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A survey on models for panel count data
with applications to insurance

Jean-Philippe Boucher and Montserrat Guill  én

Abstract. In insurance the expected number of claims per year giveroltiserved characteristics
of the covered risk is the basis for setting the price of agyoliCompanies accumulate information of
clients along several years, but in practice the panel datetsre is not exploited. We review panel count
data models that are useful in this context and present a hemative based on the generalization of a
compound sum.

Una revisi 6n de los modelos para paneles de datos de enumeraci  6n
con aplicaciones a seguros

Resumen. En seguros, el nlmero esperado de reclamaciones por déie lda caracteristicas del riesgo
cubierto es la base para establecer el precio de una pbéiga&ompafiias de seguros acumulan informa-
cion de clientes a lo largo de varias anualidades, pero pratdica la estructura de panel de los datos no
se explota. Revisamos los modelos para paneles de datosmermacion que son Gtiles en este contexto
y presentamos una nueva alternativa basada en la geneializie una suma compuesta.

1 Introduction

Modeling count data is an essential part of insurance @icount regression analysis allows identification
of risk factors and prediction of the expected frequencylaiints given the characteristics of the policy-
holders. An insurance premium is the amount of money thaeatakill pay to receive insurance coverage.
A usual way to calculate the premium is to obtain the condél@xpectation of the number of claims given
the observable risk characteristics and to combine it viiéhetxpected claim amount or economic loss.
The literature on count regression analysis has grown derely in the past years. Readers can
overview the more general context of models for discretgitodinal data in the text by Molenberghs and
Verbeke P4, (2005)] where many applications and computational isauesliscussed. For instance, binary
longitudinal data or even the way of handling incompletegitudinal data, where the observational period
is not the same for all individuals. Another example is thekr on the analysis of longitudinal count data
with serial correlation (Xu et al.36, (2007)]) using a state space model in an application to caédata.
A description of univariate time series count models candumd in the classical book of Cameron and
Trivedi [10, (1998)].

Presentado por / Submitted by José Garrido.

Recibido / Received15 de enero de 2008.ceptado / Accepted4 de marzo de 2009.

Palabras clave / KeywordsPanel data, random effects, conditional distributiomo4eflated distribution, hurdle distribution,
compound sum.

Mathematics Subject Classificatior&2P05, 60E05, 62J99.

(© 2009 Real Academia de Ciencias, Espana.

277



J.-P. Boucher and M. Guillén

In Denuit et al. L2, (2007)] the reader can find a comprehensive review of coattatshodels for cross-
sectional data and its applications to automobile insweaate-making. In this paper we address panel count
data models in the context of insurance, so that we can sealttamtages of using the information on each
policyholder along time for modeling the number of claim$eTexisting literature has mainly advocated
the use of the classical Poisson regression approachitiihks been said on other model alternatives and
on model selection. We argue that new panel data modelsriegsbere that allow for time dependence
between observations are closer to the data generatinggwdloat one can find in practice. Moreover,
closed form expressions for future premiums given the pastivations and model selection will definitely
help practitioners to find suitable alternatives for maatglnsurance portfolios that have accumulated some
years of history.

Consider an insurance poli¢yverT consecutive years for which the number of claims reportédeo
insurance company are observed. Most often there is noextcisb that the observed number of claims is
zero and note also that accidents may not be reported togheeinas discussed in Boucher et @).(009)].

Let us call the vector of random variables; 1, . . ., N; ), which is the random counts to be modeled. For
each individual policyi and yeart, t = 1, ..., T', some covariate information exists, because the insurer
knowns a vector of observable characterisfics, related to the individual. In automobile insurance, this
is information on the insured driver and the insured vehidleere are also characteristics that cannot be
observed but they influence the number of accidents andftimerthe number of claims. Examples of
unobservable variables are swiftness of reflexes or regfpeht driving code. The unobservable part of
the model is called the random effect. We assume that theorargdfect is different for each individual
and constant over time, so we will denote it y Given the individual-specific random effect tefiy

the claimsN; 1, N; o, ..., N; ¢ for each time period are independent. We assume that theiamsare
independent from the random effects (see Mundbak (1978)] or Hsiao 20, (2003)] for a general review).

A wide selection of models can be used to model the dependbatean exist between contracts of
the same insured, see Boucher et &J.(R008)] for example. To account for this dependence that ca
exist between all the contracts of the same insured, oneeofnibst popular way is the use of a common
individual term (Hausman et all{, (1984)]).

This modeling has some natural interpretation for insugadata. Indeed, insurance data exhibit some
variability that may be caused by the lack of information ome important classification variables (swift-
ness of reflexes, aggressiveness behind the wheel, corisaroptrugs or drinking habits). These hidden
features are usually captured by the individual randomrbgtmneity term. Using the notation of Hausman
etal. [L7, (1984)], the joint probability function aV; 1, . . ., N;  is thus given by:

PI‘[NL'J =MNG1y0--5 Ni,T = ni7T] = / PI‘[NL'J =MNG1y0-5 Ni,T = ni7T|9,-] g(@l) d@t
0

~ [T 1)
= / (H PI‘[NLt = le‘,t|9i] ) g(@i) do;,
0 o ——— N~

=1 Conditional Distribution” Random Effects Distribution

whereg(6;) is the density of);, i represents an individual unit ands thet-th observation of this individual.

The first approach proposed by Hausman et i, [1984)] assumed a conditional Poisson distribu-
tion, whereg(0;) is assumed gamma. In the literature, even if gamma randaeutsffs by far the most
popular hypothesis, actuaries also used a conditionas®oidistribution with other random effects distri-
butions. Examples are the inverse Gaussian distributiatinét [ 33, (1987)]) or the lognormal distribution
(Hinde [18, (1982)]). Boucher and Denuit[(2006)] compared all the fitting of these distribution wigal
insurance data. Very few papers propose other distribsifienrandom effects. Some papers address time
dependence, such as in Pinquet et&$, [2001)] or Purcaru et al2p, (2004)] who used dynamic lognor-
mal distributions. Boucher et al5[(2008)] proposed various transformation of the gammaydogal and
inverse-Gaussian distributions by some changes on theanpters. Boucher et al7,[(2008)] proposed
to use a degenerated random effects distribution, with s&+past for a zero-value of the random effects.
Boucher and Guilleng, (2008)] used a nonparametric estimation for the hetereiggedensity based on a
squareds’th-order polynomial expansion.
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The second approach proposed by Hausman etal(1984)] assumed a conditional Negative Binomial
distribution with beta random effects. This model was useBaucher et al.{q, (2008)] for insurance data
and provided the best fit compared to the Poisson-gammabdisdtn. In the actuarial literature, Gomez-
Déniz et al. [L5, (2008)] proposed another mixing distribution based onnaerise-Gaussian distribution.
Other papers modeled claim severity and claim frequenay, (Beees et al.1[3, (2001)] and Frees and
Valdez [L4, (2009)]).

Many attempts have recently been made in selecting othetitimmal distributions for panel data. In
this paper, we propose a review of these conditional digiobs as well as their applicability to insurance
data. In the second section of the paper, we review the stdmdadeling approach of panel count data
models, proposed by Hausman et al/,[(1984)]. We also discuss some modeling difficulties résgfirom
the dependence between regressors and random effects aitairethe predictive distribution resulting
from observations of past values &7 ;.

In the third part of the paper, we review the standard Poidssiribution, while in sectiod we explore
panel data model for the conditional Negative Binomialritsition. The zero-inflated models proposed
by Boucher et al. ], (2008)], where an extra parameter is added to the counttdison, is described
in section5. In the sixth section, the hurdle distributions for pandbg@roposed by Boucher et al, [5,
(2008)] is used. In the following section, we review a coiatiél count distribution where the time between
two claims is no longer an exponential distribution, as psgu by Boucher and Denuit,[(2007)]. In
section8, we propose a generalization for panel data ofMegative Binomial Xntroduced in actuarial
science by Boucher et al3,[(2007)]. Finally, in the last section, a numerical illagton is presented and
some methods to compare model fits are described.

2 Panel Data Distributions

2.1 Endogeneous Regressors and Fixed Effects

In linear regression, correlation between covariatesk@eiror term leads to inconsistency of the estimated
parameters (Mundlak?[7, (1978)] or Hsiao 20, (2003)] present a review in case of longitudinal data). The
same problem exists for the count data regression ilhén:;| # E[0] (Mullahy [26, (1997)]) and it leads

to biased parameter estimates. In insurance, correlaBomeen regressors and the error term is often
present (Boucher and Denuit,[(2006)]) and it may be caused by omitted variables thatame@ted with

the included ones.

As noted in Winkelmannd5, (2003)], consistent estimates may be found if correctemesmade to
the standard estimation procedures. Boucher and Dehu(p06)] compared fixed and random effects
models. they showed that standard estimation methods;llksical maximum likelihood, can still be used
on joint distribution based on random effects. Indeed, éisellting parameter estimates, while being biased,
represent the apparent effect on the frequency of claimghat exactly the interest when the correlated
omitted variables cannot be used in classification.

2.2 A Priori and A Posteriori Ratemaking

Property and liability motor vehicle insurers use clasatfn plans to create risk classes. The classifica-
tion variables introduced to partition risks into cells aedled a priori variables (as their values can be
determined before the policyholder starts to drive). Prens for motor liability coverage often vary by the
territory in which the vehicle is garaged, the use of the eleh(driving to and from work or business use)
and individual characteristics (such as age, gender, @titupand marital status of the main driver of the
vehicle, for instance, if not precluded by legislation agukatory rules).
As stated in the introduction, many important factors catotaken into account in theepriori risk

classification. Consequently, tariff cells are still quiterogeneous despite the use of many classification
variables. This heterogeneity can be modeled by a randautéff a statistical model. It seems reasonable
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to believe that the hidden characteristics are partly fedday the number of claims at fault reported by the
policyholders. Several empirical studies have shown thatsurers were allowed to use only one rating
variable, it should be some form of merit rating: the bestt®r of the number of claims incurred by a
driver in the future is not age or vehicle type but past clamssory. Hence the adjustment of the premium
from the individual claims experience in order to restolienfass among policyholders. In that respect, the
allowance of past claims in a rating model derives from argexaus explanation of serial correlation for
longitudinal data. In this case, correlation is only appaead results from the revelation of hidden features
in the risk characteristics.

As a consequence, for eatperiod, the heterogeneity terms (denoted latet; as ¢;) can be updated
from past experience. Even if the parameters of the digtabs are evaluated using maximum likelihood
estimation, at each successive time period, the randortteffecan be updated. Indeed, the joint distribu-
tion can be expressed as:

PI‘(Nl :nl,Ng = ’ng,...,Nt :nt) =
PI‘(N1 = n1> X PI'(NQ = TL2|N1 = TL1> X oo X PI'(Nt = TLt|N1 =MNi,.. .,Nt,1 = nt,l)

Formally, the predictive distribution at tinie + 1 can be computed as:

Pr(N;r+1 =nir+1|nit, ..., nir) =
(Hthl Pr(Ni,t = nzt|91)) 9(91')
= /PI"(Ni,T+1 = ni,T+1|9i) T do; (2)
f (thl Pl"(Ni,t = TLM|91)) 9(91') do;
= /PI"(Ni,T+1 =n;r41160i) 9(0ilnin, ..., nir) db;
whereg(0;|n; 1, ...,n; ) is called thea posterioridistribution of the random effects, reflecting the past

claims experience of insured If this a posterioridistribution can be expressed in closed form, moments
of the predictive distribution can be found easily condiibon the random effects.

In actuarial sciencea priori ratemaking is the premium charged for an insured withouividdal
experience, i.e. the premium calculated using the digighuf V; 1, while an experienced insured is
charged using posterioriratemaking, i.e. by using the conditional distributionagithe previous observed
claims.

Exact predictive and posterior distributions for the ramdeffects can only be expressed in closed
form for some specific distributions. For other models, ¢heistributions cannot be evaluated analytically.
Consequently, a possible approach for evaluating theskgpikes distributions is the use of numerical com-
putations or simulations, such as Markov chain Monte CaGNKIC) simulations.

3 Poisson

The simplest random effects model for count data is baseti@®Poisson distribution with an individual
heterogeneity term that follows a specified distributiorarrally, we can express the classical Poisson
random effects model as:

N; +]0; ~ Poisson(0;\; +), i=1,....N t=1,...,T,

wherei represent an insured andhe period of coverage,; ; is a positive parameter that will usually be
related to individual known characteristics. If the gamnsribution of mearl and variancex is used, the
joint distribution is equal to (Hausman et al.7] (1984)]):

PI‘[NL'J = Mgy Ni,T = ni7T] =

T 1/a T i
(M)t | Ty nig +1/a) 1/a
lH ; ] T(1/a) < ) (Z Mg+ 1/ a) :

T
t=1 ! dimi dig + 1/ t=1
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This distribution, which has often been applied in pracfgze chapter 36 of Johnson et &l1,[(1996)]
for an overview), is known as a Multivariate Negative BinainiMVNB) or Negative Multinomial. Note
that this distribution can also be seen as the generalizafithe bivariate Negative Binomial of Marshall
and Olkin 23, (1990)]. For this distributiorZ[N; ;| = A;; andVar[N; ;] = \; +o<)\t +» SO overdispersion
can be accounted for. Maximum likelihood estimates of theupaters and their variance estimates are
straightforward.

The Poisson-gamma distributions has the following moments

E[Niyt] = >\i,t; Var[ i t] = )\z t + Oé)\

As it is well known, we found that tha posterioridistribution of the heterogeneity term for the Poisson
model with gamma random effects is also gamma distributéuparameters ", A\; ; +1/aand)_, n; ; +
1/a. In consequence, the future premium (frequency part), vigcequal to the expected number of
reported claims, is equal to:

Snig+1/a
B[N ji1|Nitso oo Nigl = Mg guq 2t it 72/
[Ni+1|Nin t] S T e

4 Negative Binomial

Negative Binomial distribution can also be used with randeffacts, as shown by Hausman et al7,
(1984)]. Conditionally on the random effecis the conditional distribution has the following moments:

E[N;+|0:] = Xi,t/ s, Var[N; ¢|0;] = E[N; +]0;](1 + 6;)/6;

Thus, this conditional distribution implies overdispersi Under the construction of), Hausman et
al. [17, (1984)] assumed that the expressig/(1 + ¢;) follows a beta distribution with parametér, ),
with meana/(a + b) and varianceib/ ((a + b+ 1)(a + b)?). Following the development of Hausman et
al. [17, (1984)], the joint distribution can be expressed as:

F(a+b)F(a+Zt zt) b+2tntt a F zt+nzt)
Pr{Nis = niy..... Nyr = nir] =
R ey YO Y re s ywwes yemd | Sxewn et

The moments of the Negative Binomial-Beta (NB-Beta) disttion are as follow:

UL o, el Db e f (bt Dp b
B =ty Ve =g S o e -

The a posterioridensity of the heterogeneity term of the Negative Binomighweta random effects,
proposed by Hausman et al.j (1984)], has also a closed form. Indeed, using equa@pnit(can be
shown that the ratié; /(1 + ;) follows a beta distribution with paramete¥s, A; ; + a and)_, n;; + b.
Consequently, for this model, the frequency part of therfufaremium can be expressed as:

Ztni,t+b
Zt)\i=t+a717

which has the same form as the future premium with the Poigaomma model, but allows more flexibility
since an additional parameter is used to calculate the prami

E[Ni 41| Nijgs - Nig) = Aijea

5 Zero-Inflated Distribution

The zero-inflated Poisson model has been shown to be a u$teiuladive to the Poisson distribution for
cross-section data. Indeed, it often provides a good fitfeidata and can easily be interpreted. The model
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is based on a finite mixture model of two distributions conngran indicator distribution for the zero case
and a standard count distribution (Mullai35[ (1986)], Lambert?2, (1992)]). The distribution has been
shown to be a natural candidate to deal with the large freguefizero-values, which is exactly what is
observed in insurance data. The zero-inflated Poisson @$®)bution has two parametegsand A and
has the following probability function:

¢+ (1—¢)e > forn=0
Pr[N =n| = —Ayn
(1-9)2

forn=1,2,...

For panel data modelling, we can treat the zero-inflated corapt as an individual parameter, add
random effects to the mean parameter of the Poisson distnibor even use them together. By conditioning
on these two random effects, the joint distribution can hEessed as:

T

Pr[Ni1=mni1, ..., Nirw = nirle, 0] = H <I(ni,,,:0)¢)z't + (1 — ¢it)

e turls (Mt@')")
t=1

n!

where);; = exp(x},8) and¢;; = ®(x},v + ¢;). Transposition is denoted Byand there are two vector
parameters3 and~. ® denotes the cumulative distribution function of a stancdemanal. However because
this distribution cannot be expressed in a simple forme@mdt Boucher et al7[ (2008)] choose to use time
independent covariates, that is to say that covariates tohamge over all the period observations of an
individual unit. In this situation, the authors show that thint conditional distribution can be modeled as:

=

Pr[Ni1=ni1, ..., Nir =niz|¢i 05 = | | Tn,,=0)@i + (1 — ¢3) Pr[N s = n;4])

t

Il
—

M=

Tt ) | |
( ()) VjPol(ni,l; .. ,ni,T|9i)¢fO*J(1 _ ¢Z_>(T7T0)+j’

0 J

J

whereTy is the number of insured periods without claim arill°i(-) is a function having the following
Poisson form:

(Ai6:) %=1 it exp (—(T — Ty + j)Aibs)
H?:l ni,t!

By this parametrization, using one or both random effectsydder et al. T, (2008)] show that the
joint distribution can be expressed in closed form. Indesdindividual termg; that is beta distributed
with parameters; andb, and an heterogeneity teréh that follows a gamma distribution of mednand
variancexa are added to the model. Consequently, it leads to a muliteadero-inflated Poisson Beta
Gamma model (MZIP-BetaGamma) that can be expressed as:

VJ'POi(m,h —snir)i) =

To . .
T a+To—7,b+ (T —Tp) +
PI‘[N'L,I =MNg1yeeny Nin = ni,T] = E < 0> ‘/jNB(TLiyl, . ,TL»L"T)B( 0 jﬁ(a b() 0) ])7

=0

whereTy is the number of insured periods without claim and the funmcti]*®(-) has the following multi-
variate Negative Binomial form:

VjNB(m,17---7ni,T) =

D(3) nig+1/a) ( 1/a )1/“ ( A )zfnm
L(1/) [T} nis! \(T=To+j)Ai+1/a (T —To+j)Ni+1/a :
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Under the assumption of independence between randomsffectdd, moments can be found using
the conditional calculation:

ai a; a; a;
E[N;J=\[1-— Var[N; ;] = \; ‘ M- — .
il =a(1- 25 ) vl = (1o 2 ) 2 (1- ) (S )

Parameters can be evaluated using maximum likelihood astim Programs such as the NLMIXED
procedure of the SAS system allow for this type of estimatiwhen the log-likelihood can be expressed in
closed form.

Using both individual effects leads to the following predie distribution:

Pr[N; 741 = nirs1lnia, ... nir] =
Z?i() (TO)VNB(nL 1y-- -,ni,Tani7T+1) ﬂ(a +T5 —j,b+ (T+ - TBK) +3)
ZJTOO (TO)VNB(nz 1) Bla+To = 5,0+ (T = To) +7) |

whereT}; is the updated value dfy, consideringq; 1. Using the following notation:

K(5) (")T(a+To = )T+ T +1 = To + §)(T = To + 5)Ai + 1/cr) =7 miet1/e)
J)= TD :

(@i +b+T)> (F)T(a+To—k)L(b+T — Ty + k) (T = To + k)X + 1/a) = (X7 miet1/e)
k=0

the predictive distribution can be expressed as:

]- - ZTO ( )(1 *pr) for N T+1 = 0

Pr[Ni 741 = nirp1|ni, .-, nir]
’ ’ Y ZK )Prag[Nir1 = niry1;mp) forngrpn =1,2,...

where:

n; +7r\ .,
Prng[Ni 41 = nir4157,p) = ( ’TJ;l )p’q e
is the probability function of a Negative Binomial distriimn with parameters equal to:

(T —To+ )\ +1/a
(T+1—To+j)\i +1/a

T
r=Y ni;+1/a, p=
t=1
and the expected predictive value is the equal to:

n (S i+ 1/0) K ()
E[Nir+1|ni1, .. nir] =N Z (
j:

< (T+1-To+j)hi+1/a

Note that unlike the standard Poisson-gamma models, tlokctive mean not only depends on the sum
of number of past claims, but also on the number of insureidgerithout a claim{p).

Boucher et al. T, (2008)] found that the generalizations of the zero-infld@®isson distribution has
an interesting interpretation for insurance data, wheeerthmber of accidents can be compared to the
number of claims. The zero-inflated distributions appl@thie number of claims can be used to model the
behaviour of the insureds, i.e. to model the probability l@diclaim.
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6 Hurdle Distribution

The hurdle model was introduced by Cradd,[(1971)] and reviewed by Mullahyp, (1986)]. This model

is characterized by the processes below and above the huBdieiously, the most widely used hurdle
model sets the hurdle at zero, which leads to a distributith the following two processes: firstly, a
dichotomous distribution that allows the participatiortiod second process; secondly, another process that
specifies, the count number, on the condition that the fistgessucceedsThe first part of the model is a
binary outcome model, and the second part is a truncated dairibution. Formally, this hurdle model is
expressed as follows. Let(-|01) and f2(-|02) be two probability mass functions with respective support
{0,1} and{0, 1, ...} depending on parameter vectdisandé,. The counting random variabl€ follows

the hurdle distribution if:

11(0161) forn=0

Pr(N = nlfh,62) = 1= /10001 7
%ﬁ(nwg) = Ufy(nlfy) forn=1,2,...

whereV¥ = %. Boucher et al.4, 5, (2008)] generalized the hurdle distribution for panebdaks
in the zero-inflated model, since random effects can be atbdiéx@ model for both the first and the second
process, the joint distribution can be generalized for niloae ond);. Indeed, the joint distribution can be

expressed as:

Pr(Ni1 =nia,...,Nor =ni1) =
T
// T £10016: 1) =0 (1 = £1(0185,0))" 0= fo(n 1105.2) " 6= g (031, 0: 2) A1 B 2,
t=1

where the following specific transformatierf = n — 1 has been used by Boucher et al, , (2008)]

to avoid the use of a truncated distribution. The joint dsttion of the random effectg(0; 1, 6; 2) can

be expressed by a copula. To obtain interesting predicistéltlitions, Boucher et al5[ (2008)] use time
independent covariates. For the zero-part of the modefutieors used a Bernouli(;) distribution where

the parametef,; ; is beta;,b)-distributed to account for the individual specificiti€sovariates have been
included in the model as; = exp(z} ) to be sure that parametey is greater than zero. The positive
part means are fitted using standard Poisgah(.) random effects models, where the mean variable can be
expressed ag; = exp(z} ). The random effects,; , follow a gamma distribution of meahand variance

« (i.e. both parameters are equalltpr). Consequently, with these conditional distributions jbint
distribution for all contracts of the same insured is expeesas:

Pr[Ni1 =mni1,...,Nor = ni7] =
T « \ 1= In; =0
1 n; 4= — —~-0. 9 it '
// H 91-7(1 DL = Gy ) e (e Wg“%) 9(0i,1,0i2) d0; 1 db; o
=1 it

The first moments of the hurdle for panel count data can beesspd as:

E[Ni: =E[0;1] + i E[0;10; 2]
Var[N; ] = 77 E[0;167 ] + E[0:16; 2] [37: — 27 E[6; 1]] + E[0i.1] — E[6;.1]* — 77 E[0;,16; 2]

Boucher et al.}, (2008)] suppose independent random effects where thedatribution of the ran-
dom effects can be expressed as the product of the marginsitgléunctionsg; (6; 1) and g2(6; 2), i.e.
9(0i1,0;2) = g1(0;1)92(0;,2). Because of independence, each process of the hurdle nuogelriel data
with independent random effects can be expressed separ@ehsequently, the two processes can also
be analyzed separately for theposteriorianalysis. For the first process of the model, composed with a
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Bernoulli-beta combination, it is well-known that the persor distribution of the random effects is still beta
distributed. The second proce8s = N; — 1 of the hurdle distribution is to follow a Poisson distrilmrti
with gamma random effects. Thus, ta@osterioridistribution of the random effect term is also a gamma
distribution, as seen in secti@ By combining these two processes of the hurdle model, thea®d value

of the distribution, having past experience, .. ., T'is equal to:

T-To =«

S ki +ai =1 niyt1/a

E NL 'L AR | Z = e 1 Z /
[Ni,r41]n41 nir] T+b+a; 7 (T'—To)vi +1/a

- ((T —To)vi + ai%‘) Zthl nit+ (1+7)/a
-\ (T —To)y + 1/ T+ b+ a

whereTj is equal to the number of periods without claim. As for theozimflated conditional distribution,
the predictive premium of the hurdle model for panel dataetels on the sum of past claims and on the
number of insured periods without claims.

Often, as stated in the beginning of the paper, the models naitdom effects can be interpreted as
models where hidden individual characteristics are capitlny this additional random term. Since we
work with two random effects terms, a dependence betweese thifects might be supposed since the same
omitted characteristics affect both process. Consequ@ulicher et al.4, (2008)] proposed to model this
dependence with a Gaussian copula that leads to the folfjpaspression of the joint distribution of the
random effects:

9(0i1,052) = c(G1(0i1), G2(0i2)) 91(0i,1) g2(0:2),
where the Gaussian copula is expressed as:
CH(G1(05,1), Go2(0i2)) =

1 (PQ‘I’l(Gl(@m))Q +p? 0 (Ga(0i2)* — 2/?‘1’1(G1(9i,1))‘1’1(G2(9i,2))>)
1—p2

where® is the standard Normal distribution function. As for indegent random effects, marginal den-
sity functionsg, (6;,1) andgs(0; 2) are beta and gamma distributions. Obviously, the autharsai find
closed form expression from this last model. Consequemtlglternative modeling approach must be used,
such as numerical integration techniques, MCMC methodshars. Similarly, exact predictive and poste-
rior distributions cannot be evaluated analytically. Gansently, a possible approach for evaluating these
predictive distributions is the use of numerical compuotadior simulations.

As mentioned in Boucher et al3]j the hurdle model possesses a natural interpretatiomé&ontumber
of reported claims. Indeed, it is reasonable to believettimbehaviour of the insureds is not same when
they already have reported a claim. This suggests that tamegses govern the total number of claims, as
with the hurdle model.

7 Duration Models
It is well-known that if the time between two claims is expaotially distributed over a specified period
over time, the distribution of the number of claims will bei$¥mn. Boucher and Denuit,[(2007)] tried to

generalize this situation by choosing other time duratigtributions. More generally, let; be the waiting
time between théi — 1)1 event and thé™" event. The™ event thus occurs at time

k
vk) = 7 (3)
=1
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In this situation, the;'s are assumed to be independent and identically distidbute
Now, let N (¢) be the number of events occurring during the intef0al]. From @), we can state that
the relationship between the arrival timg) and the count proces€(t) isv(k) <t < N(t) > k. Hence,

Pr(N(t)=k)=Pr(N({) <k+1)—Pr(N() <k)

=Pr(v(k+1) >t) — Pr(v(k) > t) 4)

= Fi(t) = Fiya (1)
whereFy,(t) is the distribution function of (k).

If the 7;'s have a common Exponential distribution, that is, if theBpective probability density function
is
F(mA) = Xe ™,

then, as stated above, we find the classical Poisson pramradaifn counts. This means that the number of
claims occurring in the time interv, ¢] is Poisson distributed with meay, that is,

 (A)E
Pr(N(t) =k)=e? %

Winkelmann B4, (1995)] suggested to take gamma distributgs] with density

)\‘P
f 75 307)\ = T¢_16_AT7
2N =5

wherel'(-) is the gamma functionp > 0 and\ > 0. The stability under convolution of the gamma
distribution for fixed\ parameter implies that(k) is also gamma distributed with density

)\kw k
. _ o—1_—Av
f(V7SOa)‘) F(ksﬁ)y e .
Hence, .
1
Fk(t) = W /0 )\kcpykga—le—ku dv = G(gﬁk, )\t)

where the integral is known as an incomplete gamma functgimkelmann B4, (1995)] shows that the
gamma count distribution (GCD) can be found using equadn (

Pr(N(t) = k) = G(pk, \t) — G(k + ¢, \t)

with G(0, o) = 1.
Bradlow et al. P, (2008)] show that another common model used in the durati@tysis is based on
the Weibull distribution. In this case, thg's have density

f(mie,N) = Aer®Lexp(—A79)

for A > 0 andc > 0. By using ak-fold convolution of the interarrival time distribution thi the help of
a Taylor series approximation Bradlow et &, {2008)] obtained the following expression for the Weibull
count distribution (WCD): ' _
N (1RO o
Pr(N(t) =k) = - - J
(N =k =) T(cj+ 1)

j=k
where

0_ I'(cj+1)
TG+
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j—1

[(cj—em+1) ,
Pl — p_r T =0,1,2,... j=p+1,p+2,...
90_] WLZ:psD’m F(j_m‘i‘l)’ p 07 Y K .] p+ 7p+ )

Boucher and Denuit?, (2007)] generalized these distributions for panel datboathe zero-inflated
or the hurdle models. A generalization of the MVNB distribatcan be found if random effects are
supposed to follow a gammg{«, 1/«) distribution:

~ T
Pr(Nix =nia,...,Nir =ni7) = / H (G((Pni,Tvti,T)\i,Tei) —G(Wli,r+907ﬁi,7)\i,79i))h(9i) do;.
0 =1
Complex computations are needed to obtain closed form floslast equation of the Multivariate
gamma Count Distribution (MGCD). For the WCD, Boucher andhie[2, (2007)] expressed the joint
distribution for all contracts of the same insured as theghmavn for the panel data model of the GCD:

O A e ) O

PI‘NL'_ = N, 7---7Ni = Ny, :/ -
(Vi1 1 T ) 0 H Z I(cj+1)

T=1 \j=n4,

h(6;) ;.

The first moments of these two models must be evaluated ncafigriObviously, as for other complex
panel data distributions, exact predictive and posterigtridutions for the random effects of the gamma
and the Weibull count distribution can only be evaluatedgsiumerical computations or simulations.

Non-constant hazard models, like MGCD or the MWCD, impliasation dependence. Consequently,
when applied to insurance data, it means that within eachgfezontract, those models suppose that the
report of a claim decreases the expected time to report a&mn ofdim.

8 Negative Binomial X

In a recent paper, Boucher et at, [2007)] introduced a new model in actuarial science calledative
Binomial X The model is based on a compound sum (or stopped-sum digtri) correspond to counting
variables of the form:

where theX’s are integer-valued, independent and identically disted, and wheré/ and theX’s are
independent. The authors supposed fiids Poisson with meai and.X; is Logarithmic with parametey,
which means thalV is Negative Binomial (using the standard assumption Eéil X; =0if M =0).
For cross-section data, Boucher et &l.([2007)] showed by numerical applications on real insueatetta
that this model exhibits the best fit compared to zero-infldterdle or Poisson distribution.

The original model was proposed by Santos Silva and Windmgij, (2001)] who defined th€egBin,,
regression model as follows: the parameteof the Logarithmic distribution is expressed in terms of the
available covariates as .

L=

and the Poisson parameter is taken to\pe= exp(x} 3). Consequently)V; is Negative Binomial with
parameten; / log(1+exp(x} v)) andexp(x; ). After some simplifications, the probability mass function
is given by:

exp(w;y) =

Ai
I (i + ey ) SR
F(nz + 1)F (m) (]. + eXp(*ﬂl‘:ﬁ/))n‘
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Many generalizations for panel data can be made for this mdadgeed, following some well-known
ideas in the renewal theory, the dependence between ctafabe same insureds can be constructed with
the assumption that all observations have the same distribution. This means thiteatontracts of the
same insured can be expressed by the following vector:

M, M, M,
Ni1 = g X1, Nipg= g Xj2,--0s Nor = g Xjr
=1 i=1 i=1

where all theX;,,t = 1, ..., T are i.i.d.. This modeling has close similarities with thentnon shock
model used in Boucher et al7,[(2008)], where the dependence between contracts of the sesared
comes from a common individual random variable that is addeghch time period (Holgaté §, (1964)]

for the bivariate case). This model can be interpreted as ifidividual specificity of an insured affects all
his contracts. As for the common shock model, this genexiidia of theNegBin,, distribution for panel
data cannot be satisfactory for insurance data. Indeedntitkel becomes interesting for a situation where
positive counts can be observed for all contracts, whilg#tfice, in all automobile insurance portfolios, a
great proportion of insureds does not report a single claismentioned in Winkelmanrsp, (2003)], this
kind of modelling is interesting because mixing and computinig are related concepts. Indeed, using the
notationN; (M;) = Z;Vi'l X+ compounding can be seen as:

PI'[NZ'J = TLi’l, e ;Ni,T = ni,T] = Z PI'[Nl(MZ> = TLiyl, ceey NT(Mz) = ni,T|Mi = m] PI‘[M1 = m]

m=0

which can be seen as a discrete version of mdijel (

Another related generalization is to suppose that the digae between the contracts of the same
insured comes from the random variabde. In this situation, all the contracts of the same insuredlmn
expressed by the following vector:

M; 1 M; 2 M; T
DX D Xy 2K
J=1 J=1 J=1

where all theM; ;, ¢t = 1, ..., T are i.i.d.. Using the standard assumption tﬁ;ﬁi’f X;=0if M;; =0
allows greater flexibility in the modelling and avoids the@lplem cited above. This generalization of the
NegBin,, distribution is much harder than the previous one and isecly under investigation.

Instead of trying to generalize tiéegBin, distribution of Santos Silva and Windmeijeil, (2001)]
by supposing a constant number of claims or a constgrfor all the contracts of the same insured, we
propose to add an heterogeneity term to the random varighlas it was done for all the other models
presented in this paper. Sindé is supposed to be Poisson distributed, gamma random effeetas a
natural choice. As mentioned earlier, generally, the nurabelaims is modeled with Poisson distribution,
where a random effects variable is added to the count disiity, but this gives too much weight and
importance on the heterogeneity. Indeed, this kind of modeherate predictive premiums that over-
penalises insureds with many claims (see Young and DeVY&ig(2000)] for example). By adding only
a random effects on a single part of the conditional courtidigion, these penalties are softer since the
impact of the heterogeneity is weaker.

Using the results of Santos Silva and Windmeijet, [(2001)], it is possible to express the joint distri-
bution of all the contracts of the same insured to obtain divaniateNegBin,, distribution MVNB,):

Pr[Ni1 =ni1,...,Niz = ni 7]

00
0

= / <H Pr[N;; = ni,t|9i]> g(6:) do;
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eikm,
_ /°° { T T (et ety ) OP(00)
- 0iXi s n
t=1 F(niyt + 1)F (log(1+exp(méyt7))) (1 + eXp(im{itV)) i

(/)0 1ja)1

(/) exp(@i(l/a))d&}

B (1/a) /) ﬁ 1
L((1/a)) L(nie +1)(1 4 exp(—ajy))™
ihe
o (T (i + et d
% / H ( logg(l)\-if p(wl,t“/))) 91(1/04)—1 exp <—9,-((1/04) + Z Ai,t)) do;
0 \e=t T (1og<1—+expiwm>>) t=1

where);; = exp(z}, 3). The last integration must be done numerically. By conditig, the first two
moments of the distribution are:

_ it eXp(wé,t’Y)
~ log(1 4 exp(x} ;7))
Var[N;+] = (1 + exp(x;v)) E[N;+] + « E[Ni7t]2

E[N; ]

As stated in Boucher et al3[(2007)], the model can have some interesting interpmtatior insurance
data. Thigwo-partmodel can be used for modeling the number of injured perspti'eumber of third
parties involved in a given claimed accident. Indeed, irs¢hsituations M represents the number of
accident whileX; is used to model the number of victims involved or parties@ttd by a single accident.

Exact predictive and posterior distributions for the ramdeffects cannot be evaluated analytically, so
they require a numerical approach.

9 Numerical Application

We worked with a sample of the automobile portfolio of a majompany operating in Spain, that was
already used for the hurdle distributions in Boucher et4l5[ (2008)]. Only cars for private use were
considered in this sample. The panel data contains infoomé&dr the period from 1991 to 1998. Our sam-
ple containsl 5,179 policyholders who remained with the company for seven cetepberiods, resulting

in 106,253 insurance contracts. We have exogeneous variables (sexgandf the driver, years with the
company and power of the vehicle) that are kept in the panslthle annual number of accidents. For every
policy of a single insured we used the initial informatiomtained in his first contract. The total number
of at-fault claims that took place within each year-longipeémas used for analysis. More details can be
found in Boucher et al4, (2008)].

All models presented in the paper can be simplified to a Poid&tribution. Empirical applications of
the zero-inflated, hurdle and duration panel data modelsethiin previous papers that all models exhibit
a better fit compared to the standard MVNB distribution. Cangon between all these panel data models
has not been done. These models are non-nested. Consggtienthodels cannot be compared directly
and we cannot use specification tests to distinguish bettveemodels.

A standard method of comparing non-nested models (and altechmodels) is to use the information
criteria, such as the Akaike Information Crite(iAIC) = —2log(L) + 2k or the Bayesian Information
Criteria(BIC) = —2log(L) + 2log(n)k, wherek represents the number of parameters of the model and
n the total number of observations. Talilshows the results of the fit of the distribution on our insesn
data. Hurdle and zero-inflatedistributions seem to offer the best fit using the informatateria.

1The beta random effects of the MZIP-BetaGamma distributiere not significant. We then removed these random effeats an
worked instead with the MZIP-Gamma model.
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Models | Numberof| o iivelinood AIC BIC
parameters
MVNB 7 3670208 5341996 53.567.09
NB-Beta 8 96.671.64  53.359.29  53.343.29
MZIP-Gamma 8 2666417 5334435  53.328.35
Hurdle (ind.) 1 26.688.70 5339940  53.377.40
Hurdle (Gauss) 10 26.662.47 5334494  53324.94
MGCD 8 26.675.74 5336749  53.351.49
MWCD 8 96.671.34  53.358.67  53.342.67
MVNB,, 8 96.673.44  53.362.88  53.346.88

Table 1. Comparison of models for the Spanish data set - Information Criteria

Models Godd Prof_ile Average Prc_)file Bad Profil_e
Mean Variance] Mean Variance] Mean \Variance

MVNB 0.0567  0.0595 | 0.0651  0.0688 | 0.0902  0.0974
NB-Beta 0.0564  0.0620 | 0.0657  0.0728 | 0.0910 0.1025
MZIP-Gamma | 0.0534 0.0604 | 0.0668  0.0727 | 0.0885  0.0975
Hurdle (ind.) | 0.0570  0.0644 | 0.0659  0.0717 | 0.0911  0.0997
Hurdle (Gauss.) 0.0577  0.0657 | 0.0664  0.0721 | 0.0911  0.0989
MGCD 0.0567  0.0614 | 0.0651  0.0713 | 0.0897  0.1017
MWCD 0.0566  0.0617 | 0.0651  0.0717 | 0.0906  0.1035
MVNB ,. 0.0565  0.0619 | 0.0655 0.0721 | 0.0906  0.1015

Table 2. A priori Premiums

Deeper analysis could be done to compare the fit of all model$nteresting possibility is to test if the
differences in the log-likelihood or the information criebetween the models are statistically significant.
For independent observations, a log-likelihood ratio teshon-nested models, developed by Vuofg, [
(1989)] and generalized by Rivers and Vuofi§,[(2002)] can be used. This test cannot be applied directly
to our panel data models since some observations —all @iséthe same insured— are not independent.
However, as proposed by Goldelf[ (2003)], an adapted Vuong test should be performed on ested
models test. This test can be applied on correlated obgemgatind on panel data as done for instance in
Boucher et al. ], (2008)] and Boucher et al5] (2008)], but need complex intermediary steps before using
this statistical test (gradient evaluation, autocorietatheck, etc.).

For illustration, we show the differences between modelsubh the mean and the variance of insured
profiles. Three profiles were selected and were classified@d, gverage and bad drivers. The results are
given in Table2. This table shows that the expected values of all profilesaary similar for the models
studied. The greatest differences between models can bd fouhe variance estimates.

Differences between predictive premiums are also intexg@sb analyse. To illustrate this, we kept the
estimated parameters out of tAgriori analysis and projected a loss experience of 10 years. Thiofva
analyzing thea posteriorimodels is very common in actuarial science. One can then wiffleyent claim
experience situations that can arise in insurance compahn&ble3 shows the predictive premiums for an
average risk profile for the MVNB and the NB-Beta models. haise models, the predictive premium only
depends on the sum of reported claims.

The predictive premiums of the zero-inflated and the hurdidets do not only depend on the number of
reported claims but also on the number of insured periodsowitclaims. Tabléd shows the premium that
should be charged to insureds depending on his past insecetds. Interesting conclusions can be drawn
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Sum of claims
Models A priori o | 1 | 2 | 3 | 4
| MVNB | 0.0651 | 0.0413 | 0.0778 | 0.1143 | 0.1509 | 0.1874 |
| NB-Beta | 0.0657 | 0.0441 [ 0.0770 | 0.1099 | 0.1428 | 0.1758 |

Table 3. Predictive Premiums (Average Risk Profile) for the MVNB and the NB-Beta Models

Models o Sum of claims

To | A priori o | 1 | 2 | 3 4

10 | 0.0668 | 0.0443 . . . .
9 | 0.0668 . 0.0783 | 0.1130 | 0.1480 | 0.1833
MZIPG 8 | 0.0668 . 0.1116 | 0.1462 | 0.1809
7 | 0.0668 . 0.1444 | 0.1786
6 | 0.0668 . 0.1763

10 | 0.0659 | 0.0448 . . . .
Hurdle 9 | 0.0659 . 0.0833 | 0.0876 | 0.0920 | 0.0963
(ind.) 8 | 0.0659 ~ 0.1246 | 0.1304 | 0.1363
7 | 0.0659 . 0.1683 | 0.1755
6 | 0.0659 . 0.2140

10 | 0.0663 | 0.0441 . . . .
Hurdle 9 | 0.0663 . 0.0776 | 0.1063 | 0.1336 | 0.1598
(Gauss,) |5 | 0-0063 [ 0.1113 [ 0.1403 | 0.1687
7| 0.0663 . 0.1444 | 0.1750
6 | 0.0663 . 0.1774

Table 4. Predictive Premiums (Average Risk Profile) for the Zero-Inflated and the Hurdle Models

from the analysis of predictive premiums. Indeed, for thedlkeimodel with independent random effects,
we can see that the number of insured periods without a clasralgreater impact on the premium for the
following year than the total number of reported claims. ldwer, we also observe that the dependence
between the two random effects of the hurdle model has a grgeict on the premium. The correlated
random effects hurdle models show premium values that asecto those of the Poisson-gamma rather
than the independent random effects model, since the ingbdoe reporting pattern is reduced.

It is interesting to note that for a fixed number of reportealrok, the relation between the predictive
premiums andj is different for the MZIP-Gamma model than for the hurdle misd Indeed, the lowest
premium for the MZIP-Gamma model is for smalj, while it is for highT} for the hurdle models.

Because of the complex analytic form of the densities of theation models, we were not able to
specify clearly the sufficient statistic of the predictivstdbution. In fact, the complete pattern of reporting
as an importance on the predictive premiums, as shown ireBalffror illustration, we only compute the
predictive premiums for two extreme situations: in the oskere all the claims were reported on different
insured periods (A) and in the case where all the claims weperted on the same insured period (B).
Differences between the two situations are too small. Meggowe can also see that these predictive
premiums are very close the values obtained for the MVNB had\iB-Beta distributions.

As for the duration model, we were not able to express theigireel distribution of theN;; as a
function of a specific sufficient statistic. Tall@lso shows the predictive premiums depending on situations
A and B. However, in this case, we see that large differenaashe observed. The relation between the
reporting pattern and the predictive premiums is very closthe one observed with the hurdle model.
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Models Situation A priori 0 | 1 STm 02f cla||ms 3 | 4

MGCD A 0.0651 0.0427 | 0.0792 | 0.1114 | 0.1402 | 0.1682
B 0.0651 . . 0.1097 | 0.1391 | 0.1669

MWCD A 0.0651 | 0.0437 | 0.0761 | 0.1082 | 0.1415 | 0.1742
B 0.0651 . . 0.1092 | 0.1424 | 0.1764

Table 5. Predictive Premiums (Average Risk Profile) for the Duration Models

. . Sum of claims
Model Situation A priori 0 | 1 | 5 | 3 | 4
MVNB A 0.0655 | 0.0442 | 0.0783 | 0.1113 | 0.1434 | 0.1780
* B 0.0655 . . 0.0970 | 0.1153 | 0.1318

Table 6. Predictive Premiums (Average Risk Profile) for the MVNB,. Model

This is not a coincidence since there are close similariigds/een the two models that we would like to
investigate further. Indeed, both models can be expressadcampound surEfVil X, where:

1. M ~ Poisson andX; ~ Logarithmic for theNegBin,, distribution;

2. M ~ Bernoulli, X/ = X; — 1 andX; ~ Poisson for the hurdle distribution.

10 Conclusion

Cost-based pricing of individual risks is a key actuariaénaaking principle. The price charged to poli-
cyholders is an estimate of the future costs related to th&@amce coverage. The pure premium approach
defines the price of an insurance policy as the ratio of thenastd costs of all future claims against the
coverage provided by the insurance policy while it is in effte the risk exposure, plus expenses.

The property and casualty ratemaking is based on a claimérszy distribution and a loss distribution.
The claim frequency is defined as the number of incurred daier unit of earned exposure. The exposure
is measured in car-year for motor third party liability ingace (the rate manual lists rates per car-year).

In a free market, insurance companies need to use a ratingfigte that matches the premiums for
the risks as closely as possible, or at least as closely asating structures used by competitors. This
entails using virtually every available classificationigate correlated to the risks, since failing to do so
would mean sacrificing the chance to select against coropgtdand incurring the risk of suffering adverse
selection by them.

We have shown how panel data models can be useful in insutangerive the distribution of the
number of claims for one period ahead, given informationhengast.
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