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Relative rearrangement and interpolation inequalities

J. M. Rakotoson

Abstract. We prove here that the PoinéaSobolev pointwise inequalities for the relative rearrangement
can be considered as the root of a great number of inequalities in various sets not necessarily vector spaces.
In particular, new interpolation inequalities can be derived.

Reordenamiento relativo y desigualdades de interpolaci on

Resumen. Mostramos que las desigualdades puntuales de PéiSmtrolev para el reordenamiento

relativo pueden ser consideradas como el origen de bastantes desigualdades sobre varios conjuntos que
gue no necesitan ser espacios vectoriales. En concreto, es posible obtener nuevas desigualdades de inter-
polacbn.

1. Introduction

The Poincag-Sobolev inequalities for the relative rearrangement called PSR property are revealed to be
a common root for a large class of Sobolev embeddings of normed spaces (see [17][15] [16]). These
inequalities can be summarized in the following definition for an opefsdtR ™Y

A subsetl of U WP(Q) satisfies thdSR propertyf

1<p<+oo

1. Yu € V,u, € W), Q. = (0, measure(2))

loc

2. There is a measurable m&p: 2, — [0, +oo[ such that :

—ul (s) < K(s)|Vul,, (s), fora.es, Yu e V.

*U

Here,u, is the monotone decreasing rearrangement,gV |, is the relative rearrangement of the
gradient|Vu| with respect ta.. The mapK can depend ofe, V.
It often happens that, is replaced by the average quantity

Usr (8) = 1/0S uy (t)dt

S
(see for instance the Lorentz spaces). Thus, we will show the follomémgresult If V' satisfies the (PSR)
property then

—ul,,(s) < 1ess sup [0K(0)]- (|Vul,, ), (s), fora.e.s.

k%
S 0<o<s o
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J. M. Rakotoson

Since (|Vul,, ), (s) < |Vul,, (s), the above inequality can be replaced by the following stronger in-
equality _

S 1
with K (s) = —ess sup [0K(0)].
S 0<o<s

1
sw—1

Naﬁ .
We have shown that jf is a norm on the set of all measurable functiongkrthen the set’!(Q, p) =
{u eV:p(|Vul,,) < +oo} is included inL>(Q) provided that the constapt(K) is finite, we call

p'(K) the index of inclusion (see [17]). Herg) denotes the associate normmofsee definition below).
More results can be found in the previous papers. As for the applications, we have used different norms, as
the Birnbaum-Orlicz norms that can be found in [10], or the norm insthall Lebesgue spacésee [8],
[9]).

The definition of a norm, we use is the one in [4], but since we shall use some maps which are not
norms, we recall for convenience the :

For instance, i/ = W, 7 (), thenk (s) = K(s) =

Definition 1 A mapp : L°(Q2,) — R, is said to be
1. definiteif p(f) =0« f =0,
2. homogeneous ifYA € R, p(Af) = |A| p(f),
3. monotone if 0 < f < g = p(f) < p(g).

We always assume thatf) = p(|f|) andp is non trivial in the sense that there f§ € L°(2,) : 0 <
p(fo) < +o0. Here,LY(€2,) denotes the set of all measurable functiongxn

If p satisfies 1,2,3 and the triangular inequality, then we say thiata norm. We shall use the associate
norm ofp defined

p'(f) = sup {/Q |fgl ()dt, p(g) < 1}-

We also have exhibited examples of sitsatisfying the PSR property and to complete those previous
results, we shall give a new proof of the following theorem shown in [14]:

If Qisaconnected set, € W, () thenu, € W21 (1,).

loc loc

Nevertheless, the (PSR) is true even if the operfsit not connected. We shall provide an example of
such sef in the first paragraph. Moreover, it is possible to derive a (PSR) property for functions vanishing
partly on the boundary that is is connected Lipschitz open bounded Bgtc 09 with Hx_1(Tg) > 0

then the set

Lo+

wht(Q) = {v e WhH(Q), vov =00n Ty, v = 0}

L
satisfies the (PSR) property witki(s) = SNT, 5 € Q.
Noy
Thus, theC,-rearrangement (see [12]) associated to a funati@nWlli (Q) satisfies the PoB-S£&go
type pointwise inequalities :

/\vc l, ( /<|Vu| /|Vu| do Vs,

These results are detailed in [17] and the arguments follows the one given in [15].
To complete the Sobolev inclusions, we will show the following general Pa@rgabolev inequality
for bounded domaif:
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Relative rearrangement and interpolation inequalities

If po is @ convenient map oh(£2,.) (set of all measurable functions 6n), then there is an numbeg (b)
such that ifpg (1) po (b) is finite then

Vu e V(. p) po (U* — Uy () ) < po(d)p(|Vul,, )-

In particular, V1(Q, p) € L(2,po) = {v : measurable pg(v.) < +oo} and if p is a Fatou norm
invariant under rearrangement then

po(ns) < po(®)p(|Vul,) + fﬁpou) Jul,

forallu e Wi(Q,p) = {v eV, p(|Vvl,) < +oo}. We shall callpy(b) anindex numbeas in [17].
To illustrate the above result, we will estimate the index number for Lorentz norms.

In the last paragraph, we show that one can obtain general interpolations inequalities for normed spaces
(or not) leading to some new interpolations in our knowledge, with explicit formulas on the interpolation

constants. For instance, we haver: € W, ™ (), N’ =

1 a
Jul, < ( i) |Ival,,
aNagy

N < |Vuly andp — N’ might be less thai, thus the quantityu|,, ., is not a norm but

<
N1 p < 400

a 1 !
—a , B
N ul, N+, witha = e

Note that‘ |Vul,,
is finite. We thus recover the following interpolation frequently usefl ia R?,

1
1\* PR §
o< (3) 1vuld ulf . vee o),

If we replaceH{ () by Wi (Q) = {v e Wh2(Q) : yov =0 on Fo} the the inequality reads:

1) 3,3 1,2
ul, < o [Vl |ul3, Yue W (Q).

o4 can be computed for sectorial sets (see [12]).

2. Notations and preliminary results

Let Q be an open set ®&”". For a measurable sét C (2, we shall denote byE| its Lebesgue measure.
We setQ2,. =0, || [. The distribution of a measurable function

u:Q—I(u)= <essﬂinf (u), ess sup (u)) CR,
Q

is the mapm,, : I(u) — Ry defined bym,, (t) = |u > t|, t € I(u). We always assume that> 0 if Q is
unbounded. The functioa, called the monotone decreasing rearrangementi®the generalized inverse
of m,. To introduce the definition of the relative rearrangement of a funatienZ! (2) with respect to a
functionu € L(€), we shall define of,:

s—|u>u.(s)|

w(s) = /v(m)dm + /(v|{u:u*(s)}>*(a)do
0

uU>uy ()
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wherev|{u=u )} is the restriction ob to the set{u = u.(s)}. This is a general definition of the relative
rearrangement.

Property 1 Let{) be a measurable subsetRf".
(a) If Q is bounded them € W1P(Q,) :

.= Us dw . : . .
(UH\# o (Tw in LP(Q,)-weak ifl < p < +oo and in L>(£2,)-weak-star ifp = +oo
— S

(b) If Q is unbounded then one has :
i) we W P([0, +00),

loc
dw
i) — € LP(0
D gy PO,
ii) W =, d—win LP(0, +00)-weak ifl < p < +o0
— S
(weak-star forp = +o00) and in L1 (0, M)-weak,v M finite.

L d
Here,v € LP(Q), u > 0 being inL!(Q). In any case\d—w
S

< .
Lo () |U|LP(Q)

For the proof of property 1, one can consult [13], [5], [18].
Definition 2 J
The function% is called the relative rearrangement ofwith respect ta; and is denoted by.,,,.

This notion was introduced first by Mossino and Temam [13], similar notion was used by Alvino and
Trombetti for bounded domains and the Naples school (see [1], [2], [6], [7] and references therein). The
part (b) of the above property comes from [5].

3. An alternative proof for the local regularity of the monotone
rearrangement and more results on the PSR property

We have shown the following local regularity in [14] :

Theorem 1 If  is an open connected set and= W,>(Q) thenu, € W1 ().

Remark 1 In [14], it was assumed th#& can be decomposed &s = U Qj, Q; C Qj41, Q; being

§=0
connected open bounded Lipschitz set. But it can be shown that any open connected set can be decomposed
as above (see [11]).1

Here, we shall present a slightly different proof using a dyadic decompositian of
PROOF OF THEOREML 1% step. u, € C(f.).
Lets € 2. Sinceu. is monotone and continuous from the right, then the following quantities are finite

B R I L)

If u,. was not continuous at the pointhenu, (s) < u.(s_) and
lus(s) < u < ux(s—)] = 0. But|u > u.(s_)| > 0 and|u < u.(s)] > 0. So as in [3], let us consider the
function

v(x) = max (u.(s); min (u(x), u(s_))) = {u*(s_) if ulw) i Z*(S_)
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Relative rearrangement and interpolation inequalities

Sinceu € WLH(Q) thenv € W51 (Q) andVu = 0 a.e inQ. So, on any ball3 contained inQ, v is

loc

constant. Sinc€ is an open connected set,this implies thats_ ) = u..(s) which is a contradiction.
2"dstep. u, maps null set ofa, b], 0 < a < b < |Q] into a null set.
We argue as in [14]. LeE C [a,b] with |E| = 0. Since the sef; = {3 € E : u(s) exists and
is finite } is of a measure zero, we know (see [21], [20]) that(E;)| = 0. It remains to show that
lu«(E\Eg)| = 0. Let D,, be the set of alt € R such thaju = t| > 0 thusD,, is at most countable, and
let us setl (u) = (essg%nf u, ess sup u> We have to show thah (u) = {t € I(u):ml(t) < O} has the

Q
same measure d$u) andu.(E\E4) — D, is contained in/ (u) — I (u). To show the first statement, we
decomposé into an union of countable cubég););>o with disjoint interior i.eQ; N Q= D if k # j.
We setu; = uq, restriction toQ;, m; = m,,;, andl; = (essQinf u, essQinf u) Then,I(u) = UIj and

j

J J

loc

“+o0
nmg)ZE:m%@aemR.&n%*emﬂ%Qﬁ)@aqupm)mm&eag:mﬂﬂ<o}h%Um
=0

same measure ds soHt € I(u):ml(t) < OH = |I(u)|. If t € u.(E\E4) — D, by the chain rule, we
necessarily havee I(u) — {t € I(u):ml(t) < 0}:
[us (B)| < |ue(Eq)| + |us (E\Eq)| =0. W

But to have the local regularity af, and the (PSR) property, the domain do not need to be connected.
Here is an example of such a 3ét

Theorem 2 LetQ = Q; UQ, with fori = 1,2, ©2; a bounded connected open set with Lipschitz boundary,
QN =0
Let

dt
WHEL ) = {ve Wii@)s [ 4 [9el, (0F < +oc)
V= {v e W9, I'|v.1)sessinf o, v =ess sup o, v OF ess sup o, v = ess sup o, v}.

ThenV satisfies the (PSR) property.
PROOF Letv €V, v; =v|q, i = 1,2. Assume thaéssﬂinf v = ess sup v (the proof is the same for the

1 Qs

other case). We have farec ,

( V14 (5) if 0<s <[,
Vgl S) = .
vax(s — Q1)) If |Qq] <5< Q).

Sincev; € WH(Q, ||y ) thusvi. € WHH(Qu), @ = 1,2 and with the conditiony..(|Q1]) = v2.(0),
we deduce that, € W11(Q,). According to the existence of PSR property given in [17], there are two
constants); > 0

K;(s) = Q; max (s, |Q;] — s)%f1 ,1=1,2, 5 € Qs

and
—v;,(s) € Ki(s) Vil (5), 5 € Q.
Since
|Volde = |[Vor|de + |Vugldx | s € Q,,
V>4 (8) v1 >0 (8) V2 >4 (8)
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wethenhaveit < [Q[,, [Voul,, (s) = [Vuil,,, (s)andif|Q] < s <[Q], [V
Combining the above relation, we then have

(s) = [Vval,,, (s= []).

*U * Vo (

—v

L(s) < [Ka(s) + Kals — ]| V0], (s), s € .

with
~ K for0 < s < |Qq,
Kl(S): 1(5) or -S ‘ 1 |
0 otherwise.

S 0 otherwise. &

1 S
Let us now seti,.(s) = —/ u(t)dt, s € Q., u: Q — R measurable.
S Jo

Theorem 3 LetV be a subset QUlgngroo WP (Q) satisfying the (PSR) property. Then foralk V/,

1
() < Sess sup [0K(0)] (Vul,., ), () aes.
S 0<o<s

. 1 ~ 1
In particular, —u/,,(s) < —ess sup [0K(0)]|Vul,, (s). We setk(s) = —ess sup [0K (0)].
S 0<o<s S 0<o<s
PROOF Letu € V. By integration by parts, we have for alle €.

1 1
7/0 b (1) = (s)) dt = ;/0 . (8)] dt.

S

SinceV satisfies the (PSR) property, one deduces, using the Hardy-Littlewood inequality

1 /° ~
e (5) = ua(5) < - / L (1) [Vul,,, (1) < sK(s)(1Vul,, ) (s).
But, p )
=gl (8) = < [t(s) —ua(s)],

thus the two last relations give the resul

4. Index of inclusion and generalized Poincar  é-Sobolev inequal-
ities for normed spaces

We assume in this paragraph tliats bounded.

Theorem 4 For s € Q,, we setl(s) = [min (s, |2> ,max (57 |2|>} and x ;) its characteristic
function. LetV be a subset of’1(Q) satisfying the (PSR) property associated to a funcfionFor a
nontrivial normp on L°(€),.) if o’ is its associate norm, we defibgs) = p'(x1(5)K), s € Q.. Then, for
all homogeneous, monotone mapon L°(£2..) satisfyingd < po(1) - po(b) < 400 we haveV (€, p) C

L(£2, po). Furthermore, for allu € V1(Q, p) :

inf po(u. — ) < po <u — . (";)) < po(B)p(1Vul..,)-

ceR
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The most usual inequalities are for those norms that are invariant under rearrangement.
Corollary 1  Under the conditions of theorem 4fis a Fatou norm invariant under rearrangement
andpo(f) < po(f = A) + Apo(1), VA € R, Vf € L(Q,), then
2
polie) < po)p(IVal.) + seppo(Wluly  Yu e WH(Sp). O
We first prove those theorems and then will give some examples of usual pamnag).

PROOF OF THEOREMA Letu be inV1 (€, p) C V. By the (PSR) property we deduce that fora# €.

U (8) — U (|§22> ’ < /Q X1(s)(0)K (o) |Vul,, (0)do < p' (x1(5)K)p(|Vul,, ).

If po is @ monotone homogeneous map, we deduce :

Po (u* — Uy <|g22|>) < po()p(IVal,,)-

9]

To eliminate the term, <2) one can observe the following inequality

2 1o oy _ 2 [
107 J (0 < (|2|) < ﬁ/0 wa (1),

", ('2)‘ < ﬁ/ﬂ\uwx. n 1)

2
PROOF OF COROLLARY1 Sincep is a Fatou norm invariant under rearrangement, we knomptﬂw|z§fu|*u ) <
p( [Vul, ) From theorem 4, we obtain by monotonicity, homogeneityp@fand thepg(u, — A) >

patus) = D), ) < (90, ) + [ (51

of relation (1). WA
Definition 3 We shall callpy(b) the index of inclusion associated ¥ (€2, p).

Thus,

po(1), which gives the result, with the help

€]

. . . 1
Sometimes, one has information on the average |Q|/ u(z)dz. One may replace. (2> by w.
Q
That is,

Theorem 5 Under the same conditions as for the theorem 4, we have V!(Q, p)

po (1 = g [ @) ) < )+ W] (19, ),

wherec,, = Max {K(J),U € [min (|u >, |Q> ,max <|u >, m)} },u = L/ u(z)dz.
2 2 € Jo

PROOF.  Introducing! (u, s) = [min (s, |u > u| ), max (s, |u > | )] andb,(s) = p' (X1, K), s € Qs
the same argument as in Theorem 4 leads to

po (e = . (Ju>al)) < pobu)p(IVul.,,)-
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Sinceu. (|u >u|) =wandp(b,) < po(b) + cup’(1)po(1), we deduce the result. |

Let us give a direct application of Theorem 4. For this, we consider an open bounded set with a Lipschitz
boundary. We recall that in that case, the Bet= W1(Q) satisfies the (PSR) property withi(s) =
Q max(s, || — s) —1, @ is a constant depending only @i and(2 (see [15], [16]). We shall denote by
LP(Q)), 1 < p < 400, 1 < g < +oo the usual Lorentz space endowed with the following norm :

1 q dt q
[/ (1171, (0] ] 1 <<+,
Q. t
sgpt% |l (1) if ¢ = o0,

with |£1.. / £

For the computation, we shall use also an equivaderntity(not always a norm), which is

NG Ifl*(t)}qcﬂé 1<g < oo,

supt% if g = ~+oc.
t

flpg =

If 1 <q<p<+oo,the mapf — |f\p , s anorm. Otherwise, it is a definite, monotone, homogeneous
map onL(2,).

We denote byV ' (Q, |-|,, , {v e LY(Q):|Vv| e LP’Q(Q)}. We then have
Theorem 6 Letl <p < N, 1< g < +o0. Then
« 1 1
WHQ, ||, ,) C LP Q) with — = = —

FurthermoreYu € W'(Q, |-|, ) one has:

e ()

. qgp—1 q N—-1
with l==""—v=—= .
T pq—l’y N qg—1

i) If ¢ # 1then

1—

e :
<2Fo([ e-yera) |wi,
1

(p,q)

p*,+oo

i) If ¢ =1then
< Q”V(NJ))‘ Vul,,

p*,+oo (p,1)
NP N P N
(v~ CN-T

—~

wherevy(N, p) =

1 1
= Ilp* 400 p(-) = |'|(P’Q)' Thenp'(-) < p|'|p/,q/, ;9 + }? =1,

1 1 . . . .
—+? = 1. Since|-|,, .y <p[ |, . itsuffices to compute the quantity (

y ). By symmetry,

140



Relative rearrangement and interpolation inequalities

]

we have to compute for < ER \(XI(S)K)*

= b(s). But

p',q’
1

(xr(9K),(0) = Q(s + o) ¥ "Ix 121 (5)

— . Q Q
for s € Q, |f0<s<‘—2|.Thuswehavef00<s<%

1
11 7
bs) = Qs o </ . (91)”9”9) :
1

1

. . y+1—v 1 _ Hoeo oo\
with v, v as in the theorem. We have— — = ——. SettingJ = @ 0—1)707"do | ,we
q p 1

then have

bo(s) <27 Js 7 ¢ |b <257 .

p*,+o0
Applying Theorem 4, we get

e ()

< |Vu\(
q)

< b
p*,+oo

p*,4+o0 ’ |vu|*u (p,q)

We get the result. B

Since’ [Vul,, we also have :

P,9)’

e ()

which leads to the following result according to Corollary 1 of Theorem 4y i 1 thenb.(s) <

Qy(N;p)s‘z%* with v(N,p) as in the theorem. The same argument as;fet 1 leads to the following
result.

s

S$20J |vu‘(p,q) )

p*,+oo

Corollary 2 We have :

<20 [Vl + 21007 ul,  Yue WH, |-

|u

p*,+oo p’q)'

Remark 2 The choice ofpy = |- p* 400 is just for computational case. In factlif< ¢ < 400, 1 <p <
N, one can show using (PSR) property the following theorem (see [1] for an alternative prdiif).

Theorem 7 If 1 <p < N, 1< g < +oothen,
W@, lp.q) GLP(Q), i

Moreover, for allv € W1(€, |l,.4), We have:

1. If yov = 0 on 0N then

*

p p* )
‘vlp*,q < — T |VU|*‘7J| < — T |V’U|p7q if1<qg<p
N Pa - Nal
and
P L 1 )
Plor g < | Vol o (p*) 7 [QP T v, if p< g < +o0
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2. If vov # 0 0n 012 then there exists, > 0 depending om, ¢, 2, N and(@ such that

Q
oo (H)‘ <o [Vl
2 ) lp*,9)

We prove only part 1 of the Theorem 7 since the second follows the same idea.
PROOF OF PART1 OF THEOREM7 Let1 < ¢ < p. By integration by parts and using the (PSR) property,
we have, foru = |v| with vou =0:

(p.a)

/tf*—lu*(t)th:p*/ £, (1) 7 ] (8) <
Q. Q.

<2 / EV [Vul,,, (bu. (8) 717 dt.
NQE [

Applying the Hblder inequality to the last integral, we get after simplification and the utilization of the
Hardy-Littlewood inequality :

1
* E *
ey < L ([ 7 Va1 ) < L
Q,

~ N
Nagy Nagy

IVl

p,q

Since the mag — |[f|, , is a Fatou norm invariant under rearrangement, one deqqm*u

<

\Vu\p,q. Since this last property is not true fpr< ¢, we replaceu, by u... Letp < ¢ < +oo. By
integration by parts and theorem 3, one has as before

/ £ (0)7dt < 2 01w (19]) "+
Q. q

+2 / (19l ) (w5
Naj Ja. o

Using Holder inequality and the Young inequality, we have

q
a * q
fuM<m>q+( p1> [1Vul.,
N N

al (a.p)

/ 7" " Lu,, (8)%dt < p* |02
Qx

From which we get the result. Notice that, we always h‘d\%uhu

< Vo .
. o (p,q) | |(P7‘1)
The proof of part 2 is similar.

The casep > N can be deduced from Theorem 4 with(-) = |-|... Applying the Corollary 1 of
Theorem 4, we have

AR 2 ;
lv], <PQ 5 |Vv|(p71)—|—@|v|1 Vo e WA ([ ],,), p = N.

Moreover, using the (PSR) property fdf:! (B(z, 7)), B(z,r) C 2, one has

_1

P

(67 N
N 1—&

OSCB(I,T)U < aN_1 ‘V,U'LP’I(B(:E,T)) - r P,
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5. General interpolations of Gagliardo-Nirenberg type

We have the following interpolation theorems:

Theorem 8 Let p be a non trivial norm onL%(€2,). LetV, c LY (Q.) satisfying the (PSR) property
associated td<. ThenYu € V}(Q,p) = {v e Vi, p(|Vulw) < +oo} and for allg €]0, oo],

1 1
PO(U*) < qap(|vu|*u) qp0|:(p, (Kui171XI(q,s)) )‘1:| .

Whenevepy is a monotone, homogeneous map fibhi(2..) into R, and(q, s) = [s, |2,]] with

1€ ifg>1,
€| = .
lu>0] if0<g<l

Corollary 3 Assume thaf2 is an open bounded set &, N > 2. If N’ < p < oo then for all

ue Wi Q)
1
alNagy

If furthermores? is connected and Lipschtiz then for allc Wﬁ;N(Q) = {'u e WH(Q), v =0on Ty
withT'y € Q, Hy-1(Tg) > 0} then

a
1
|u|p<< ) [1Vul.,
aNoy

Remark 3 Herep — N’ may be lessthan 1. B

@ l—a
v ul, N -

A
|u|11):‘}v, , with a= —.

p

a
N

PROOF OF THEOREM8 Letu € V}(Q, p). Then,
—ul (8) < K(8)|Vu|su(s) a.e.
From which we derive thats € (.,

ui(s) < g /Q V. () (™ (B 1.y (1)

Then, using andp’, one deduces

Q=

1
q

() < g7 p(|Vu|wu) (p’ (KUZ_1XI(q,s)('))) -

Sincepg is a monotone, homogeneous map then
1 1 _ 3
polae) < 5ol(Vulen) oo | (0 (50 ()]

PROOF OF THE COROLLARY3 We may assume that > 0, we choosey () = | -

» ¢N' = p. Since

1
K(s) = ——, for W(}QN(Q), s € Q,, we deduce from Theorem 8

| , »
Jul,, < (quv> )|vu|*u . (/Q ds/ 1N (t)dt) .
OéN * s

Q=
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.- . N’
By Fubini theorem and setting= —, we deduce the result.ll
p
1
ForWﬁ;fl’(Q), K(s) =% ; the result follows arguing as above.

N
Noy

Remark 4 If Q Cc R?,p =4then

Yu € Hy (),

1
1\14 L1
i< () 19ul
IV ol
lul, < o2 Vul3 [ul3

Other interpolation inequalities can also be derived.

Yu € Wi2(9Q).

Using [18], [19], we have the PSR property for weighted Poincare Sobolev sets, or for measures other
than Lebesgue measure. Thus, interpolation inequalities associated to those spaces can be obtained (see
[17). =
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