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A singular equation with positive and free boundary solutions

Juan D ávila and Marcelo Montenegro

Abstract. Let 0 < β < 1. The equation−∆u = χ{u>0}
( − u−β + λf(x, u)

)
in Ω with Dirichlet

boundary condition on∂Ω has a maximal solutionuλ ≥ 0 for everyλ > 0. Forλ less than a constant
λ∗ the solution vanishes inside the domain and forλ > λ∗ the solution is positive and stable. We obtain
optimal regularity ofuλ even in the presence of a free boundary. Ifλ ≥ λ∗ the solutions of the singular
parabolic equationut − ∆u + u−β = λf(u) are positive and globally defined while for0 < λ < λ∗

there is no positive global solution.

Soluciones positivas y con frontera libre de una ecuaci ón singular

Resumen. Para0 < β < 1 consideramos la ecuación−∆u = χ{u>0}
( − u−β + λf(x, u)

)
en

Ω con condicíon de borde tipo Dirichlet. Esta ecuación posee una solución maximaluλ ≥ 0 para todo
λ > 0. Si λ es menor que una cierta constanteλ∗, uλ se anula en el interior del dominio creando una
frontera libre, y paraλ > λ∗ esta solucíon es positiva enΩ y estable. Establecemos la regularidad de
uλ incluso en presencia de una frontera libre. Paraλ ≥ λ∗ la solucíon del problema parabólico singular
ut − ∆u + u−β = λf(u) es global y positiva mientras que si0 < λ < λ∗ no existe solucíon global
positiva.

1. Introduction

We study the elliptic problem 



−∆u = gλ(x, u) in Ω,

u ≥ 0 in Ω,

u = 0 on∂Ω,

(1)

on a smooth, bounded domainΩ ⊂ Rn with a singular nonlinearitygλ given by

gλ(x, u) = χ{u>0}
(− u−β + λf(x, u)

)
, (2)

whereχ{u>0} is the characteristic function of the set{u > 0} and by conventiongλ(x, 0) = 0. Henceforth
0 < β < 1, α = 2/(1 + β), λ > 0 is a parameter andf : Ω × R → R is measurable inx, f ≥ 0,
f 6≡ 0, and is nondecreasing, concave and sublinear in the second variableu uniformly in x, that is,
limu→∞ f(x, u)/u = 0 uniformly for x ∈ Ω. We also assume thatfu(x, ·) is continuous on(0,∞) for a.e.
x ∈ Ω.

Equation (1) arises as limit of some equations modelling catalytic and enzymatic reactions, see [1] and
[7] for an account.
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Definition 1 Let δ(x) = dist(x, ∂Ω). We say thatu ∈ H1
0 (Ω), u ≥ 0, is a solution of (1) if

gλ(x, u)δ ∈ L1(Ω), and
∫

Ω

∇u∇ϕ =
∫

{u>0}

(− u−β + λf(x, u)
)
ϕ ∀ϕ ∈ C∞0 (Ω).

By a positive classical solution we mean a functionu ∈ C(Ω) ∩C2(Ω) which is positive inΩ and satisfies
(1) in the usual sense.

This note is only intended as a summary of our results, while complete proofs will appear elsewhere
[5]. We have also included some remarks and examples that are not in [5].

2. Existence of a maximal solution and its regularity

Theorem 1 For all λ > 0 there is a unique maximal solutionuλ to (1). Moreover there existsλ∗ ∈ (0,∞)
such that forλ > λ∗ the maximal solutionuλ is positive inΩ and belongs toC(Ω) ∩ C1,µ

loc (Ω) for all
0 < µ < 1. We also deduce thataδ ≤ uλ ≤ bδ in Ω wherea, b are positive constants depending only onΩ,
λ > 0 andf . If f ∈ C1(Ω× [0,∞)) then actuallyuλ is a classical solution.

For 0 < λ ≤ λ∗ the maximal solutionuλ has optimal regularityC(Ω) ∩ C
1, 1−β

1+β

loc (Ω). If 0 < λ < λ∗

then the set{uλ = 0} has positive measure. On the other hand,uλ∗ is positive a.e. and is unique in the
class of solutions which are positive a.e..¤

Some problems similar to (1) were already considered in the literature [3, 4, 6, 8, 12]. Optimal in-

terior C1, 1−β
1+β estimates were established in [11] for local minimizers of the energy functional

∫
1
2 |∇u|2

+(u+)1−β in the convex set{u ∈ H1(Ω) : u = 1 on∂Ω}.
We obtain the maximal solutionuλ as the (decreasing) limit asε → 0 of the maximal solutionsuλ,ε to




−∆u +

u

(u + ε)1+β
= λf(x, u) in Ω

u = 0 on∂Ω.
(3)

This approach is inspired by [7]. First we show thatuλ,ε converges pointwisely to the maximal subsolution
u of the following problem

{
−∆u + χ{u>0}u−β = λf(x, u) in Ω

u = 0 on∂Ω.

The techniques of [11] can be adapted to obtain precise estimates of the derivatives of the maximal subso-
lution u. This enables us to verify that the functionu satisfies (1) and we deduce thatuλ = u. A byproduct
of these estimates is the uniform convergenceuλ,ε → uλ in Ω asε → 0 (and not only a.e.).

3. Stability

The question of stability of the maximal solutionuλ for λ ≥ λ∗ leads us to define, for a functionu ∈
L1

loc(Ω), u > 0 a.e. inΩ, the expression

Λ(u) = inf
‖ϕ‖L2≤1

∫

Ω

|∇ϕ|2 − (
βu−β−1 + λfu(x, u)

)
ϕ2 (4)

(for a generalu > 0 a.e.Λ(u) makes sense, but can be−∞). This is the first eigenvalue of the lineariza-
tion of problem (1). The stability property allows us to obtain the positivity foru∗ := uλ∗ under some
restrictions onβ. In [10] the authors deal with stability questions for a singular equation.
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Theorem 2 For λ > λ∗ the maximal solutionuλ of (1) is stable, that is,Λ(uλ) > 0. For λ = λ∗ the
solutionu∗ is weakly stable, in the sense thatΛ(u∗) ≥ 0. Conversely, ifu is a solution of (1) for some
λ ≥ λ∗ such thatu is positive a.e. andΛ(u) ≥ 0, thenu coincides with the maximal solution (i.e.u = uλ).
¤

Theorem 3 If (3β + 1 + 2
√

β2 + β)/(β + 1) > n/2, then there existsc > 0 depending only onΩ, n and
β such thatu∗ ≥ cδα. In particular u∗ is positive inΩ (and not only a.e.).¤

4. Remarks and examples

In this section we discuss the optimality of our results, and we give examples illustrating various situations.

(A) There are examples whereuλ is not identically zero for some0 < λ < λ∗.
Let f = χ(−A,A) for some suitableA > 0 to be chosen later. First fixη > 1 such thatη − η1−β

1−β > 0
and consider the ODE

−u′′ = −u−β + 1 (5)

with initial conditionsu(0) = η, u′(0) = 0. Standard results of ODE theory imply thatu is defined on a
maximal open interval, say(−x0, x0) (at the end of this example we present a more explicit expression of
u in the caseβ = 1/2). The solutionu is symmetric with respect to0 and is decreasing in the nonempty
intervalx ∈ (0, x0). Moreover,limx↗x0 u(x) = 0. Therefore there exists someA > 0 (unique) such that

η − η1−β

1− β
− u(A) = 0. (6)

Note that the expression12 (u′)2 − u1−β

1−β + u is a constant in the interval(0, A), and therefore condition (6)

is equivalent to1
2u′(A)2 = u(A)1−β

1−β . Definec =
(
α(α − 1)

)−1/(1+β)
andB = ( 1

cu(A))1/α + A. Extend
u(x) by the formula

u(x) =





solution of (5), x ∈ [−A,A]
c(B − |x|)α, x ∈ (−B,−A) ∪ (A,B)
0, x 6∈ (−B, B).

If R > B, thenu is a nontrivial solution to (1) corresponding toλ = 1. We will see that the maximal
solutionū has compact support inΩ = (−R, R) if R is large enough. To accomplish this, set

B = sup { t ∈ (A,R) | ū > 0 on (0, t) } > 0

and let us show that

B ≤
[
1
c

(1− β

2
A2

)1/(1−β)
]1/α

+ A. (7)

Indeed, integrate (5) over(−A, 0) to get ū′(0) − ū′(−A) =
∫ A

0
ū′′ ≥ −A. Sinceū′(0) = 0 we get the

estimate
ū′(−A) ≤ A. (8)

Observe that on(−B,−A), ū satisfies̄u′′ = ū−β . Multiplying this equation bȳu′ and integrating we find
1
2 (ū′)2 − ū1−β

1−β = D on (−B,−A), whereD is a constant. Sincēu(−B̄) = 0 we must haveD ≥ 0 and
this implies that

ū1−β

1− β
≤ 1

2
(ū′)2 on (−B,−A). (9)

It is not difficult then to check that

ū(x) ≥ c(x + B)α, ∀x ∈ (−B,−A). (10)
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In particular combining (10) atx = −A, (9) and (8) we get

c(B −A)α ≤ ū(−A) ≤
(1− β

2
ū′(−A)2

)1/(1−β)

≤
(1− β

2
A2

)1/(1−β)

from which (7) follows.
Whenβ = 1/2 we have a more explicit expression of the solution of problem (5). Multiplying the

equation byu′ and integrating one findsu′ = (4u1/2 − 2u + c)1/2, wherec > 0 is a constant depending
only onβ andη. Seth(s) = (4s1/2 − 2s + c)−1/2 and integrate it from0 to ξ. One obtains

H(ξ) =
√

c−
√

2 arcsin
( √

2√
2 + c

)
−

√
c + 4

√
ξ − 2ξ −

√
2 arcsin

(√2(1−√ξ)√
2 + c

)
.

Our equation transforms into(H(u(x)))′ = −1 for x > 0. Integrating and applying the inverse function
H−1 we obtainu(x) = H−1(H(η) − x), 0 < x < H(η). We remark that whenβ = 1/2, it is proved in
[3] that there is a unique correspondence betweenη ≥ 4 andx0, whereu(x0) = 0 andu solves (5). Thus
u(x) = H−1(H(η)− x) is the maximal solution in(−x0, x0) with f ≡ 1 and is stable.

(B) Is the branchλ 7→ uλ continuous?
The answer is negative in general, and examples can be readily constructed. For instance, letΩ be an

interval inR and assume thatf depends only onu. Then for anyλ > 0 the maximal solution is either
identically zero or positive inΩ (see [5]). We stress that the stability characterization of Theorem 2 implies
thatλ 7→ uλ is continuous on[λ∗,∞).
(C) Can one characterize the maximal solution whenλ < λ∗ in a way similar to Theorem 2?

One possible approach would be to say that a solutionu ∈ C(Ω) to (1) is weakly stable if
∫

ω

∂gλ

∂u
(x, u)ϕ2 ≤

∫

ω

|∇ϕ|2 ∀ϕ ∈ C∞0 (ω), (11)

whereω = {x ∈ Ω | u(x) > 0}. Assume now thatu ∈ C(Ω) is a weakly stable solution of (1) in the sense
of relation (11). Is it true that it has to be the maximal solution? It turns out that the answer is negative in
general, that is, there are examples of solutions satisfying (11) which are not the maximal one, see details
in [5].

(D) The condition onβ in Theorem 3 is almost optimal.
Assume that(3β + 1 + 2

√
β2 + β)/(β + 1) < n/2 and letB be the unit ball ofRn. We will see that

there existsf = f(x) ∈ C∞(B) ∩ L∞(B) with f ≥ 0 such that the solutionu∗ = uλ∗ satisfiesu∗ > 0
in B \ {0} andu∗(x) = const |x|α for x near the origin. Indeed, letv(x) = c|x|α where the constant
c > 0 is chosen so thatα(α + n − 2) = c−1−β . Then it is easy to verify thatv satisfies∆v = v−β in
Rn. Let 0 < R < 1 to be fixed later and leth(r) be a smooth function defined forr ∈ [0, 1] such that
0 ≤ h ≤ c, h′, h′′ ≥ 0 on [0, 1], h ≡ 0 on [0, R] andh(1) = c. Then∆h = h′′ + n−1

r h′ ≥ 0 in Rn. Set
u(x) = v(x)−h(|x|). We find−∆u = −v−β +∆h = −u−β +f(x) wheref(x) = u−β−v−β +∆h ≥ 0.
We claim thatu is weakly stable ifR andh are chosen appropriately. Letϕ ∈ C∞0 (B) and let us consider

β

∫

B

u−1−βϕ2 = βα(α + n− 2)
∫

B

r−2ϕ2 + β

∫

B

(
(crα − h)−1−β − (crα)−1−β

)
ϕ2 = I1 + I2.

(12)

A computation shows thatβα(α + n− 2) < (n−2)2

4 . Thus by Hardy’s inequality with the weightr−2,

I1 ≤ (1− ε)
∫

B

|∇ϕ|2 (13)

for someε > 0 depending only onβ andn. To estimateI2 observe that we can chooseh in such a way that
crα − h ≥ 1

C δ, whereδ(x) = dist(x, ∂B) = 1− |x|, and the constantC is independent ofR. In this way
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(crα − h)−1−β ≤ Cδ−1−β and therefore, using Hardy’s inequality with weightδ−2 we get

I2 ≤ C

∫

B\BR

δ−1−βϕ2 ≤ C
( ∫

B

δ−2ϕ2
)(1+β)/2(∫

B\BR

ϕ2
)(1−β)/2

≤ ε

2

∫

B

|∇ϕ|2 + C(ε)
∫

B\BR

ϕ2.

But ∫

B\BR

ϕ2 ≤ C(1−R)2
∫

B

|∇ϕ|2 ∀ϕ ∈ C∞0 (B), (14)

whereC is independent ofϕ andR. Hence, by choosingR < 1 with 1 − R small enough and combining
(12), (13) and (14) we conclude that

β

∫

B

u−1−βϕ2 ≤
∫

B

|∇ϕ|2 ∀ϕ ∈ C∞0 (B).

By Theorem 2u is the maximal solutionu∗ onB with dataf . Moreoverλ∗ = 1 in this situation.
Let us mention that the conclusionu∗ ≥ cδα in Theorem 3 is optimal, in the sense that a one can not

hope to have a similar inequality with a smaller exponent, see [5].

5. The parabolic problem

We are also interested in studying the singular parabolic problem




ut −∆u = gλ(u) in Ω× (0,∞),
u = 0 on∂Ω× (0,∞),

u(0) = u0 in Ω,

(15)

where for simplicity we consider the functionf depending only onu. The papers [10, 9] treat a singular
parabolic equation with the opposite sign in front of the singular termu−β .

The quantityλ∗ given in Theorem 1 is a critical parameter for the elliptic problem (1), but it is also a
borderline for the existence of global positive solutions of (15) with a suitable fixed initial datau0. This
kind of interplay between stationary and evolution problem was undertaken in [2] forgλ(x, u) = λf(u)
with f positive, increasing and convex.

Let us fixθ such that1 < θ < α. We begin establishing the existence of a solution locally in time and
its uniqueness.

Theorem 4 The parabolic problem (15) has a local solutionu defined in an interval(0, T ), provided that
the initial datau0 is bounded andu0 ≥ cδθ for somec > 0. Moreover,u belongs toL∞(Ω × (0, T )) ∩
C1(Ω× (0, T )) and satisfiesu ≥ c′δθ in (0,T) for somec′ > 0 (T andc′ depend onc andθ). ¤

Theorem 5 If u0 ∈ L∞(Ω) andu0 ≥ cδθ for somec > 0. Then the local solutionu is unique in the set

MT =
{
u ∈ L∞(Ω× (0, T )) : ∀S ∈ (0, T ) there existsc > 0 such thatu(t) ≥ cδθ for t ∈ (0, S)

}
. ¤

Let T (t) be the heat semigroup inΩ with zero Dirichlet boundary condition. A functionu ∈ MT is
regarded as a solution to (15) if

u(t) = T (t)u0 +
∫ t

0

T (t− s)gλ(u(s)) ds ∀t ∈ (0, T ). (16)

If u ∈ MT thenu−β ∈ L∞((0, T ′), Lp(Ω)) for somep > 1 and all0 < T ′ < T . Hence (16) makes sense
in Lp(Ω). The above result is a consequence of a comparison principle and a smoothing effect for the heat
semigroupT (t) with weights involving powers ofδ.

We close this section stating our global existence results.
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Theorem 6 If the elliptic problem (1) has a solutionw which is positive a.e., then for any initial data
u0 ∈ L∞(Ω) satisfyingu0 ≥ w andu0 ≥ cδθ for somec > 0, the solution of the parabolic problem (15)
is global and positive, in the sense thatsup

{
T > 0 | ∃c > 0 u(t) ≥ cδθ ∀t ∈ (0, T )

}
= ∞. ¤

Theorem 7 Assume that0 < β < 1 and that the parabolic problem (15) has a positive global classical
solution. Then the elliptic problem (1) has a solution which is positive a.e. Otherwise, forβ ≥ 1 there is no
positive global classical solution of (15).¤

Remark 1 Suppose thatλ < λ∗. Then, since the maximal solution of (1) vanishes on a set of positive
measure, by the above theorem problem (15) cannot have a positive global classical solution.¥
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