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Nonlinear nonlocal evolution problems

N.-H. Chang and M. Chipot

Abstract. We consider a class of nonlinear parabolic problems wheredbfficients are depending on
a weighted integral of the solution. We address the issuegisfence, uniqueness, stationary solutions
and in some cases asymptotic behaviour.

Problemas no locales y no lineales de evoluci  6n

Resumen. Se considera una clase de ecuaciones parabolicas ncenmallas que algunos de los
coeficientes dependen de una integral, con un cierto peska stducion. Se estudia la existencia y
unicidad de soluciones, asi como para el problema estoiossociado, y, en ciertos casos, se analiza el
comportamiento asintotico.

1. Introduction

In this note we would like to present some of the new techrsduiroduced recently to study nonlocal time
dependent problems. We will restrict ourselves to a spetéais of problems hoping raising the interest
of the reader to develop further tools. Our main effort wél dbevoted to the dynamical behaviour of such
problems. As we will stress out, one of the main difficultyrthés the absence of obvious Lyapunov
functions. Let us first introduce our notation.

We will denote by a bounded open subset®f, n > 1. We suppose the bounddryof 2 divided into
two measurable subsdtg, andl'y = I'\ I'p. We denote by.;; = a;;(¢), 4,5 =1,...,nandag = ao(¢)
functions satisfying:

ai;, ap are bounded, continuous frofiinto R, Q)

there exist positive constanis A such that

n

AéJE < Z Q)& < Al¢2 VEER™, V(¢ ER, 2)

Z)<A V(eR. 3)

I /\

In other words the operator that we will use below will be onifly elliptic. If 9,, denotes the partial
derivative in the direction; we introduce the operator defined for ah¢ R by

n

i,j=1
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If v denotes the outward unit normallfove define the conormal derivative of a functioiy
BI/AU = aVA(Qu = Z 7] (C)awyuyj (5)

wherev = (v1, ..., v,). Then we would like to consider the problem

up — A(0(u(t)))u + ap(l(u(t)))u = fin Q@ x R,
u(z,t) =00nTp x R,

. (6)
O aceuyy =00nIy x RT,
u(+,0) = o in Q.
In the above systerfis defined by
) = | glaute.)d @)
The functionsf, g, ug are such that
f,g,UOGLQ(Q). (8)

Of course for these kinds of problems many varianté afe possible. For instance in [14]s no more a
linear form onL?(£2) but represents some elastic energy given by

E(u):/Q|Vu(x,t)|2dx. 9)

Itis also possible — depending on the application that we lrawmind — to have differerts in the coeffi-
cients and to have coefficients depending on several of thee{6]. However for simplicity we will restrict
ourselves to the problem (6). Note that it would be also @gting to address the case of nonhomogeneous
boundary conditions. Let us give few examples of problensl(Bwhat followsa is a positive continuous
function.

Example 1.
(aij) = a(¢)1d, ap =0, I'p =T, (10)

whereld is the identity matrix. The problem (6) becomes

ur — a(l(u(t)))Au = fin Q x Rt
u(x,t) =0onl x R, (11)
u(+,0) = ug in Q,

whereA is the usual Laplace operator. This problem has been igastl in [6], [7], [8], [10]. From a
physical point of view, it describes the evolution of a patidn whose diffusion velocity depends on a
nonlocal quantity. The rate of supply in this populatiorfisNote that we will choose it here most of the
time independent of even so some variants of our results could be obtained inrtreedependent case.
Note that (10) does not take death into account (see [4] foerdetails on the modelisation).

For ¢ — especially in the case of population dynamics — severabaolswcandidates come in mind. For
instance —foy =1 —

Z(u(t))z/ﬂu(:v,t)dx (12)
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is the total population in our system.{lf denotes a subdomain 8fandg = Xy then
L(u(t)) = / u(z,t) de (13)
S ’

takes only into account the population®©f. Now some parts of the population could play a crucial role
which could lead to introduce a “weight/’ as in the formula (7). Note that our analysis with population
could apply also to a model of heat propagation —i.eould be a temperature — for some special class of
bodies which is left to the imagination of the reader.

Example 2.
(aij) = CL(C) Id, agp = 1 (14)
The problem is then:

ur —a(l(u(t)Au+u= finQ x RT,
w(z,t) =00nTp x R, dyu(zr,t) =00nTyxy x R, (15)
u(+,0) = up in Q.
0, is the usual normal derivative. This problem is studied in [Rote that with respect to the preceding
example the variant consists only in introducing a congdaath rate. However, from a mathematical point

of view the analysis has to be more involved. In particularrésearch of the stationary points requires to
solve an equation which is not so explicit as in Example 1.

Example 3.
(aij) =1d, ap = a((). (16)

Then the problem becomes nonlocal with respect to the lowgrderm i.e. we have to solve

up — Au~+ a(l(u(t)))u = finQ x RT,
u(z,t) =00nTp x R, dyu(z,t) =00nTy x R, a7
u(+,0) =g in £
It corresponds to a constant diffusion rate and a nonloaethd@ate. For various results in this case we refer
the reader to [3].
Perhaps some comments on nonlocality are in order. By ofigos$o the nonlocal problem (6), one
calls local the variant of (6) given by
uy — Oy, {aij(u(x,1))0z,u} + ao(u(z,t))u = fin Q x R,
u(x,t) =00onTp x R*, 0y, u=00nTy x RY, (18)
u(+,0) = ug.
Ateach step in time the system is driven by the knowledgg of¢) at every point. In the so called nonlocal

case (6) the information known is only of integral type. Tlust of information is lost. In particular one
can very well have

() = [ a@uie.de = [ gatat) s = (o) (19)

but
u #£ v. (20)
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As a consequence, the comparison principle
Uy <Uyg = u<su

which holds for (18) fails for (6) (see [4], [8L is the solution corresponding to the initial daig = the
one corresponding t@,). Moreover, if the stationary problem associated to (18hiégla unique solution
(under some mild assumptions — see [4]) this fails for thécstary problem associated to (6) as we will see
below. This, together with the difficulty of exhibiting Lyapov functions makes the asymptotic behaviour
of (6) very challenging.

We will divide our note in three further sections. In Sectibrwe will address the issue of existence
and uniqueness of a solution to (6). In Sectiow8 will study the stationary problem corresponding to (6).
Finally in the case of an example we will consider some asygtigpbehaviour.

2. [Existence and uniqueness

There are various techniques to address the problem (sBe 148 will rely here on a very simple fixed
point argument. Let us fix some positive tifie Then define the spadé as

V={veH(Q)|v=00nTp}. (21)

(We refer the reader to [1], [12], [13], [14] for the diffeftespaces introduced here). We will suppdse
equipped by the topology df ! (2) defined by the norm

[l

2, = /Q{|w<x>|2+v<x>2}d:c. (22)

(V is the usual gradient, | the euclidean norm iiR™). Let us denote by’ the strong dual o¥’. Since it
does not complicate the problem we will suppose in the thradrelow thatf depends also ohand assume

feL*0,T;L%(Q),  g,uo € L*(9). (23)
Then the existence of a weak solution to (6) is given by theltéslow.
Theorem 1 Under the assumption(&)<3), (23) there exists a function such that

u € L2(0,T;V)NnC([0,T), L3(S)), us € L*(0,T; V"),
%(u,v) + Z aij(é(u(t)))/ﬂﬁwiuawjv dx + ag(f(u(t)))(u,v)

3,J=1

—(f,v) YveV, inD/(0,T),
u(+,0) = ug in .

(24)

Moreover if thea;;’s, ao are locally Lipschitz continuous the solution is uniquen the above(u, v)
denotes the usual scalar product Irf (Q2) — we refer to [1], [4], [12] for the definition of the different
spaces introduced).

PROOF.  Letus set—if - |12, 7;12(n)) denotes the norm in this space —
B={veL*0,T;L*(Q) | [v|z20m:22(2)) < Co } (25)

where Cy is a constant that we will fix later on. Recall tha#(0,7; L?(£2)) can be identified with
L3((0,T) x Q) — see also [1], [4] for the definition of the different normsraduced below. We are
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going to apply the Schauder fixed point theorem for the comaixB of L2(0,T; L?(Q2)). If w € B we
introduce
u=F(w) (26)

the solution to

ue L0, T;V)NnC([0,T), L3()), us € L*(0,T;V"),

n

%(u,v) + Z aij(é(w(t)))/ﬂaziuﬁzjvd:c+a0(€(w(t)))(u,v)

ij=1

=(f,v) YveV,inD(0,T),
u(-,O) = Up-

(27)

(27) is a linear problem and the existence and uniquenessssults from a well known result of J.L. Lions
(see [12]). Takingy = w in (27) we get by (2) and the Cauchy—Schwarz inequality

1d

2
§E|U|§+/\“VUH2 < | fl2ful2 (28)

(| - |2 is the usual?(2)-norm). Let us set

T 1/2
HUH2 = |u|L2(O,T;L2(Q)) = {/ / uQ(x,t) dx dt} . (29)
0 Q

Integrating (28) o0, t) for t < T we obtain
1 2 t 2 1 2 T
SIOB+X [ [[Vullyde < Sluoi+ [ 17Ol lu(t)l2 dt
0 1 0 (30)
< §|u0|§ + (£ [2llul]2-

With a further integration in we get easily — dropping the gradient term — and using the aequality -

[ull3 < Tluol3 + 27| fllzflull2

1 (31)
< Tuol3 + 5|IU|I§ +27%| 13-

From this we deduce that
Jull3 < 2T |uol5 + 4T3 f115 = C§ (32)

where we have sety = {27 |uo|3 + 4T2||f||3}'/2. This shows that the map defined by (26) applie®
into itself. Moreover, combining (30), (32) we derive egpsiiat it holds that

[ulL2(0,mv) < C' (33)
and by using the equation that we have
|ut| 20,70y < C7 (34)

whereC’ is some constant independentaflt is not difficult to show thaf is continuous fronB into B
(see [4]) — since from (33), (34)(B) is relatively compact irB — this completes the existence part by the
Schauder fixed point theorem.

To show uniqueness let us assume — without loss of genesalitgu € C([0,T], L?(Q2)) — that the
a;;'s anday are Lipschitz continuous i.e. that

|ai;(¢) — aii ()], lao(¢) — ao(¢)] < Al¢ = ('] V(¢ € R (35)
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Consideruy, us two solutions to (27). By difference we get™ (0, T)

n

Dy = uzev) + 3 a6 (®) [ 00, (1 — 1) v da

dt =1 Q
+ ag(l(ur(t)))(ur — usg,v
) o(f(u1(t)))(u1 — uz,v) (36)
= 3 (o (ta®) s (Clar () [ 00200
Q=1 Q
+ {ao(C(uz(t))) — ao((€(ur(t)))}(uz,v) Vo eV
Takingv = w1 — us We derive by (35)
1d 2
§E|u1 — U2|% + /\HV(ul — uz)”z
< nAJ0(uz(t)) — (us ()] Vua |, ||V (ur — uz)]], (37)
+ All(uz(t)) — £(u1(t))|luzl2ur — uza.
Recalling (7) we obtain
1d 9 2
§E|U1 —u2|2+/\‘|V(u1 —u2)||2 (38)
< nA|gla|[Vual|,lur — uala ||V (u1 — u2)||, + Alglalualz|ur — usl3.
Applying in the first term of the right hand side of (38) the Yiguinequality
A 2 1 2
< Z _
ab < 2a + 2)\()
it comes
2 2 A 2 2
Sgplu —uzly + MV (u1 —ug)l]; < §\|V(u1 — up)||; + c(t)Jur — us3 (39)
where )
n* A?|g[3|[Vuz|
(t) = 22/|\ 2 + Algl2|uz|2 € L'(0,T). (40)
Thus

d
E'ul — ul3 < 2c(t)|uy — uzl3

and the uniqueness follows by the Gronwall inequality. Tusipletes the proof of the theoremill

Remark 1 In what follows we will assume that we are under the assumptid Theorem 1. By a solution
to (6) we will then mean the weak solution to (27) defined faerg". Note thatf = f(z) implies thatf
belongs taL.2(0, T, L?(2)) for everyT so that Theorem 1 applies for evefy B

3. Stationary solutions
A stationary solution to (6) — recall (4), (5) —is a solution t

{—A(ﬁ(u))u +ao({(uw))u = finQ, (41)

u=00nIp, 0y,,.,u=00nTy,
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where
l(u) = /Qg(:c)u(a:) dzx. (42)
Introducing the operatod defined by
Ao = A(Q)v —ao(Qv = > O (4i(¢),v) — ao(Q)o, (43)
1,j=1

(41) can be written as

—A(¢ =finQ,
(£(u))u = f (44)
u=00nTp, 9y, u=00nTy.
We will deal with the weak formulation of (44) —i.e.
uev,
- (45)

Z a;ij((u)) (O, u, 0z,v) + ag(f(w))(u,v) = (f,v) Yvel.

ij=1

(Recall thaf(-, -) is the usual scalar product it¥ (£2). To simplify our exposition, in all this section, we will
suppose
Tp|#0 or [I'pl=0 and ag(¢) >0 V(eR. (46)

([T p| denotes the superficial measurd gf).
Under the assumption (46), by the Lax—Milgram theorem, fgr@< R there exists a unique

Y= (47)
solution to
pelV,
i 48
3 05 (C) e Do) + a0(O)p,0) = (fr0) Vo eV, (49)
ij=1

Then we have
Theorem 2 Under the assumptior(d)—(3), (8), (46) the mapping
u— L(u) (49)

is a one-to-one mapping from the set of solution§4) onto the set of the solutions of the equatiofRin

p="Lpaw) = /QWA(#) dx. (50)
PROOF Suppose that is solution of (45) — then by (48) we have

U= PA(): (51)
It follows that
l(u) = L(pacew))

i.e./(u) is a solution of (50). This shows thatnaps the solutions of (45) into the set of solutions of (50).
Consider now a solution to (50). Set

U = (p_A(M). (52)
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Applying ¢ to both sides of the equality we get

L(u) = Lpap) = p (53)
and by (52)
U= O A®(w)) (54)

i.e.u is solution to (45). This shows that the méajs onto. Clearly now, ifu1, us are solutions to (45) with
0(u1) = £(uz) thenu; = us. This completes the proof of the theorenll

Remark 2 To solve the stationary problem (45) reduces to solve antexuian R. Such a phenomenon
for nonlocal problems was already observed in [9]l

Using Theorem 2 we can then solve the stationary problem #8)have
Theorem 3 Suppose
Tp|#0 or |I'p|=0 and ay>A>0 (55)

for some positive constant that without loss of generality we can take as before. Thensthtionary
problem(45) admits at least one solution.

PROOF  Consider the bilinear form(u, v) defined by

n

a¢ (u’ v) = a(u7 U) = Z Qij (<)(8I1u7 awjv) +ag (C) (u7 U)' (56)

i,5=1
We claim that for some constant- independent of— it holds that
Allullf 5 < a(u,u) YueV. (57)

Indeed we have by (2)
a(u,w) > A||Vul[; + ao(O)lul3.
If [Ip| = 0 the result is clear with = 1. If [['p| # 0 it follows from the fact that| V||, and||v] - are

two equivalent norms oir.
Let us now considep the solution to (48). Taking = ¢ in (48) it follows from (57) that it holds that

Aellellt e < (f,9) < Ifl2lel2

and thus

| f]2
< ==,
1257 (58)

el

Let(, ¢’ € R. We denote byp, ¢’ the solutions to (48) corresponding¢p¢’ respectively. We have for
veV

n

D @ (0)01.0.92,0) + a0lC) (. v)

n

= Z Qg5 (C/)(8I1 (pla azjv) + aO(C/)(gO, 1))

ij=1
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and thus

n

Z Qij (C)(aﬂh (90 - 90/)7 amjv) + aO(C)(SD - (pla v)

i,j=1

59
= .il{aij(C) = a5(Q)}(0z,¢", 02,v) + {ao(¢’) — ao(O)} (¥, v). >
©,J=
Takingv = ¢ — ¢’ we deduce easily that it holds that — see (57)
sl = 12 = { 3 0(€) = 0 +10(6) = a0 e =
©,j=
and thus, using (58), we get for some constant

o —¢'ll12 < { i |ai;(¢") = ai; (¢)] +|ao(¢’) — G0(<)|}%- (60)

5,5=1

By Theorem 1, to have a solution to (45) it is enough to show (@) has a solution. From (60) it is clear
that the mapping

¢ pa) (61)
is continuous fronR into H!(£2) and thus fronR into L?(Q2). Thus the mapping

p = /Q 9P A(p) dx (62)

is continuous. Moreover, by (58),4(,,) is bounded independently pfso that it holds that

lim p— / 9P Ay dr = F00 (63)
Q

pu—Foco

and there is — by the intermediate value theorem — a solui@b@) and thus to (45). This completes the
proof of the theorem. B

As we mentioned above the solution to (45) might fail to bequei This was already observed in [7].
To see it consider for instance the case of example 1. Letrggdncep the solution to

—Ap = in Q,
{ A f (64)
=0 onI.
Then, we have clearly in this case .
¥
=7, 65
DA ) (65)
and the equation (50) becomes
¢ ((p)
=/ = alp)=—"". 66
=1 a(u)) () == (66)

Then the set of solutions to (50) is the intersection of theewdefined by: and a branch of hyperbola (if
£(p) # 0). Several cases can occur that are described in the pidiales.

The same phenomenon can occur in the case of the examples32 &fmivever it is more difficult to
show it since the equation (50) is, in these cases, not sdesiag(66). We refer the reader to [2], [3] for
details, see also below after (108).
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Fig. 1 The cas€~) > 0, a single solution Fig. 2 The cage) < 0, two solutions

7

Fig. 3 The case of a continuum of solutions

4. Asymptotic behaviour

4.1. Alinearized stability result

We give here a local stability result — however our assumigtare rather weak. For a matix= (a;;) we
denote by A| the euclidean norm defined as

n 1/2
|A] = { > afj} . (67)

3,7=1
If A= (a;;) wherea;; areC*-functions we denote by’ the matrix of the derivatives of thg;'s —i.e.

A = (a],). (68)

ij

Theorem 4 Suppose that;;, ag are C''-functions satisfying1)~(3). Suppose in addition th€65) holds.
Let u be the weak solution t6) and letu., be a stationary point that is to say a solution @5). If
too = (uso) assume that

A" (hoo)| + lag (1oo)| < A%¢?/|£12lgl2 (69)

wherec is the constant appearing itb7), (58) thenu, is locally exponentially stable in the sense that
there exist positive constartss such that

[up — usol2 < € (70)
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implies
[u(t) — toolz < €% ug — Usol2 V1t > 0.

PROOF From (24), (45) we derive for everyc V — see (56)

dt (U ’U) + Ap(u) (u 1)) - af(ux)(uoov U)
This can be written as

d

— (U = U, V) + gy (U — Uoo, V) = Ap(u) (Uoo, V) = Gy (Uoo,v) Vv EV.

dt(

We set
h=u— Us.

Takingv = hin (73) we get

|h|2 + (l[ u) h h Z {a/Z] uOO — Q5 (f(u))}(awwu()o’ 6wjh)

1,j=1

+ {a0(€(uco)) — ao(€(w)) }(too, ).

2dt

Noting that
too) = frooy (1) = Lo +h) = pioo + £(h)

it comes by the mean value theorem and (57)

n

SRl + Al < - > aly (oo + 055£(1)) (D, uoeBs, h)E(R)

ij=1

— af(poo + 00(h)) (uso, h)E(h)

&|g‘

1
2

for some numberg;;, 6 € (0,1). It follows then easily that it holds that

§a|h|2 + Ac||All 2

< {IA (oo + 0£(R))| + |ag (poo + 0€(R)) [ }Hgl2llucoll1 21217

(71)

(72)

(73)

(74)

(75)

(76)

(77)

where A’ (uo + 04(h)) denotes the matrika;; (1100 + 0i€(h))). Sinceu is a specialp, from (58) we

derive finally

1d.
§§|h|2

| fl2]g]2
AC

n {Ac A (o + 0L+ laly(p10e + OE(R) ]} }|h|%,2 <0,

We can select so that
/ / |f|2|g|2
|hla <& = Ae— {|A (oo + 04(R))| + |a' (poo + 96(h))|}7)\c >3 >0,

(see (69)). Then for
|h(0)|2 = |U0 - Uoo|2 <e
we see that
h hls <
2dt| 5+ dlhl3 <0

(78)

(79)
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for anyt — (|h|2 "\, and remains always less than Thus

d
Szt <o

and the result follows. This completes the proof of the teenor B

Remark 3 Somehow Theorem 4 is a perturbation result from the constafficient case. B

4.2. Some global asymptotic behaviour

We will need the following lemma.
Lemmal Letuy € L?() be a sequence such that
uf —ug in L*(Q) (80)

whenn — +oc0. Letu”, u be the solutions t¢24) corresponding to the initial datag, u respectively.
Then it holds that
u"(t) —u(t) Yt>0 in L*Q). (81)

(™ (t) = u" (1), u(t) = ul:,1))-

PROOFE The above result is a simple generalization of a resultn\/& give the proof for the reader’s
convenience.

By (80) it is clear that:§} is bounded in.%(£2) independently of.. It follows then from (30), (33), (34)
that for some constauidt independent of: it holds that

[u"|L20,15v), U™ | Loo (0,15 22(02)) s [uf |2 0,150y < C. (82)
Thus, one can extract a subsequence froathat will still labeln — such that when — +o0o
u™ —u™ in L*0,T;V), u™ —u™ in L20,T; L3(Q)),

n

i 2 . 2 (83)
u = u™ in L*(0,T,L*(Q))*weak, uy —u® in L*(0,T;V").

(We wused the compactness of the canonical embedding frdim(0,7;V,V’) into
L2(0,T; L?(Q)) — see [12], [13], [4]). By definition™ satisfies

T T
—/ (u”, v)¢’ dt+/ {aij (L(u" () (02, u™, Oz, v) + ao(£(u” () (u", v) }p dt
0 0

T (84)
=/ (f,v)pdt Yo eD(0,T), YveV.
0
We made above the summation convention. Clearly from (8 ave
(" (1) — (=(B) in L0, T). (85)

Up to a subsequence we can assume that this convergencddrodds.t. By the Lebesgue convergence
theorem we have then for every

{aij(é(un(t)))‘pawﬂ = ai(U(u>(1)))0s, v, (86)
Bptlao(L(u™ () v —  ag(l(u>(t)))ev,
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in L2(Q x (0,T)) = L?(0,T; L*(Q2)). Passing to the limit in (84) we obtain then

d o0 o0 o0 [e ] o0
= (@775 0) + @i (E(u™ (1)) (02,1, Oz, 0) + a0 (E(u™ (1)) (w™, v) (87)
=(f,v) YveV, in D(0,T).
Moreover, for every € V we have
t
(u"(t),v) = (uf,v) = / (uy,v)dt a.e.t (88)
0
(see [5]). Up to a subsequence we can assume that
u(t) — u™(t) in L*Q), ae.t.
Thus passing to the limit in (88) we have foe V'
t
(W(0),0) = (0,0) = [ (o) de = (@X(0).0) - (0 (0),0). (89)
0

Thus,u*(0) = up and by uniqueness of a solution to (24) it follows thét = «. By uniqueness of the
possible limit we obtain that the whole sequenéesatisfies (83). Thus in particular we have

u"” —u in L>®(0,T;L*(Q)) *weak (90)
This implies that it holds
(W™ (t),v) — (u(t),v) in L*(0,T) *weak (91)

We have also for eversf > t!, ¢, € [0,T)

(W (£2),0) — (u"(t1),v) = / fun, v dt < / ey foly

< (t2 — t) 2olv [ul 20,0 < Clta — t1) Y2

(92)

(] - |v- denotes the strong dual norm1iff). It follows that the sequence of functi¢n”(¢), v) is equicon-
tinuous and thus relatively compactd0, T'] the space of continuous functions fn7’]. By uniqueness
of the possible limit it follows that for every € V'

(u"(t),v) = (u(t),v) in C([0,T)). (93)

SinceV is dense in2(Q) it follows easily that (93) holds for every € L?(2). This completes the proof
of the Lemma. W

There are many asymptotic behaviour results available[Ztf[3], [4], [8], [10]). We are going to
restrict ourselves to two of them. In these simple cases,awill see, the situation is far from being
complete.

Thus, consider the example 2 of Sectianviith for simplicity I'p, = I'. Then the stationary problem
(41) becomes

(94)

—a(l(u))Au+u= fin g,
u=0onTI"

In its weak form it can be written
u € Hy(Q),

95
a(ﬁ(u))/QVquda:—i—/quda::/vada: Vo € Hy (Q). (93)
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Ona we will assume — see (2):
acontinuous, 0 < A<a(¢) <A V(eR (96)

Fora > 0 we introducep,, the solution to

SDU« € HOl (Q)a
1 (97)
a/ VgoaVvd:v—i—/ pavdr = / fvdz Yove Hy(Q).
Q Q Q
it is clear — see (48) — that we have
PAQ) = PalQ) (98)
and the equation (50) becomes
p= /Q 9Pa(p) d. (99)

We know already by Theorem 3 that a solution to (99) and thBy @@es exist. In the spirit of what we
have shown in Example 1 we are going to show that severalisofuimight also exist in the case of (95).
To see that let us set far> 0

K(@) = [ gpndo = tlon) (100)
Then we have:
Lemma 2 Suppose thaf satisfies
feHY(Q), >0, Af<0inQ, Af#0inQ or f#0onT, (101)
then the mapping — ¢, is decreasing —i.e.
a1 > a2 = Qo < Pay- (102)

PROOF See [2], Theorem 3. In the above lemiyg < 0 is meant for instance in the sense of distribu-
tions. The assumptions (101) hold for instanceffot cst. W

Then, we prove:

Lemma 3 It holds that

) is continuous or0, +00) (103)
hm K(a / fgdz, aEIfm K(a) = 0. (104)
Moreover if f satisfieg101), g is such that
g=>0, g#0, (105)
then it holds that
K is decreasing o0, +00). (106)

PROOF The continuity ofK is easy to establish — cf. the proof of Theorem 3. One can &isw s see
[2] - that
lim g = f, 1ix+n 0o =0 in L*Q). (107)

(104) follows then. (106) follows immediately from (102),05). B
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Remark 4 Itis not possible to relax completely the assumption (16 Djfdtain the monotonicity ok, i.e.
f > 0is notenough —see [2].1

In what follows we will assume that (101), (105) hold in suclway that K is decreasing. Then,
equation (99) can also be written

a(p) = K~ (p). (108)

K ~!is a function independent of the functian Thus, it is clear that choosingcan produce each of the
situations that we encountered in the case of Example 1. \Weestrict ourselves to the two cases of the
figure below.

~K™!

_ K1

H1 o M2 M1 M2
/ fgdx fgdx
Q Q

Fig. 4 A case of several equilibria Fig. 5 A case of a continwafraquilibria

In particular we will suppose
a(ps) = K~ (w) i=1,2, (109)
a(pe) < a(p) < a(pa) Vp € [, pel. (110)
We will denote byu the weak solution of
u —a(l(u(t)Au+u=f in QxR
u(z,t)=0 on T xR*, (111)
u(-,0) =wuo in Q,

and byu;, i = 1, 2 the stationary points; = ¢,,,) solution to

u; € H& (Q),
. (112)
a(l(u;)) [ Vu;Vudx —|—/ uvde = / fvodx Yve Hy().
Q Q Q
Then we have:
Lemma 4 Suppose thal01)holds and thaff > 0in 2. Then it holds that
O<ur <us in Q, (113)
Vu;Vodr >0 Yve H}(Q), v>0, i=1,2. (114)

Q
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PROOF  We know that
Ui = Pa(p;)- (115)
Then, the second inequality of (113) follows from (102). far(®7) we have

a/ V(pa —f)Vvd:c—i—/((pa — fluvdx = —a/ VfVudr Yove Hi(Q).
Q Q

Q

Takingv = (¢, — f)T, by (101) we get

a/ IV(pa — f)T1Pdz + / (o — /)PP da = —a/ ViVie—f)Tdz<0
Q Q Q
and thus
(‘Pa - f)Jr = 0.
Going back to (97) we have

a/ chaVvdac:—/(cpa—f)vdx
Q Q

(116)
:/(%_f)—udxzo Vo0, ve Hy(Q).
Q

Taking into account (115) this proves (114). Taking= ¢, in (116) we see easily that, > 0 then the
first inequality of (113) follows from (102). This completdee proof of the lemma. B

From now on we will assume
f=9g>0 in Q 117)

and we will choose, the initial value to (111) such that
ul S Uo S usg. (118)
Then, let us first establish

Lemma5 Under the assumptior(d401) (109) (110) (117) (118)and ifu is the weak solution tfl11)it
holds that

up <u(t) <ug Vit (119)

PROOFE The proofis identical to the one in [7]. We reproduce it toe teader convenience. DenoteBy
the set

E={t|l(u(s)) € [p,pu2] Vs <t} (120)
By (118), E contains 0. (Recall that > 0, ¢/(u;) = p;). Set

t*=sup{t|te E}. (121)
By continuity of the mapping — w(t) in L?(Q) (see (24))t — £(u(t)) is continuous and
O(u(t)) € [pa, p2] (122)

so thatt* € E.
We claim next that
up <ut) <us Vtel[0,t']. (123)
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Let us prove the left hand side inequality. Using the weaknidation of (111) and (112) we have in
D'(0,t%)

d
—(u—u1,v) +all(u(t))) | V(u—u)Vodz+ (u—ui,v)
a /Q 1 1 (124)

= {a(m) —a(l(u®))} [ VuyVodr Yove Hy ().
Q
Due to (110), (122), (114) we have

a(pr) —a(l(u(t))) >0, VuVodr >0 Yo e Hi(Q), v>0.
Q

Takingv = —(u — u1)~ we derive easily

1d

_ _ d _
Sl =) Bl —un) B0 = Z{eMw—u) B} <o

Since(u —u1)~(0) = (up —uy1)~ =0, itfollows that(u — u1)~(t) = 0—i.e.u(t) > uy ¥Vt € [0,t*]. This
proves the left hand side inequality of (123). The right haial# inequality can be derived the same way.
This proves (123). Next, by definition of, if * < +o0co we have
L(u(t™)) =L(uy) or L(usg).
Sincey is strictly positive by (123) this implies
u(t*) =u; or ws

and by the uniqueness of the solution to (111) this equadityains valid for larger time which contradicts
the definition oft*. We thus have* = +oco and (123) gives (119). This completes the proof of the
lemma. H

Remark 5 Here and subsequently the strict positivity (117) coulddlexed — see [8]. B

Next assuming
a(p) > K~ H(p) Y p € [u, pal, (125)

we have

Lemma6 |u(t)|3 is a Lyapunov function that is to say decreases with time. eMwecisely ifa =
a(l(u(t))) we have

| =

Sl < ~af V(= g3+ u— gul3). (126)

sy

t

PROOF We denote by-, -) the duality bracket betweeli ~*(Q2) and H}(Q2). In what followsa denotes
a(l(u(t))). By (24) we have

(ug, vy +a | VuVodzr + (u,v) = (f,v) VUEH&(Q).
Q

Takingv = ¢, it comes

(ut, pa) + OL/Q VuVea dz + (4, ¢a) = (f,0a) = (9, 0a) = K(a(l(u(t)))).
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From the definition ofp, and sincef = g we derive

(w00} + (f,u) = K (a(t(u(t))))
L. (urpa) = K(a(f(u(t))) — (u(t). (127)

Sincel(u(t)) € [u1, 12), by (125) we obtain
(ut, pa) < 0. (128)

(Note that{u;, p,) = 0 when the equality holds in (125)). Next, combining (111) éhtl?) we get
(ug,v) + a/ V(u—@a)Vode + (u— @a,v) =0 Yov e Hy(Q).
Q

Takingv = u — ¢4, by (128) we obtain

(e, ) < —{/Q IV~ pu) P+ fu — m%} (129)

which is exactly (126). This completes the proof of the lemm#

We consider now the case of Figure 4. In particular we asshatg109), (110) hold with in addition —
compare to (125)

a(p) > K~ (p) Ve (p,p2). (130)
Then we have:

Theorem 5 Under the above assumptions, tetbe the solution tq111) with u, satisfying(118) and
ug # ug. Then it holds that
lim w(t)=u; in L*Q). (131)

t——+oo

PrROOE From (126) we derive by integrationin

/OtaHV(u—cpa)H;—i—|u—<pa|§dt§ %|uo|§- (132)
it follows that the above integral convergegiand thus it holds that
limnf o[V (u = a)l|; + |u = @al3 = 0. (133)
It follows that we have for some sequertget,, — +oo
u(ty) — Pale(u(ty))) — 0 in Hl(Q) (134)

(Recall thata > a(u 2) > 0). Sinceu(t,) is uniformly bounded in.?(Q2) — see (119) — we can extract
fromt,, a subsequence that for simplicity we still labglsuch that for some., we have

u(ty) = us i L*(Q). (135)

The set
C={veLl*Q)|u(zr) <v(r) <uy(r)aexrc} (136)

is closed and convex ih?(2). It is also weakly closed and by lemma 5 and (135) we obtain

U < Uso Kug  IN Q. (137)
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Moreover, from (134) we get
Uso = Pa(b(um)) (138)

that is to sayt is a stationary point and by (137)
Uoo = U1 OF Usg. (139)
Since|u(t)|3 is decreasing andy # s, we can only have
Uso = UT-
Thus we have found a sequenget,, — +oo such that
u(ty) = uy in L3(Q). (140)
Next, consider another sequernitet!, — +oo such that
u(tl) = ve in L3(Q). (141)
Sinceu(t,) € C we have alsa,, € C and in particular
Voo = U1. (142)

From (134), (140) we have in fact
u(ty) — up in HYQ). (143)

Since|u(t)|3 is nonincreasing, it admits a limit when— +oo and by (143) this limit can only bg; 3.
Thus by passing to the limit in the inequality

u(th)[3 = (ulty), ur) = (u(t;,), u(t,) — u1) > 0.

we get
|u1|§ - (vooaul) = (ulaul - voo) > 0.

Sinceu; > 0, vo, > w4 this clearly imposes
Voo = U1 (144)
Thus, every sequence converging towargswe have a$ — +oo,
u(t) = u; in L*(Q). (145)
The strong convergence follows from the fact that
[ut)]2 = |uao

This completes the proof of the theoremll

Remark 6 Inthe case where (125) holds we have shown roughly spedkatgt is stable and:, unsta-
ble. H

We consider now the case of a continuum of equilibria — i.e dhse of Figure 5. In particular we
assume now that

a(p) = K~ () V€ (p1, pa). (146)
Then we have:
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Theorem 6 Suppose that, € C. Then, under the above assumptions, and in the case of ttre Bgu
there exists a stationary point,, € C solution to(97) with a = a(£(u«)) such that

u(t) — us i LA(Q). (147)
(u is the solution td111)corresponding to the initial value, — recall thatC is defined in(136).
PROOE We use a dynamical system technique. First we set fougny C
u(t) = S(t)uo. (148)
Then we have

Lemma7 S(t)is a dynamical system afi equipped with the weak topology b (2).

PROOF OF THELEMMA. We refer to [1], [8], [4] for the definition of a dynamical ggsn. The only
difficult property to establish is to show that

S(t): C — C iscontinuous.
This follows from the fact that if
ud —=wug in L*Q) then S(t)uy — S(t)ug in L*(Q).
SeelLemma4.1. &
We then defined the-limit set of ug as
w(ug) = {veo € C | Ity, t, — +o00 such thatu(t,,) = v }- (149)

Proceding exactly as above (138) one can show that therts exigquilibriumu., € C and a sequenas,
t, — —+oo such that
u(ty) — us in HY(RQ). (150)

It follows also due to Lemma 6 that
[u(t)]2 = |ucol2- (151)

We would like to show that(¢) converges toward. in L?(2). For that we will need the following lemma:

Lemma 8 Letu be the solutiont@111) Then under the assumptions of Theorem 6 there exists aarnst
K independent of > t; such that
||u(t)||172 <K Vt>t. (152)

PROOF OF THELEMMA. Sinceu(t) € C V¢ we have of course for some constdf independent of
lu(t)]s < Ko Yt > 0. (153)
Next, due to the smoothing effect for parabolic problemsimmet; > 0, it holds that
/Q |Vu(z, t1))? de < +oo. (154)
Then we consider (111) far> ¢;. We have

ug —a(l(u(t))Au+u= finQ x RT.

442



Let us set .
o) = [ atttu)as
v(z,o(t)) = u(z,t).

Smoothing eventually and f we can assume everything smooth. Thesatisfies

f—v .
vp—Av=—"———inQ xR, (155)
' a(f(v(t)))
Squaring both sides of the equality and integrating é¥&re get easily
|ve]3 — 2(Av,vy) + |Av]3 < K, (156)
(K1 is a constant independentioénd of the smoothing).
Moreover L d
(—Av,v) == [ V- (Vow)dx +/ VoV, = ——“VUHQ. (157)
Q Q 2dt 2

(This is due to our boundary conditions). From (156) we derivecall (153) —

d 2
—[[Vll; + |Avf + vl < K> (158)
whereK, is independent of. Since onf/?((2) the norm

{|Avl3 + o3}

is equivalent to the usual one — for some constanholds that

%HWH;HHWHE <K, (159)
%{HVvH;eM} < e Ks.
Integrating between(¢,) ando(t) — it comes
Voo @I ~ [Tt < T K,

— VOl < [IVu)I + 22 vis (160)
Combined with (153) this completes the proof of the lemmill
END OF THE PROOF OFTHEOREM 6. We claim that

voolz = Juoolz Voo € wluo): (161)
Indeed, letyo, € w(ug). By definition ofw(ug) there exists a sequentg ¢/, — oo such that
u(t]) = Voo.

Due to Lemma 8 — up to a subsequence — we have by the compacttigssanonical imbedding df *(£2)

into L2(Q)
u(t!

n

) = us in LA(Q)
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and thus
|u(ty)]2 = [vool2-
By (151) this implies (161). Due to well known results regagddynamical systems we have (see [1], [4])
S(t)w(uo) = w(uo). (162)

Letveo € w(ug). Due to (161), (127)—(129) we have foft) = S(t)voo,

(ut, a) =0
and
0= 555118t = ~{ b)) [ 1900~ astaon)P + 14 = putaco  de .
Thus for anyt, u(t) is a stationary point. But there is only a stationary poina@fiven norm¢ — ¢, is

decreasing). We thus have
u(t) = S(t)voo = oo

and thusv(ug) = {uw }. This means that when— +oo
u(t) = Uoo-

The strong convergence follows from (151). This completesproof of the theorem.

Remark 7 We do not know how is selected depending on the initial data. It would be of sewery
interesting to remove the assumptipa=-¢g. N
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