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A singular equation with positive and free boundary solutions

Juan D avila and Marcelo Montenegro

Abstract. Let0 < 8 < 1. The equation-Au = X {u>0}( — u™? + Af(z,w)) in Q with Dirichlet
boundary condition o®$2 has a maximal solution, > 0 for every\ > 0. For A less than a constant
A* the solution vanishes inside the domain andXas \* the solution is positive and stable. We obtain
optimal regularity ofu even in the presence of a free boundary) I A* the solutions of the singular
parabolic equatiom; — Au + u~? = \f(u) are positive and globally defined while for< A < A*
there is no positive global solution.

Soluciones positivas y con frontera libre de una ecuaci on singular

Resumen. Para0 < 8 < 1 consideramos la ecudti —Au = X{,>01( — v~ + Af(z,u)) en

Q con condicbn de borde tipo Dirichlet. Esta ecuaniposee una solumi maximalu, > 0 para todo

A > 0. Si )\ es menor que una cierta constante u, se anula en el interior del dominio creando una
frontera libre, y para\ > \* esta soludn es positiva eif2 y estable. Establecemos la regularidad de
uy incluso en presencia de una frontera libre. Pata \* la solucbn del problema pardlico singular

us — Au+u~? = Af(u) es global y positiva mientras que®i< A < A* no existe soludn global
positiva.

1. Introduction

We study the elliptic problem
—Au = gx(z,u) in Q,

u>0 in Q, (1)
u=20 onof?,
on a smooth, bounded domdhc R™ with a singular nonlinearity, given by
g)\(x7 u) = X{u>0}( - uiﬁ + )‘f(xv u))a (2)

wherey (.03 is the characteristic function of the st > 0} and by conventiog, (z,0) = 0. Henceforth
0<pB8<1l,a=2/(1+p), > 0isaparameter and : 2 x R — R is measurable i, f > 0,
f # 0, and is nondecreasing, concave and sublinear in the second variaiiformly in z, that is,
limy, o f(z,u)/u = 0 uniformly for z € 2. We also assume thgi, (x, -) is continuous ort0, co) for a.e.
x €.

Equation (1) arises as limit of some equations modelling catalytic and enzymatic reactions, see [1] and
[7] for an account.
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Definition 1 Let 6(z) = dist(x,00). We say thatu € H}(Q), v > 0, is a solution of (1) if
gx(z,u)d € L1(Q), and

/Vthp:/ (—u™ P+ Af(z,u))p Vo e C(Q).
Q {u>0}

By a positive classical solution we mean a functiog C(2) N C?(£2) which is positive inf2 and satisfies
(1) in the usual sense.

This note is only intended as a summary of our results, while complete proofs will appear elsewhere
[5]. We have also included some remarks and examples that are not in [5].

2. Existence of a maximal solution and its regularity

Theorem 1 Forall A > 0 there is a unique maximal solutian, to (1). Moreover there exists* € (0, o)
such that forA > A* the maximal solution:) is positive inQ2 and belongs ta”'(Q2) N C’llo’é‘(ﬂ) for all
0 < p < 1. We also deduce that < uy < bd in 2 wherea, b are positive constants depending onlyn

A>0andf. If f € C1(Q x [0,00)) then actuallyu, is a classical solution.
For 0 < A < A\* the maximal solutiom, has optimal regularityC'(2) N Clloc”ﬂ( D). o< A< A

then the se{u, = 0} has positive measure. On the other hang is positive a.e. and is unique in the
class of solutions which are positive a.e.[]

Some problems similar to (1) were already considered in the literature [3, 4, 6, 8, 12]. Optimal in-
terior C1'177 estimates were established in [11] for local minimizers of the energy functjbéa‘VuF
+(ut)1=#in the convex sefu € H'(Q) : u = 10ndN}.

We obtain the maximal solutiom, as the (decreasing) limit as— 0 of the maximal solutions . to

{—Au—&-ulﬂjz)\f(x,u) in Q

(u+e) ©)

u=~0 onof.

This approach is inspired by [7]. First we show that. converges pointwisely to the maximal subsolution
u of the following problem

—Au + x{u>0}u_ﬁ = Mf(x,u) in Q
u=0 on 2.

The techniques of [11] can be adapted to obtain precise estimates of the derivatives of the maximal subso-
lution w. This enables us to verify that the functiarsatisfies (1) and we deduce that= u. A byproduct
of these estimates is the uniform convergenge — u, in Q2 ase — 0 (and not only a.e.).

3. Stability

The question of stability of the maximal solutien, for A > A\* leads us to define, for a functian
LL (), u > 0a.e.inf, the expression

loc
M) = nt_ [ VP = (B Afu) o @
HsoHL2<1
(for a generak, > 0 a.e.A(u) makes sense, but can bex). This is the first eigenvalue of the lineariza-

tion of problem (1). The stability property allows us to obtain the positivityddr:= u,~ under some
restrictions on3. In [10] the authors deal with stability questions for a singular equation.
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Theorem 2 For A > \* the maximal solution:, of (1) is stable, that isA(uy) > 0. For A = A* the
solutionu* is weakly stable, in the sense thatu*) > 0. Conversely, ifz is a solution of (1) for some
A > X\* such thatu is positive a.e. and.(u) > 0, thenu coincides with the maximal solution (i.e.= u)).
(Il

Theorem 3 If (38 +1+2+/5%2+ 3)/(8+ 1) > n/2, then there exists > 0 depending only of®, n and
[ such thatu* > ¢6®. In particular u* is positive inQ2 (and not only a.e.)]

4. Remarks and examples

In this section we discuss the optimality of our results, and we give examples illustrating various situations.
(A) There are examples wheug is not identically zero for some < \ < \*.

Let f = x(—4,4) for some suitabled > 0 to be chosen later. First fix > 1 such that; — 7{1:; >0
and consider the ODE

—u" = —uP+1 (5)

with initial conditionsu(0) = 7, «'(0) = 0. Standard results of ODE theory imply thais defined on a
maximal open interval, saly—z, z¢) (at the end of this example we present a more explicit expression of
w in the case3 = 1/2). The solutionu is symmetric with respect t0 and is decreasing in the nonempty
intervalz € (0, zo). Moreoverlim, -, u(z) = 0. Therefore there exists some> 0 (unique) such that

1-8
~173
Note that the expressic%‘(u’)Q — % + wis a constant in the intervéd, A), and therefore condition (6)

is equivalent tolu’(A)? = %. Definec = (oo — 1))71/(1+ﬁ) andB = (1u(A))/~ + A. Extend
u(zx) by the formula

7 —u(A) =0. (6)

u(z) =< (B —|z|)*, x € (—B,—A)U (A, B)

0, x ¢ (—B,B).
If R > B, thenu is a nontrivial solution to (1) corresponding o= 1. We will see that the maximal
solutionu has compact support d = (—R, R) if R is large enough. To accomplish this, set

{ solution of (5), = € [—A4, 4]

B=sup{te(A,R)|u>00n(0,¢)}>0

and let us show that

— [1/1=8 p\Va-m)
S e (—— .
B < [C( A ) +A @)
Indeed, integrate (5) ovér A, 0) to geta’(0) — a/(—A) = ;)A a” > —A. Sinced/(0) = 0 we get the
estimate
@ (~A) < A. 8)

Observe that oii—B, — A), @ satisfiesi”” = ~?. Multiplying this equation byi’ and integrating we find
L(@)? - 111:; = D on(—B,—A), whereD is a constant. Since(—B) = 0 we must haveD > 0 and
this implies that

W0 L on(_B._A) ©)
1—g- 2" A
It is not difficult then to check that
u(z) > c(z + B)*, Vz € (—B,-A). (10)
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In particular combining (10) at = — A, (9) and (8) we get

e 1-8_,  AVO=B 11— N\1/(0=P)
_ < _ < —= — < | —
(B — A)* < a( A)_(QU(A)) _<2A)
from which (7) follows.
Whens = 1/2 we have a more explicit expression of the solution of problem (5). Multiplying the
equation byw’ and integrating one finds' = (4u'/? — 2u + ¢)/2, wherec > 0 is a constant depending
only on g andr. Seth(s) = (4s'/2 — 2s + ¢)~'/? and integrate it frond to £. One obtains

\/QQ—&-()_ c—|—4\/—2§ farc&n(\/i\(/lz;_f)

Our equation transforms int@7 (u(x)))’ = —1 for > 0. Integrating and applying the inverse function
H~! we obtainu(x) = H-1(H(n) — z),0 < x < H(n). We remark that whep = 1/2, it is proved in
[3] that there is a unique correspondence betwgen4 andx, whereu(zy) = 0 andu solves (5). Thus
u(x) = H-Y(H(n) — ) is the maximal solution if—zg, o) with f = 1 and is stable.

(B) Is the branch\ — w, continuous?

The answer is negative in general, and examples can be readily constructed. For instdhoe, det
interval inR and assume that depends only om.. Then for anyA > 0 the maximal solution is either
identically zero or positive i) (see [5]). We stress that the stability characterization of Theorem 2 implies
that\ — w, is continuous of\*, oo).

(C) Can one characterize the maximal solution whea \* in a way similar to Theorem 27?
One possible approach would be to say that a solutienC'(Q2) to (1) is weakly stable if

H(§) = Ve —V2arcsin (

[Pt < [ 1 vee o), (11)
wherew = {z € Q | u(z) > 0}. Assume now that € C(2) is a weakly stable solution of (1) in the sense
of relation (11). Is it true that it has to be the maximal solution? It turns out that the answer is negative in
general, that is, there are examples of solutions satisfying (11) which are not the maximal one, see details
in [5].
(D) The condition org in Theorem 3 is almost optimal.

Assume thaf30 + 1 + 21/32 + 8)/(8 + 1) < n/2 and letB be the unit ball oR™. We will see that
there existsf = f(z) € C>*(B) N LOO( )Wlth f > 0 such that the solution* = u,- satisfiesu* > 0
in B\ {0} andu*(z) = const |z|* for  near the origin. Indeed, let(z) = c|z|* where the constant
¢ > 0is chosen so that(a +n — 2) = ¢~ 7%, Then it is easy to verify that satisfiesAv = v in
R™. Let0 < R < 1 to be fixed later and let(r) be a smooth function defined fore [0, 1] such that
0<h<ehW, W >00n[0,1],h=00n[0,R]andh(1) = c. ThenAh = h” + =11/ > 0in R". Set
u(z) = v(z)—h(|z]). We find—Au = —v=P+ Ah = —u=P + f(x) wheref (z) = u=P —v=P+Ah > 0.
We claim thatu is weakly stable ifR andh are chosen appropriately. Lete C5°(B) and let us consider

ﬁ/B u1Pp? = Bala+n —2) /B r2p? Jrﬁ/B ((cro‘ —h)"1 A~ (cro‘)*l*ﬁ)ga2 =1+ L.
(12)

A computation shows thata(a +n — 2) < (n=2)° 2 . Thus by Hardy'’s inequality with the weight 2,
I < (1—6)/ Vel? (13)
B

for somes > 0 depending only o andn. To estimatel, observe that we can chookén such a way that
—h > 446, whered(z) = dist(z, 0B) = 1 — |z|, and the constart is independent of. In this way
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(er® — h)~1=# < 0617 and therefore, using Hardy’s inequality with weight? we get

(1+8)/2 (1-8)/2
neef sese( [ () A
B\Bgr B B\Br

3
<S[vePice [ o
B B\Br

/ &< C(1-R) / Vo2 Ve CE(B), (14)
B\Br B

whereC' is independent op and R. Hence, by choosin® < 1 with 1 — R small enough and combining
(12), (13) and (14) we conclude that

ﬁ/ um P2 S/ IVol* Vo e C5°(B).
B B

By Theorem 2u is the maximal solutiom* on B with dataf. Moreover\* = 1 in this situation.
Let us mention that the conclusiari > <6 in Theorem 3 is optimal, in the sense that a one can not
hope to have a similar inequality with a smaller exponent, see [5].

But

5. The parabolic problem

We are also interested in studying the singular parabolic problem
ur — Au = gy (u) in 2 x (0,00),
u=0 onoN x (0, c0), (15)
u(0) = ug in Q,

where for simplicity we consider the functighdepending only oni.. The papers [10, 9] treat a singular
parabolic equation with the opposite sign in front of the singular term

The quantity\* given in Theorem 1 is a critical parameter for the elliptic problem (1), but it is also a
borderline for the existence of global positive solutions of (15) with a suitable fixed initiak@at@his
kind of interplay between stationary and evolution problem was undertaken in [2} foru) = Af(u)
with f positive, increasing and convex.

Let us fixf such thatl < # < «. We begin establishing the existence of a solution locally in time and
its unigueness.

Theorem 4 The parabolic problem (15) has a local solutierdefined in an interval0, T"), provided that
the initial dataw, is bounded and., > c§% for somec > 0. Moreover,u belongs toL> (2 x (0,7)) N
C'(Q x (0,T)) and satisfies; > ¢/§% in (0,T) for some’ > 0 (T and¢’ depend or: andf). [
Theorem 5 If ug € L°°(Q2) andug > 4% for somec > 0. Then the local solution is unique in the set
Mz = {u e L=(Q x (0,T)) : VS € (0,T) there existg > 0 such thaw(t) > ¢’ fort € (0,9)}. O

Let T'(t) be the heat semigroup in with zero Dirichlet boundary condition. A functiom € My is
regarded as a solution to (15) if

t
u(t) = T (¢)ug +/ T(t — s)ga(u(s))ds vt € (0,T). (16)
0
If w € Mpthenu=F ¢ L>=((0,7"), LP(Q2)) for somep > 1 and all0 < T’ < T. Hence (16) makes sense
in LP(£2). The above result is a consequence of a comparison principle and a smoothing effect for the heat

semigroud’(t) with weights involving powers of.
We close this section stating our global existence results.
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Theorem 6 If the elliptic problem (1) has a solutiom which is positive a.e., then for any initial data
ug € L>(Q) satisfyingug > w anduy > 6% for somec > 0, the solution of the parabolic problem (15)
is global and positive, in the sense thap {7 > 0| Jc > 0 u(t) > ¢6’ Vt € (0,T) } = o0. O

Theorem 7 Assume tha < 8 < 1 and that the parabolic problem (15) has a positive global classical
solution. Then the elliptic problem (1) has a solution which is positive a.e. Otherwis@ >or there is no
positive global classical solution of (15)]

Remark 1 Suppose thah < A*. Then, since the maximal solution of (1) vanishes on a set of positive
measure, by the above theorem problem (15) cannot have a positive global classical sol#tion.

Acknowledgement.  J. Davila acknowledges the support of H. Sussman’s NSF Grant DMS01-03901
and M. Montenegro was supported by FAPESP.

References

[1] Aris R. (1975).The Mathematical Theory of Diffusion and Reaction in Permeable Catalgtisendon Press,
Oxford.

[2] Brezis, H., Cazenave, T., Martel, Y. and Ramiandrisoa, A. (1996). Blow-upfer Au = g(u) revisited,Adv.
Differential Equationsl, 73-90.

[3] Choi, V.S., Lazer, A.C. and McKenna, P.J. (1998). Some remarks on a singular elliptic boundary value problem,
Nonlinear Anal.32, 305-314.

[4] Crandall, M.G., Rabinowitz, P.H. and Tartar, L. (1977). On a Dirichlet problem with a singular nonlinearity,
Comm. Partial Differential Equation®, 193-222.

[5] Davila, J. and Montenegro, M. (2002). Positive versus free boundary solutions to a singular equation, Preprint.

[6] del Pino, M.A. (1992). A global estimate for the gradient in a singular elliptic boundary value proBlem,
Roy. Soc. Edinburgh Sect.122, 341-352.

[7] Diaz, J.I., (1985)Nonlinear partial differential equations and free boundariBgman London.

[8] Diaz, J.l., Morel, J.M. and Oswald, L. (1987). An elliptic equation with singular nonlineaibtynm. Partial
Differential Equationsl2, 1333-1344.

[9] Fulks, W. and Maybee, J.S. (1960). A singular non-linear equaflsaka Math. J12, 1-19.

[10] Hermandez, J., Mancebo, F. J. and Vega, J.M. (2002). On the linearization of some singular, nonlinear elliptic
problems and applicationdnn. Inst. H. Poinca& Anal. Non Liaire 19, 777-813.

[11] Phillips, D. (1983). A minimization problem and the regularity of solutions in the presence of a free boundary,
Indiana Univ. Math. J32, 1-17.

[12] Shi, J. and Yao, M. (1998). On a singular nonlinear semilinear elliptic prodfeat,. Roy. Soc. Edinburgh Sect.
A 128 1389-1401.

J. Davila M. Montenegro

Department of Mathematics, Universidade Estadual de Campinas, IMECC,
Rutgers University Departamento de Maggioa,

110 Frelinghuysen Rd, Caixa Postal 6065, CEP 13083-970,

Piscataway, NJ 08854-8019, USA  Campinas, SP, Brasil
davila@math.rutgers.edu msm@ime.unicamp.br

112



