t=1

(λi,t)
ni,t

ni,t!

]

Γ(
∑T

t=1 ni,t + 1/α)

Γ(1/α)

(

1/α
∑T

t=1 λi,t + 1/α

)1/α( T∑

t=1

λi,t + 1/α

)−
P

T
t=1 ni,t

.
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This distribution, which has often been applied in practice(see chapter 36 of Johnson et al. [21, (1996)]
for an overview), is known as a Multivariate Negative Binomial (MVNB) or Negative Multinomial. Note
that this distribution can also be seen as the generalization of the bivariate Negative Binomial of Marshall
and Olkin [23, (1990)]. For this distribution,E[Ni,t] = λi,t andVar[Ni,t] = λi,t +αλ2

i,t, so overdispersion
can be accounted for. Maximum likelihood estimates of the parameters and their variance estimates are
straightforward.

The Poisson-gamma distributions has the following moments:

E[Ni,t] = λi,t, Var[Ni,t] = λi,t + αλ2
i,t.

As it is well known, we found that thea posterioridistribution of the heterogeneity term for the Poisson
model with gamma random effects is also gamma distributed with parameters

∑

t λi,t +1/α and
∑

t ni,t +
1/α. In consequence, the future premium (frequency part), which is equal to the expected number of
reported claims, is equal to:

E[Ni,t+1|Ni,1, . . . , Ni,t] = λi,t+1

∑

t ni,t + 1/α
∑

t λi,t + 1/α
.

4 Negative Binomial

Negative Binomial distribution can also be used with randomeffects, as shown by Hausman et al. [17,
(1984)]. Conditionally on the random effectsδi, the conditional distribution has the following moments:

E[Ni,t|δi] = λi,t/δi, Var[Ni,t|δi] = E[Ni,t|δi](1 + δi)/δi

Thus, this conditional distribution implies overdispersion. Under the construction of (1), Hausman et
al. [17, (1984)] assumed that the expressionδi/(1 + δi) follows a beta distribution with parameter(a, b),
with meana/(a + b) and varianceab/

(
(a + b + 1)(a + b)2

)
. Following the development of Hausman et

al. [17, (1984)], the joint distribution can be expressed as:

Pr[Ni,1 = ni,1, . . . , Ni,T = ni,T ] =
Γ(a + b)Γ(a +

∑

t λi,t)Γ(b +
∑

t ni,t)

Γ(a)Γ(b)Γ(a + b +
∑

t λi,t +
∑

t ni,t)

T∏

t

Γ(λi,t + ni,t)

Γ(λi,t)Γ(ni,t + 1)
.

The moments of the Negative Binomial-Beta (NB-Beta) distribution are as follow:

E[Ni,t] = λi,t
b

a − 1
, Var[Ni,t] = λi,t

(a + b − 1)b

(a − 1)(a − 2)
+ λ2

i,t

[
(b + 1)b

(a − 1)(a − 2)
−

b2

(a − 1)2

]

,

Thea posterioridensity of the heterogeneity term of the Negative Binomial with beta random effects,
proposed by Hausman et al. [17, (1984)], has also a closed form. Indeed, using equation (2), it can be
shown that the ratioδi/(1 + δi) follows a beta distribution with parameters

∑

t λi,t + a and
∑

t ni,t + b.
Consequently, for this model, the frequency part of the future premium can be expressed as:

E[Ni,t+1|Ni,1, . . . , Ni,t] = λi,t+1

∑

t ni,t + b
∑

t λi,t + a − 1
,

which has the same form as the future premium with the Poisson-gamma model, but allows more flexibility
since an additional parameter is used to calculate the premium.

5 Zero-Inflated Distribution

The zero-inflated Poisson model has been shown to be a useful alternative to the Poisson distribution for
cross-section data. Indeed, it often provides a good fit for the data and can easily be interpreted. The model
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is based on a finite mixture model of two distributions combining an indicator distribution for the zero case
and a standard count distribution (Mullahy [25, (1986)], Lambert [22, (1992)]). The distribution has been
shown to be a natural candidate to deal with the large frequency of zero-values, which is exactly what is
observed in insurance data. The zero-inflated Poisson (ZIP)distribution has two parametersφ andλ and
has the following probability function:

Pr[N = n] =







φ + (1 − φ)e−λ for n = 0

(1 − φ)
e−λλn

n!
for n = 1, 2, . . .

.

For panel data modelling, we can treat the zero-inflated component as an individual parameter, add
random effects to the mean parameter of the Poisson distribution or even use them together. By conditioning
on these two random effects, the joint distribution can be expressed as:

Pr[Ni,1 = ni,1, . . . , Ni,T = ni,T |ǫi, θi] =

T∏

t=1

(

I(ni,t=0)φit + (1 − φit)
e−λitθi(λitθi)

n

n!

)

whereλit = exp(x′
itβ) andφit = Φ(x′

itγ + ǫi). Transposition is denoted by′ and there are two vector
parameters,β andγ. Φ denotes the cumulative distribution function of a standardnormal. However because
this distribution cannot be expressed in a simple form, instead, Boucher et al. [7, (2008)] choose to use time
independent covariates, that is to say that covariates do not change over all the period observations of an
individual unit. In this situation, the authors show that the joint conditional distribution can be modeled as:

Pr[Ni,1 = ni,1, . . . , Ni,T = ni,T |φi, θi] =

T∏

t=1

(
I(ni,t=0)φi + (1 − φi) Pr[Ni,t = ni,t]

)

=

T0∑

j=0

(
T0

j

)

V Poi
j (ni,1, . . . , ni,T |θi)φ

T0−j
i (1 − φi)

(T−T0)+j ,

whereT0 is the number of insured periods without claim andV Poi(·) is a function having the following
Poisson form:

V Poi
j (ni,1, . . . , ni,T |θi) =

(λiθi)
PT

t=1 ni,t exp (−(T − T0 + j)λiθi)
∏T

t=1 ni,t!
.

By this parametrization, using one or both random effects, Boucher et al. [7, (2008)] show that the
joint distribution can be expressed in closed form. Indeed,an individual termφi that is beta distributed
with parametersai andb, and an heterogeneity termθi that follows a gamma distribution of mean1 and
varianceα are added to the model. Consequently, it leads to a multivariate zero-inflated Poisson Beta
Gamma model (MZIP-BetaGamma) that can be expressed as:

Pr[Ni,1 = ni,1, . . . , Ni,T = ni,T ] =

T0∑

j=0

(
T0

j

)

V NB
j (ni,1, . . . , ni,T )

β(a + T0 − j, b + (T − T0) + j)

β(a, b)
,

whereT0 is the number of insured periods without claim and the functionV NB
j (·) has the following multi-

variate Negative Binomial form:

V NB
j (ni,1, . . . , ni,T ) =

Γ(
∑T

t ni,t + 1/α)

Γ(1/α)
∏T

t ni,t!

(
1/α

(T − T0 + j)λi + 1/α

)1/α (
λi

(T − T0 + j)λi + 1/α

)P

T
t

ni,t

.
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Under the assumption of independence between random effectsφ andθ, moments can be found using
the conditional calculation:

E[Ni,t] = λi

(

1 −
ai

ai + b

)

Var[Ni,t] = λi

(

1 −
ai

ai + b

)

+ λ2
i

(

1 −
ai

ai + b

)(
ai

ai + b
+ α

)

.

Parameters can be evaluated using maximum likelihood estimation. Programs such as the NLMIXED
procedure of the SAS system allow for this type of estimations when the log-likelihood can be expressed in
closed form.

Using both individual effects leads to the following predictive distribution:

Pr[Ni,T+1 = ni,T+1|ni,1, . . . , ni,T ] =
∑T∗

0

j=0

(
T∗

0
j

)
V NB

j (ni,1, . . . , ni,T , ni,T+1) β(a + T ∗
0 − j, b + (T + 1 − T ∗

0 ) + j)
∑T0

j=0

(
T0

j

)
V NB

j (ni,1, . . . , ni,T ) β(a + T0 − j, b + (T − T0) + j)
.

whereT ∗
0 is the updated value ofT0, consideringni,T+1. Using the following notation:

K(j) =

(
T0

j

)
Γ(a + T0 − j)Γ(b + T + 1 − T0 + j)((T − T0 + j)λi + 1/α)−(

P

T
t

ni,t+1/α)

(ai + b + T )

T0∑

k=0

(
T0

k

)
Γ(a + T0 − k)Γ(b + T − T0 + k)((T − T0 + k)λi + 1/α)−(

P

T
t

ni,t+1/α)

,

the predictive distribution can be expressed as:

Pr[Ni,T+1 = ni,T+1|ni,1, . . . , ni,T ] =







1 −
∑T0

j=0 K(j)(1 − pr) for ni,T+1 = 0
T0∑

j=0

K(j) PrNB[Ni,T+1 = ni,T+1; r, p] for ni,T+1 = 1, 2, . . .

where:

PrNB[Ni,T+1 = ni,T+1; r, p] =

(
ni,T+1 + r

r

)

prqni,T+1

is the probability function of a Negative Binomial distribution with parameters equal to:

r =

T∑

t=1

ni,t + 1/α, p =
(T − T0 + j)λi + 1/α

(T + 1 − T0 + j)λi + 1/α

and the expected predictive value is the equal to:

E[Ni,T+1|ni,1, . . . , ni,T ] = λi

T0∑

j=0

(
∑T

t ni,t + 1/α
)

K(j)

(T + 1 − T0 + j)λi + 1/α
.

Note that unlike the standard Poisson-gamma models, the predictive mean not only depends on the sum
of number of past claims, but also on the number of insured periods without a claim (T0).

Boucher et al. [7, (2008)] found that the generalizations of the zero-inflated Poisson distribution has
an interesting interpretation for insurance data, where the number of accidents can be compared to the
number of claims. The zero-inflated distributions applied to the number of claims can be used to model the
behaviour of the insureds, i.e. to model the probability to file a claim.
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6 Hurdle Distribution

The hurdle model was introduced by Cragg [11, (1971)] and reviewed by Mullahy [25, (1986)]. This model
is characterized by the processes below and above the hurdle. Obviously, the most widely used hurdle
model sets the hurdle at zero, which leads to a distribution with the following two processes: firstly, a
dichotomous distribution that allows the participation ofthe second process; secondly, another process that
specifies, the count number, on the condition that the first processsucceeds. The first part of the model is a
binary outcome model, and the second part is a truncated count distribution. Formally, this hurdle model is
expressed as follows. Letf1(·|θ1) andf2(·|θ2) be two probability mass functions with respective support
{0, 1} and{0, 1, . . .} depending on parameter vectorsθ1 andθ2. The counting random variableN follows
the hurdle distribution if:

Pr(N = n|θ1, θ2) =







f1(0|θ1) for n = 0

1 − f1(0|θ1)

1 − f2(0|θ2)
f2(n|θ2) = Ψf2(n|θ2) for n = 1, 2, . . .

,

whereΨ = 1−f1(0|θ1)
1−f2(0|θ2)

. Boucher et al. [4, 5, (2008)] generalized the hurdle distribution for panel data. As
in the zero-inflated model, since random effects can be addedto the model for both the first and the second
process, the joint distribution can be generalized for morethan oneθi. Indeed, the joint distribution can be
expressed as:

Pr(Ni,1 = ni,1, . . . , Ni,T = ni,T ) =
∫∫ T∏

t=1

f1(0|θi,1)
I(ni,t=0) (1 − f1(0|θi,1))

1−I(ni,t=0) f2(n
∗
i,t|θi,2)

1−I(ni,t=0)g(θi,1, θi,2) dθi,1 dθi,2,

where the following specific transformationn∗ = n − 1 has been used by Boucher et al. [4, 5, (2008)]
to avoid the use of a truncated distribution. The joint distribution of the random effectsg(θi,1, θi,2) can
be expressed by a copula. To obtain interesting predictive distributions, Boucher et al. [5, (2008)] use time
independent covariates. For the zero-part of the model, theauthors used a Bernoulli(θi,1) distribution where
the parameterθi,1 is beta(ai,b)-distributed to account for the individual specificities.Covariates have been
included in the model asai = exp(x′

i β) to be sure that parameterai is greater than zero. The positive
part means are fitted using standard Poisson(γi θi,2) random effects models, where the mean variable can be
expressed asγi = exp(x′

i δ). The random effectsθi,2 follow a gamma distribution of mean1 and variance
α (i.e. both parameters are equal to1/α). Consequently, with these conditional distributions, the joint
distribution for all contracts of the same insured is expressed as:

Pr[Ni,1 = ni,1, . . . , Ni,T = ni,T ] =

∫∫ T∏

t=1

θ
I(ni,t=0)

i,1 (1 − θi,1)
1−I(ni,t=0)

(

e−γiθi,2
(γiθi,2)

n∗

i,t

n∗
i,t!

)1−I(ni,t=0)

g(θi,1, θi,2) dθi,1 dθi,2

The first moments of the hurdle for panel count data can be expressed as:

E[Ni,t] = E[θi,1] + γi E[θi,1θi,2]

Var[Ni,t] = γ2
i E[θi,1θ

2
i,2] + E[θi,1θi,2] [3γi − 2γi E[θi,1]] + E[θi,1] − E[θi,1]

2 − γ2
i E[θi,1θi,2]

2

Boucher et al. [5, (2008)] suppose independent random effects where the joint distribution of the ran-
dom effects can be expressed as the product of the marginal density functionsg1(θi,1) andg2(θi,2), i.e.
g(θi,1, θi,2) = g1(θi,1)g2(θi,2). Because of independence, each process of the hurdle model for panel data
with independent random effects can be expressed separately. Consequently, the two processes can also
be analyzed separately for thea posteriorianalysis. For the first process of the model, composed with a
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Bernoulli-beta combination, it is well-known that the posterior distribution of the random effects is still beta
distributed. The second processN∗

i = Ni − 1 of the hurdle distribution is to follow a Poisson distribution
with gamma random effects. Thus, thea posterioridistribution of the random effect term is also a gamma
distribution, as seen in section3. By combining these two processes of the hurdle model, the expected value
of the distribution, having past experience1, 2, . . ., T is equal to:

E[Ni,T+1|ni,1, . . . , ni,T ] =

∑T
t=1 ki,t + ai

T + b + ai

(

1 + γi

∑T−T0

t=1 n∗
i,t + 1/α

(T − T0)γi + 1/α

)

=

(
(T − T0)γi + aiγi

(T − T0)γi + 1/α

)(∑T
t=1 ni,t + (1 + γi)/α

T + b + ai

)

whereT0 is equal to the number of periods without claim. As for the zero-inflated conditional distribution,
the predictive premium of the hurdle model for panel data depends on the sum of past claims and on the
number of insured periods without claims.

Often, as stated in the beginning of the paper, the models with random effects can be interpreted as
models where hidden individual characteristics are captured by this additional random term. Since we
work with two random effects terms, a dependence between these effects might be supposed since the same
omitted characteristics affect both process. Consequently, Boucher et al. [4, (2008)] proposed to model this
dependence with a Gaussian copula that leads to the following expression of the joint distribution of the
random effects:

g(θi,1, θi,2) = c(G1(θi,1), G2(θi,2)) g1(θi,1) g2(θi,2),

where the Gaussian copula is expressed as:

cGa(G1(θi,1), G2(θi,2)) =

1
√

1 − ρ2
exp

(

−
1

2

(
ρ2Φ−1(G1(θi,1))

2 + ρ2Φ−1(G2(θi,2))
2 − 2ρΦ−1(G1(θi,1))Φ

−1(G2(θi,2))

1 − ρ2

))

whereΦ is the standard Normal distribution function. As for independent random effects, marginal den-
sity functionsg1(θi,1) andg2(θi,2) are beta and gamma distributions. Obviously, the authors did not find
closed form expression from this last model. Consequently,an alternative modeling approach must be used,
such as numerical integration techniques, MCMC methods or others. Similarly, exact predictive and poste-
rior distributions cannot be evaluated analytically. Consequently, a possible approach for evaluating these
predictive distributions is the use of numerical computations or simulations.

As mentioned in Boucher et al. [3], the hurdle model possesses a natural interpretation for the number
of reported claims. Indeed, it is reasonable to believe thatthe behaviour of the insureds is not same when
they already have reported a claim. This suggests that two processes govern the total number of claims, as
with the hurdle model.

7 Duration Models

It is well-known that if the time between two claims is exponentially distributed over a specified period
over time, the distribution of the number of claims will be Poisson. Boucher and Denuit [2, (2007)] tried to
generalize this situation by choosing other time duration distributions. More generally, letτi be the waiting
time between the(i − 1)th event and theith event. Thekth event thus occurs at time

ν(k) =

k∑

i=1

τi. (3)
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In this situation, theτi’s are assumed to be independent and identically distributed.
Now, letN(t) be the number of events occurring during the interval[0, t]. From (3), we can state that

the relationship between the arrival timeτ(i) and the count processN(t) is ν(k) ≤ t ⇔ N(t) ≥ k. Hence,

Pr(N(t) = k) = Pr(N(t) < k + 1) − Pr(N(t) < k)

= Pr(ν(k + 1) > t) − Pr(ν(k) > t)

= Fk(t) − Fk+1(t)

(4)

whereFk(t) is the distribution function ofν(k).
If the τi’s have a common Exponential distribution, that is, if theirrespective probability density function

is
f(τ ; λ) = λ e−λτ ,

then, as stated above, we find the classical Poisson process for claim counts. This means that the number of
claims occurring in the time interval[0, t] is Poisson distributed with meanλt, that is,

Pr(N(t) = k) = e−λt (λt)k

ku!
.

Winkelmann [34, (1995)] suggested to take gamma distributedτi’s, with density

f(τ ; ϕ, λ) =
λϕ

Γ(ϕ)
τϕ−1e−λτ ,

whereΓ(·) is the gamma function,ϕ > 0 andλ > 0. The stability under convolution of the gamma
distribution for fixedλ parameter implies thatν(k) is also gamma distributed with density

f(ν; ϕ, λ) =
λkϕ

Γ(kϕ)
νkϕ−1e−λν .

Hence,

Fk(t) =
1

Γ(kϕ)

∫ t

0

λkϕνkϕ−1e−λν dν = G(ϕk, λt)

where the integral is known as an incomplete gamma function.Winkelmann [34, (1995)] shows that the
gamma count distribution (GCD) can be found using equation (4):

Pr(N(t) = k) = G(ϕk, λt) − G(ϕk + ϕ, λt)

with G(0, ϕλ) = 1.
Bradlow et al. [9, (2008)] show that another common model used in the durationanalysis is based on

the Weibull distribution. In this case, theτi’s have density

f(τ ; c, λ) = λcτc−1 exp(−λτc)

for λ > 0 andc > 0. By using ak-fold convolution of the interarrival time distribution with the help of
a Taylor series approximation Bradlow et al. [9, (2008)] obtained the following expression for the Weibull
count distribution (WCD):

Pr(N(t) = k) =
∞∑

j=k

(−1)j+k(λtc)jϕp
j

Γ(cj + 1)

where

ϕ0
j =

Γ(cj + 1)

Γ(j + 1)
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ϕp+1
j =

j−1
∑

m=p

ϕp
m

Γ(cj − cm + 1)

Γ(j − m + 1)
, p = 0, 1, 2, . . . j = p + 1, p + 2, . . .

Boucher and Denuit [2, (2007)] generalized these distributions for panel data asfor the zero-inflated
or the hurdle models. A generalization of the MVNB distribution can be found if random effectsθi are
supposed to follow a gamma(1/α, 1/α) distribution:

Pr(Ni,1 = ni,1, . . . , Ni,T = ni,T ) =

∫ ∞

0

T∏

τ=1

(

G(ϕni,τ , ti,τλi,τθi)−G(ϕni,τ +ϕ, ti,τλi,τ θi)
)

h(θi) dθi.

Complex computations are needed to obtain closed form from this last equation of the Multivariate
gamma Count Distribution (MGCD). For the WCD, Boucher and Denuit [2, (2007)] expressed the joint
distribution for all contracts of the same insured as the oneshown for the panel data model of the GCD:

Pr(Ni,1 = ni,1, . . . , Ni,T = ni,T ) =

∫ ∞

0

T∏

τ=1





∞∑

j=ni,τ

(−1)j+ni,τ (λi,τθit
c
i,τ )jϕp

j

Γ(cj + 1)



h(θi) dθi.

The first moments of these two models must be evaluated numerically. Obviously, as for other complex
panel data distributions, exact predictive and posterior distributions for the random effects of the gamma
and the Weibull count distribution can only be evaluated using numerical computations or simulations.

Non-constant hazard models, like MGCD or the MWCD, implies duration dependence. Consequently,
when applied to insurance data, it means that within each year of contract, those models suppose that the
report of a claim decreases the expected time to report an other claim.

8 Negative Binomial X

In a recent paper, Boucher et al. [3, (2007)] introduced a new model in actuarial science calledNegative
Binomial X. The model is based on a compound sum (or stopped-sum distributions) correspond to counting
variables of the form:

N =

M∑

j=1

Xj

where theXj ’s are integer-valued, independent and identically distributed, and whereM and theXj ’s are
independent. The authors supposed thatM is Poisson with meanλ andXj is Logarithmic with parameterη,
which means thatN is Negative Binomial (using the standard assumption that

∑M
j=1 Xj = 0 if M = 0).

For cross-section data, Boucher et al. [3, (2007)] showed by numerical applications on real insurance data
that this model exhibits the best fit compared to zero-inflated, hurdle or Poisson distribution.

The original model was proposed by Santos Silva and Windmeijer [31, (2001)] who defined theNegBinx

regression model as follows: the parameterηi of the Logarithmic distribution is expressed in terms of the
available covariates as

exp(x′
i γ) =

ηi

1 − ηi

and the Poisson parameter is taken to beλi = exp(x′
i β). Consequently,Ni is Negative Binomial with

parameterλi/ log(1+exp(x′
i γ)) andexp(x′

i γ). After some simplifications, the probability mass function
is given by:

Pr(Ni = ni) =
Γ
(

ni + λi

log(1+exp(x′

i
γ))

)

exp(−λi)

Γ(ni + 1)Γ
(

λi

log(1+exp(x′

i
γ))

)

(1 + exp(−x′
iγ))ni

.
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Many generalizations for panel data can be made for this model. Indeed, following some well-known
ideas in the renewal theory, the dependence between contracts of the same insureds can be constructed with
the assumption that allT observations have the same distribution. This means that all the contracts of the
same insured can be expressed by the following vector:






Ni,1 =

Mi∑

j=1

Xj,1, Ni,2 =

Mi∑

j=1

Xj,2, . . . , Ni,T =

Mi∑

j=1

Xj,T






.

where all theXj,t, t = 1, . . ., T are i.i.d.. This modeling has close similarities with the common shock
model used in Boucher et al. [7, (2008)], where the dependence between contracts of the same insured
comes from a common individual random variable that is addedto each time period (Holgate [19, (1964)]
for the bivariate case). This model can be interpreted as if an individual specificity of an insured affects all
his contracts. As for the common shock model, this generalization of theNegBinx distribution for panel
data cannot be satisfactory for insurance data. Indeed, themodel becomes interesting for a situation where
positive counts can be observed for all contracts, while in practice, in all automobile insurance portfolios, a
great proportion of insureds does not report a single claim.As mentioned in Winkelmann [35, (2003)], this
kind of modelling is interesting because mixing and compounding are related concepts. Indeed, using the
notationNt(Mi) =

∑Mi

j=1 Xj,t compounding can be seen as:

Pr[Ni,1 = ni,1, . . . , Ni,T = ni,T ] =

∞∑

m=0

Pr[N1(Mi) = ni,1, . . . , NT (Mi) = ni,T |Mi = m] Pr[Mi = m]

which can be seen as a discrete version of model (1).
Another related generalization is to suppose that the dependence between the contracts of the same

insured comes from the random variableXi. In this situation, all the contracts of the same insured canbe
expressed by the following vector:







Mi,1∑

j=1

Xj,

Mi,2∑

j=1

Xj, . . . ,

Mi,T∑

j=1

Xj






.

where all theMi,t, t = 1, . . ., T are i.i.d.. Using the standard assumption that
∑Mi,t

j=1 Xj = 0 if Mi,t = 0
allows greater flexibility in the modelling and avoids the problem cited above. This generalization of the
NegBinx distribution is much harder than the previous one and is currently under investigation.

Instead of trying to generalize theNegBinx distribution of Santos Silva and Windmeijer [31, (2001)]
by supposing a constant number of claims or a constantXj for all the contracts of the same insured, we
propose to add an heterogeneity term to the random variableM , as it was done for all the other models
presented in this paper. SinceM is supposed to be Poisson distributed, gamma random effectsseems a
natural choice. As mentioned earlier, generally, the number of claims is modeled with Poisson distribution,
where a random effects variable is added to the count distribution, but this gives too much weight and
importance on the heterogeneity. Indeed, this kind of models generate predictive premiums that over-
penalises insureds with many claims (see Young and DeVylder[37, (2000)] for example). By adding only
a random effects on a single part of the conditional count distribution, these penalties are softer since the
impact of the heterogeneity is weaker.

Using the results of Santos Silva and Windmeijer [31, (2001)], it is possible to express the joint distri-
bution of all the contracts of the same insured to obtain a multivariateNegBinx distribution (MVNBx):

Pr[Ni,1 = ni,1, . . . , Ni,T = ni,T ]

=

∫ ∞

0

(
T∏

t=1

Pr[Ni,t = ni,t|θi]

)

g(θi) dθi
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=

∫ ∞

0

{



T∏

t=1

Γ
(

ni,t +
θiλi,t

log(1+exp(x′

i,t
γ))

)

exp(−θiλi,t)

Γ(ni,t + 1)Γ
(

θiλi,t

log(1+exp(x′

i,t
γ))

)

(1 + exp(−x′
itγ))nit





(1/α)(1/α)

Γ((1/α))
θ
(1/α)−1
i exp(−θi(1/α)) dθi

}

=
(1/α)(1/α)

Γ((1/α))

(
T∏

t=1

1

Γ(ni,t + 1)(1 + exp(−x′
itγ))nit

)

×

∫ ∞

0





T∏

t=1

Γ
(

ni,t +
θiλi,t

log(1+exp(x′

i,t
γ))

)

Γ
(

θiλi,t

log(1+exp(x′

i,tγ))

)



 θ
(1/α)−1
i exp

(

−θi((1/α) +

T∑

t=1

λi,t)

)

dθi

whereλit = exp(x′
it β). The last integration must be done numerically. By conditioning, the first two

moments of the distribution are:

E[Ni,t] =
λi,t exp(x′

i,tγ)

log(1 + exp(x′
i,tγ))

Var[Ni,t] = (1 + exp(x′
iγ)) E[Ni,t] + α E[Ni,t]

2

As stated in Boucher et al. [3, (2007)], the model can have some interesting interpretations for insurance
data. Thistwo-partmodel can be used for modeling the number of injured persons or the number of third
parties involved in a given claimed accident. Indeed, in these situations,M represents the number of
accident whileXj is used to model the number of victims involved or parties affected by a single accident.

Exact predictive and posterior distributions for the random effects cannot be evaluated analytically, so
they require a numerical approach.

9 Numerical Application

We worked with a sample of the automobile portfolio of a majorcompany operating in Spain, that was
already used for the hurdle distributions in Boucher et al. [4, 5, (2008)]. Only cars for private use were
considered in this sample. The panel data contains information for the period from 1991 to 1998. Our sam-
ple contains15,179 policyholders who remained with the company for seven complete periods, resulting
in 106,253 insurance contracts. We have exogeneous variables (sex andage of the driver, years with the
company and power of the vehicle) that are kept in the panel plus the annual number of accidents. For every
policy of a single insured we used the initial information contained in his first contract. The total number
of at-fault claims that took place within each year-long period was used for analysis. More details can be
found in Boucher et al. [4, (2008)].

All models presented in the paper can be simplified to a Poisson distribution. Empirical applications of
the zero-inflated, hurdle and duration panel data models showed in previous papers that all models exhibit
a better fit compared to the standard MVNB distribution. Comparison between all these panel data models
has not been done. These models are non-nested. Consequently, the models cannot be compared directly
and we cannot use specification tests to distinguish betweentwo models.

A standard method of comparing non-nested models (and also nested models) is to use the information
criteria, such as the Akaike Information Criteria(AIC) = −2 log(L) + 2k or the Bayesian Information
Criteria(BIC) = −2 log(L) + 2 log(n)k, wherek represents the number of parameters of the model and
n the total number of observations. Table1 shows the results of the fit of the distribution on our insurance
data. Hurdle and zero-inflated1 distributions seem to offer the best fit using the information criteria.

1The beta random effects of the MZIP-BetaGamma distributionwere not significant. We then removed these random effects and
worked instead with the MZIP-Gamma model.

289



J.-P. Boucher and M. Guillén

Models
Number of

Loglikelihood AIC BIC
parameters

MVNB 7 26,702.98 53,419.96 53,567.99
NB-Beta 8 26,671.64 53,359.29 53,343.29

MZIP-Gamma 8 26,664.17 53,344.35 53,328.35
Hurdle (ind.) 11 26,688.70 53,399.40 53,377.40

Hurdle (Gauss.) 10 26,662.47 53,344.94 53,324.94
MGCD 8 26,675.74 53,367.49 53,351.49
MWCD 8 26,671.34 53,358.67 53,342.67
MVNBx 8 26,673.44 53,362.88 53,346.88

Table 1. Comparison of models for the Spanish data set - Information Criteria

Models
Godd Profile Average Profile Bad Profile

Mean Variance Mean Variance Mean Variance

MVNB 0.0567 0.0595 0.0651 0.0688 0.0902 0.0974
NB-Beta 0.0564 0.0620 0.0657 0.0728 0.0910 0.1025

MZIP-Gamma 0.0534 0.0604 0.0668 0.0727 0.0885 0.0975
Hurdle (ind.) 0.0570 0.0644 0.0659 0.0717 0.0911 0.0997

Hurdle (Gauss.) 0.0577 0.0657 0.0664 0.0721 0.0911 0.0989
MGCD 0.0567 0.0614 0.0651 0.0713 0.0897 0.1017
MWCD 0.0566 0.0617 0.0651 0.0717 0.0906 0.1035
MVNBx 0.0565 0.0619 0.0655 0.0721 0.0906 0.1015

Table 2. A priori Premiums

Deeper analysis could be done to compare the fit of all models.An interesting possibility is to test if the
differences in the log-likelihood or the information criteria between the models are statistically significant.
For independent observations, a log-likelihood ratio testfor non-nested models, developed by Vuong [32,
(1989)] and generalized by Rivers and Vuong [30, (2002)] can be used. This test cannot be applied directly
to our panel data models since some observations —all contracts of the same insured— are not independent.
However, as proposed by Golden [16, (2003)], an adapted Vuong test should be performed on non-nested
models test. This test can be applied on correlated observations, and on panel data as done for instance in
Boucher et al. [7, (2008)] and Boucher et al. [6, (2008)], but need complex intermediary steps before using
this statistical test (gradient evaluation, autocorrelation check, etc.).

For illustration, we show the differences between models through the mean and the variance of insured
profiles. Three profiles were selected and were classified as good, average and bad drivers. The results are
given in Table2. This table shows that the expected values of all profiles arefairly similar for the models
studied. The greatest differences between models can be found in the variance estimates.

Differences between predictive premiums are also interesting to analyse. To illustrate this, we kept the
estimated parameters out of thea priori analysis and projected a loss experience of 10 years. This way of
analyzing thea posteriorimodels is very common in actuarial science. One can then manydifferent claim
experience situations that can arise in insurance companies. Table3 shows the predictive premiums for an
average risk profile for the MVNB and the NB-Beta models. For those models, the predictive premium only
depends on the sum of reported claims.

The predictive premiums of the zero-inflated and the hurdle models do not only depend on the number of
reported claims but also on the number of insured periods without claims. Table4 shows the premium that
should be charged to insureds depending on his past insured records. Interesting conclusions can be drawn
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Models
Sum of claims

A priori 0 1 2 3 4

MVNB 0.0651 0.0413 0.0778 0.1143 0.1509 0.1874

NB-Beta 0.0657 0.0441 0.0770 0.1099 0.1428 0.1758

Table 3. Predictive Premiums (Average Risk Profile) for the MVNB and the NB-Beta Models

Models
Sum of claims

T0 A priori 0 1 2 3 4

MZIPG

10 0.0668 0.0443 · · · ·
9 0.0668 · 0.0783 0.1130 0.1480 0.1833
8 0.0668 · · 0.1116 0.1462 0.1809
7 0.0668 · · · 0.1444 0.1786
6 0.0668 · · · · 0.1763

Hurdle
(ind.)

10 0.0659 0.0448 · · · ·
9 0.0659 · 0.0833 0.0876 0.0920 0.0963
8 0.0659 · · 0.1246 0.1304 0.1363
7 0.0659 · · · 0.1683 0.1755
6 0.0659 · · · · 0.2140

Hurdle
(Gauss.)

10 0.0663 0.0441 · · · ·
9 0.0663 · 0.0776 0.1063 0.1336 0.1598
8 0.0663 · · 0.1113 0.1403 0.1687
7 0.0663 · · · 0.1444 0.1750
6 0.0663 · · · · 0.1774

Table 4. Predictive Premiums (Average Risk Profile) for the Zero-Inflated and the Hurdle Models

from the analysis of predictive premiums. Indeed, for the hurdle model with independent random effects,
we can see that the number of insured periods without a claim has a greater impact on the premium for the
following year than the total number of reported claims. However, we also observe that the dependence
between the two random effects of the hurdle model has a greatimpact on the premium. The correlated
random effects hurdle models show premium values that are closer to those of the Poisson-gamma rather
than the independent random effects model, since the impactof the reporting pattern is reduced.

It is interesting to note that for a fixed number of reported claims, the relation between the predictive
premiums andT0 is different for the MZIP-Gamma model than for the hurdle models. Indeed, the lowest
premium for the MZIP-Gamma model is for smallT0, while it is for highT0 for the hurdle models.

Because of the complex analytic form of the densities of the duration models, we were not able to
specify clearly the sufficient statistic of the predictive distribution. In fact, the complete pattern of reporting
as an importance on the predictive premiums, as shown in Table 5. For illustration, we only compute the
predictive premiums for two extreme situations: in the casewhere all the claims were reported on different
insured periods (A) and in the case where all the claims were reported on the same insured period (B).
Differences between the two situations are too small. Moreover, we can also see that these predictive
premiums are very close the values obtained for the MVNB and the NB-Beta distributions.

As for the duration model, we were not able to express the predictive distribution of theNi,t as a
function of a specific sufficient statistic. Table6 also shows the predictive premiums depending on situations
A and B. However, in this case, we see that large differences can be observed. The relation between the
reporting pattern and the predictive premiums is very closeto the one observed with the hurdle model.
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Models Situation
Sum of claims

A priori 0 1 2 3 4

MGCD
A 0.0651 0.0427 0.0792 0.1114 0.1402 0.1682
B 0.0651 · · 0.1097 0.1391 0.1669

MWCD
A 0.0651 0.0437 0.0761 0.1082 0.1415 0.1742
B 0.0651 · · 0.1092 0.1424 0.1764

Table 5. Predictive Premiums (Average Risk Profile) for the Duration Models

Model Situation
Sum of claims

A priori 0 1 2 3 4

MVNBx
A 0.0655 0.0442 0.0783 0.1113 0.1434 0.1780
B 0.0655 · · 0.0970 0.1153 0.1318

Table 6. Predictive Premiums (Average Risk Profile) for the MVNBx Model

This is not a coincidence since there are close similaritiesbetween the two models that we would like to
investigate further. Indeed, both models can be expressed as a compound sum

∑M
i=1 Xi, where:

1. M ∼ Poisson andXi ∼ Logarithmic for theNegBinx distribution;

2. M ∼ Bernoulli, X∗
i = Xi − 1 andX∗

i ∼ Poisson for the hurdle distribution.

10 Conclusion

Cost-based pricing of individual risks is a key actuarial ratemaking principle. The price charged to poli-
cyholders is an estimate of the future costs related to the insurance coverage. The pure premium approach
defines the price of an insurance policy as the ratio of the estimated costs of all future claims against the
coverage provided by the insurance policy while it is in effect to the risk exposure, plus expenses.

The property and casualty ratemaking is based on a claim frequency distribution and a loss distribution.
The claim frequency is defined as the number of incurred claims per unit of earned exposure. The exposure
is measured in car-year for motor third party liability insurance (the rate manual lists rates per car-year).

In a free market, insurance companies need to use a rating structure that matches the premiums for
the risks as closely as possible, or at least as closely as therating structures used by competitors. This
entails using virtually every available classification variable correlated to the risks, since failing to do so
would mean sacrificing the chance to select against competitors, and incurring the risk of suffering adverse
selection by them.

We have shown how panel data models can be useful in insuranceto derive the distribution of the
number of claims for one period ahead, given information on the past.
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