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On the convergence of some methods for variational
inclusions

C. Jean–Alexis and A. Piétrus

Abstract. In this paper, we study variational inclusions of the following form 0 ∈ f(x) + g(x) +
F (x) (∗) where f is differentiable in a neighborhood of a solution x∗ of (∗) and g is differentiable at
x∗ and F is a set-valued mapping with closed graph acting in Banach spaces. The method introduced to
solve (∗) is superlinear and quadratic when ∇f is Lipschitz continuous.

Sobre la convergencia de algunos métodos para inclusiones variacionales

Resumen. En este artı́culo se estudian inclusiones variacionales de la forma 0 ∈ f(x) + g(x) +
F (x) (∗) donde f es diferenciable en un entorno de la solución x∗ de (∗), g es diferenciable en x∗ y F
es una aplicación con gráfica cerrada entre espacios de Banach. El método introducido para resolver (∗)
es superlineal y cuadrático cuando ∇f es continuo y verifica la condición de Lipschtz.

1 Introduction

In this study, we are concerned with the problem of approximating a solution x∗ of the following variational
inclusion

0 ∈ f(x) + g(x) + F (x) (1)

where f : X → Y is differentiable in a neighborhood of a solution x∗ of (1), g : X → Y is differentiable at
x∗ but may be not differentiable in a neighborhood of x∗ while F : X → 2Y denotes a set-valued mapping
with closed graph and X , Y are two Banach spaces.

Inclusion (1) can be viewed as a perturbed problem of the following one

0 ∈ f(x) + F (x), (2)

the function g being the perturbation function.
For solving (2), several iterative methods have been presented. When ∇f is locally Lispchitz on a

neighborhood of a solution x∗ of (2), Dontchev [5] established a quadratically convergent Newton-type
method under a pseudo-Lipschitz property for set-valued mappings and in [6], he proved the stability of the
method. Following Dontchev’s method, Piétrus [17] obtained superlinear convergence when ∇f is Hölder
on a neighborhood of x∗ and he also showed the stability of the method in this mild differentiability context
(see [18]).
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When f is only continuous and differentiable at x∗, for solving (2), Hilout and Piétrus [12] considered
the sequence 

x0 and x1 are given starting points
yk = αxk + (1− α)xk−1; α is fixed in [0, 1[
0 ∈ f(xk) + [yk, xk; f ](xk+1 − xk) + F (xk+1)

(3)

where [yk, xk; f ] is a first order divided difference of f on the points yk and xk. This operator will be
defined in section 2. They prove the superlinear convergence of this method.

For solving (1), when F = {0}, f is differentiable and g is continuous function admitting first and
second order divided differences, Cãtinas [4] proposed a combination of Newton’s method with the secant’s
method . An extension of this method to variational inclusions is studied in [10] where Geoffroy et al.
proved the superlinear convergence under an assumption on the second order divided difference. So, these
two methods are valid if g posseses a second order divided difference.

According to this idea of combination, we propose, in this paper, a method of the form

0 ∈ f(xk) + g(xk) +
(
∇f(xk) + [2xk+1 − xk, xk; g]

)
(xk+1 − xk) + F (xk+1). (4)

For proving the convergence of (4), we don’t use the concept of second order divided difference which is
a paramount notion in the work evocated previously. We obtain an order of convergence better than those
obtained by the authors in [10, 11]; moreover, in the Lipschitz case, we have a quadratic convergence.
Because of the presence of xk+1 in the divided difference instead of xk, from a numerical viewpoint, (4)
seems to be better than the method presented in [11].

This work is organized as follows: in section 2, we recall a few preliminary results about regularity of
set-valued mappings, divided differences and we state a fixed point theorem which is very important for
obtaining the algorithm. In section 3, we show the existence and the convergence of the sequence defined
by (4).

2 Preliminary results

Let us give some notation. We denote by Br(x) the closed ball centered at x with radius r, by ‖ · ‖ all
the norms, by L(X, Y ) the space of linear operators from X to Y . The distance from a point x ∈ X
and a subset A ⊂ X is defined as dist(x, A) = inf

a∈A
‖x − a‖, the excess from the set A to the set C is

defined by e(C, A) = supx∈C dist(x, A) and the graph of a set-valued mapping F : X → 2Y is denoted
by Gph F = { (x, y) ∈ X × Y | y ∈ F (x) }.

Recall the definition of a pseudo-Lipschitz (or Lipschitz-like) set-valued mapping:

Definition 1 A set-valued mapping Γ: X → 2Y is said to be M -pseudo-Lipschitz around (x0, y0) ∈
Gph Γ if there exist constants a and b such that

e(Γ(x1) ∩ Ba(y0), Γ(x2)) ≤ M‖x1 − x2‖.

The pseudo-Lipschitz property has been introduced by Aubin, it is the reason for which this property is
sometimes called “Aubin continuity”, see [2, 3].

Characterizations of this property are obtained by Rockafellar [19] using the Lipschitz continuity of
the distance function dist(y, Γ(x)) and by Mordukhovich [15] via the concept of coderivative of set-valued
mappings.

The pseudo-Lipschitz property of a set-valued mapping Γ is also equivalent to the metric regularity of
Γ−1 and to the openness with linear rate of Γ−1, see [8, 9, 14, 16, 20].
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Definition 2 An operator [x, y; f ] ∈ L(X, Y ) is called a divided difference of first order of the function f
at the points x and y in X (x 6= y) if the following property holds:

[x, y; f ](y − x) = f(y)− f(x). (5)

Let us remark that if f is Fréchet-differentiable at x then [x, x; f ] = ∇f(x) where ∇f is the Fréchet
derivative of f .

For a best understanding of the theory of divided differences of nonlinear operators, the reader could
refer to [1].

Next comes an extension to the set-valued setting of a local version of the Banach fixed point theorem
which has been proved in [7].

Lemma 1 Let φ be a set-valued mapping from X into the closed subsets of X , let η0 ∈ X and let r and λ
be such that 0 < λ < 1 and

(a) dist(η0, φ(η0)) < r(1− λ),

(b) e(φ(x1) ∩ Br(η0), φ(x2)) ≤ λ ‖x1 − x2‖, ∀x1, x2 ∈ Br(η0),

then φ has a fixed point in Br(η0). That is, there exists x ∈ Br(η0) such that x ∈ φ(x). If φ is single–valued,
then x is the unique fixed point of φ in Br(η0).

This lemma is a generalization of fixed point theorem in [13], where in assertion (b) the excess e is
replaced by the Hausdorff distance.

3 Convergence analysis
Throughout this section, we suppose that:

(H1) The function f : X → Y is Fréchet-differentiable and its derivative is (L, p)-Hölder on a neighbor-
hood Ω of a solution x∗ of (1) that means :

∃L > 0, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖p, p ∈ (0, 1], ∀x, y ∈ Ω.

(H2) The function g : X → Y is Fréchet-differentiable at x∗ and admits a first order divided difference
satisfying the following condition :

there exists ν > 0 such that for all x, y, u and v ∈ Ω (x 6= y, u 6= v),

‖[x, y; g]− [u, v; g]‖ ≤ ν(‖x− u‖p + ‖y − v‖p), p ∈ [0, 1].

That means that the first order divided difference of g satisfies a (ν, p)-Hölder condition.

(H3) The set-valued mapping F : X → 2Y with closed graph is such that [f +g+F ]−1 is pseudo-Lipschitz
around (0, x∗).

Remark 1 From a result in [7], the assumption (H3) implies that the map [f(x∗) + ∇f(x∗)(. − x∗) +
g(.) + F (.)]−1 is pseudo-Lipschitz around (0, x∗).

In the sequel, we denote by M its modulus.
The main theorem of this study reads as follow.

Theorem 1 Under the assumptions (H1)–(H3) and for every c > M

(
L

p + 1
+ ν

)
, one can find δ > 0

such that for every distinct starting point x0 ∈ Bδ(x∗), there exists a sequence (xk) defined by (4) which
satisfies

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖p+1. (6)
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Before proving this theorem, let us introduce some notation. First, define the set-valued mapping Q
from X into the subsets of Y by

Q(x) = f(x∗) + g(x) +∇f(x∗)(x− x∗) + F (x).

Then for k ∈ N and xk ∈ X , set

Zk(x) = f(x∗) + g(x) +∇f(x∗)(x− x∗)− f(xk)− g(xk)

−
(
∇f(xk) + [2x− xk, xk; g]

)
(x− xk).

Finally, define φk : X → 2X by φk(x) = Q−1[Zk(x)].
PROOF OF THEOREM 1. By assumption (H3), Q−1(·) is M -pseudo-Lipschitz around (0, x∗) then

there exist positive constants a and b such that

e(Q−1(y′) ∩ Ba(x∗), Q−1(y′′)) ≤ M‖y′ − y′′‖, ∀y′, y′′ ∈ Bb(0). (7)

Let us choose δ > 0 such that

δ < min
{

a,

(
b(p + 1)

L(2p+1 + 1) + 2p+1ν(p + 1)

) 1
p+1

,

(
1
c

) 1
p
}

. (8)

We apply Lemma 1 to the map φ0 with η0 = x∗ and r and λ are numbers to be set. Let us check that both
assertions (a) and (b) of Lemma 1 hold. According to the definition of the excess e, we have

dist(x∗, φ0(x∗)) ≤ e(Q−1(0) ∩ Bδ(x∗), φ0(x∗))

≤ e(Q−1(0) ∩ Bδ(x∗), Q−1[Z0(x∗)]).

Moreover, for all x0 ∈ Bδ(x∗) (x0 6= x∗) we have

‖Z0(x∗)‖ = ‖f(x∗) + g(x∗)− f(x0)− g(x0)−∇f(x0)(x∗ − x0)
− [2x∗ − x0, x0; g](x∗ − x0)‖

≤ ‖f(x∗)− f(x0)−∇f(x0)(x∗ − x0)‖
+ ‖g(x∗)− g(x0)− [2x∗ − x0, x0; g](x∗ − x0)‖

≤ L

p + 1
‖x0 − x∗‖p+1 + ‖[x∗, x0; g]− [2x∗ − x0, x0; g]‖‖x∗ − x0‖

≤ L

p + 1
‖x0 − x∗‖p+1 + ν‖x0 − x∗‖p‖x0 − x∗‖

≤
(

L

p + 1
+ ν

)
δp+1.

Then (8) yields Z0(x∗) ∈ Bb(0). Hence, by (H3), we have

dist(x∗, φ0(x∗)) ≤ M‖Z0(x∗)‖ ≤ M

(
L

p + 1
+ ν

)
‖x0 − x∗‖p+1.

Since c > M

(
L

p + 1
+ ν

)
, one can find λ ∈]0, 1[ such that c(1− λ) > M

(
L

p + 1
+ ν

)
. Hence,

dist(x∗, φ0(x∗)) < c(1− λ)‖x0 − x∗‖p+1. (9)

By setting r = r0 = c‖x0 − x∗‖p+1, we can deduce from the previous inequality that the assertion (a)
of Lemma 1 is satisfied.
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Now, we show that condition (b) of Lemma 1 is satisfied. It is clear that r0 < δ < a and moreover for
x ∈ Bδ(x∗), we have

‖Z0(x)‖ = ‖f(x∗) + g(x) +∇f(x∗)(x− x∗)− f(x0)− g(x0)
−∇f(x0)(x− x0)− [2x− x0, x0; g](x− x0)‖

≤ ‖f(x∗)− f(x)−∇f(x∗)(x∗ − x)‖+ ‖f(x)− f(x0)−∇f(x0)(x− x0)‖
+ ‖g(x)− g(x0)− [2x− x0, x0; g](x− x0)‖

≤ L

p + 1
‖x∗ − x‖p+1 +

L

p + 1
‖x− x0‖p+1 + ν‖x− x0‖p‖x− x0‖

≤
(

L(2p+1 + 1)
p + 1

+ 2p+1ν

)
δp+1.

Then by (8), we deduce that for all x ∈ Bδ(x∗), Z0(x) ∈ Bb(0); it follows that for all x′, x′′ ∈ Br0(x
∗)

we have

e(φ0(x′) ∩ Br0(x
∗), φ0(x′′))

≤ e(φ0(x′) ∩ Bδ(x∗), φ0(x′′))
≤ M‖Z0(x′)− Z0(x′′)‖

≤ M

[
‖∇f(x∗)−∇f(x0)‖‖x′ − x′′‖+ ‖g(x′)− g(x′′)− [2x′ − x0, x0; g](x′ − x0)

+ [2x′′ − x0, x0; g](x′′ − x0)‖
]

≤ ML‖x∗ − x0‖p‖x′ − x′′‖+ M‖[x′, x′′; g]− [2x′ − x0, x0, g]‖ ‖x′ − x′′‖
+ M‖[2x′′ − x0, x0; g]− [2x′ − x0, x0; g]‖ ‖x′′ − x0‖

≤ MLδp‖x′ − x′′‖+ Mν(‖x0 − x′‖p + ‖x′′ − x0‖p)‖ ‖x′ − x′′‖
+ Mν‖2x′′ − 2x′‖p ‖x′′ − x0‖

≤ M
(
Lδp + 2p+1νδp + 22pνδp

)
‖x′ − x′′‖

≤ M(L + 2p+1ν + 4pν)δp‖x′ − x′′‖.

Without loss of generality, we can assume that δ <

(
λ

M(L + 2p+1ν + 4pν)

) 1
p

thus condition (b) of

Lemma 1. Since both conditions of Lemma 1 are fulfilled, we can deduce the existence of a fixed point
x1 ∈ Br0(x

∗) for the map φ0 which implies that the inequality (6) is checked for k = 0.
Proceeding by induction, keeping η0 = x∗ and setting r = rk = c‖xk − x∗‖p+1; we prove, in the same

way, the existence of a fixed point xk+1 ∈ Brk
(x∗) for φk. This fact implies that

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖p+1.

Hence the proof of Theorem 1 is complete. ¥

Concluding remarks

• If p = 1 then the Fréchet derivative of f and the fisrt order divided difference of g satisfy a Lipschitz
condition, we obtain the quadratic convergence of the method (4).

• If in the assumptions (H1) and (H2), we take different exponents (p1 and p2) for inequalities satisfied
by ∇f and the divided difference of g, we find similar results of order (β + 1) by setting β =
min{p1, p2}.
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• If we use a weaker condition (called Lipschitz center-Hölder) on the first order divided difference of
g by replacing the inequality in (H2) by

‖[x, y; g]−∇g(x∗)‖ ≤ ν(‖x− x∗‖p + ‖y − x∗‖p), p ∈ [0, 1],

we find similar results but assuming that g admits a bounded second order divided difference.
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