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Mateḿatica Aplicada / Applied Mathematics
Artı́culo panoŕamico / Survey

Abstract methods in differential equations

H. Amann

Abstract. This is an expanded version, enriched by references, of my inaugural speech held on Novem-
ber 7, 2001 at the Real Academia de Ciencas Exactas, Fı́sicas y Naturales in Madrid. It explains in a
nontechnical way, accessible to a general scientific community, some of the motivation and basic ideas of
my research of the last twenty years on a functional-analytical approach to nonlinear parabolic problems

Métodos abstractos en ecuaciones diferenciales

Resumen. El presente trabajo corresponde a una versión ampliada de la exposición del autor tenida
el 7 de Noviembre 2001 en la Real Academia de Ciencias Exactas, Fı́sicas y Naturales de Madrid con
motivo de su nombramiento como miembro extranjero de esta institución. Evitando detalles técnicos, este
art́ıculo panoŕamico expone algunas de las motivaciones e ideas fundamentales de las investigaciones del
autor durante lośultimos veinte ãnos sobre el enfoque analı́tico-funcional de problemas parabólicos no
lineales.

1. Introduction

Since my days as a student I have been attracted by the fact that mathematical models can help to reveal
hidden connections and lead to rational explanations for complex, and sometimes unexpected, natural,
behavioral or other phenomena which, at a first glance, seem to be mysterious and incomprehensible.

Most mathematical models involve differential equations, predominantly systems of partial differential
equations, of an almost prohibitive complexity. For the investigation of systems of this type it is most
important to have a guiding line which leads through the jungle of technicalities to the heart of the matter.
Very often such a guiding line can be obtained by embedding the given problems in a larger and more
abstract class in which the technical difficulties are hidden so that one has a better chance to discover the
general underlying structure and properties. By this way one is often led to develop tools which not only
help to solve the given problem, but apply equally well to many others, being seemingly unrelated.

Of course, this is not only true for the field of differential equations, but also for almost all parts of
mathematics. The benefits of such an approach have been clearly expressed by one of the great masters of
abstraction, David Hilbert. In his lecture at the International Congress of Mathematicians in Paris in the
year 1900 [25] one reads:
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Aber — so fragen wir — wird es bei der Ausdehnung des mathematischen Wissens für
den einzelnen Forscher nicht schließlich unmöglich, alle Teile dieses Wissens zu umfassen?
Ich möchte als Antwort darauf hinweisen, wie sehr es im Wesen der mathematischen Wis-
senschaft liegt, daß jeder wirkliche Fortschritt stets Hand in Hand geht mit der Auffindung
scḧarferer Hilfsmittel und einfacherer Methoden, die zugleich das Verständnis fr̈uherer Theo-
rien erleichtern und umständlicheältere Entwicklungen beseitigen, und daß es daher dem
einzelnen Forscher, indem er sich diese schärferen Hilfsmittel und einfacheren Methoden zu
eigen macht, leichter gelingt, sich in den verschiedenen Wissenszweigen der Mathematik zu
orientieren, als dies für irgend eine andere Wissenschaft der Fall ist.1

In the following, I shall try to give an idea of some of my research interests of the last twenty years.
During that period I was predominantly concerned with a functional-analytical approach to parabolic evo-
lution equations. In my opinion, functional analysis, combined with so-called “hard analysis” and many
other mathematical subjects, is particularly well suited for providing an abstract, powerful, and sufficiently
general framework for the study of nonlinear partial differential equations.

Of course, it is well-known that there are intimate connections between functional analysis and partial
differential equations. In fact, large parts of linear functional analysis have been developed in order to
provide the abstract tools for an efficient and unified study of linear partial differential equations. The point
I want to make is that functional analysis is also very useful for the investigation of nonlinear differential
equations.

Clearly, I shall only be able to scratch the surface, and most of the time I shall be rather vague. In
particular, I shall not address specialists. Nevertheless, I hope that I can give an idea of “what is behind the
scene”.

2. A model case: reaction-diffusion systems

I begin with a model problem to illustrate the origin of some of the equations and to point out the principal
questions which have to be addressed.

Let Ω be a bounded domain inRn, wheren = 1, 2 or 3 in most physical relevant situations, with a
smooth boundaryΓ and outer unit normalν. Suppose thatΩ is occupied by some species (say a chemical
substance, a population, heat, etc.) with which we can associate a space and time dependent densityu. Also
suppose that it can move withinΩ and that its movement is determined by a flux vector(field)~. Assume
that the distribution of the species throughoutΩ at a given time, say att = 0, is described by the “initial
density”u0 and that one wants to predict this distribution at any given later timet.

The basic hypothesis which we impose is the law of conservation of mass saying that

at any given time the increase of total mass contained in a subdomainB of Ω equals the mass
flowing through the boundary∂B into B, augmented by the mass being produced withinB.

Thus, denoting byf the “production density” (which may change its sign throughoutΩ) and by~n the outer
unit normal of∂B, this conservation law takes the form

∂t

∫

B

u dx = −
∫

∂B

~ · ~n dσ +
∫

B

f dx, (1)

wheredσ is the volume measure of∂B. By converting the surface integral into a volume integral by means
of Gauss’ theorem and by lettingB shrink to a given point inΩ, we deduce from (1) that the densityu

1But — so we ask — given the expansion of the mathematical knowledge, will it eventually not be impossible for the individual
researcher to encompass all parts of this knowledge? As an answer I want to point out that it is a basic feature of mathematics that every
real progress is intimately tied to the discovery of more efficient tools and simpler methods which also facilitate the comprehension of
earlier theories and put away with cumbersome older developments, and that, consequently, the individual researcher will be able, by
acquiring these more efficient tools and simpler methods, to find his way through the different branches of mathematics more easily
than this is the case for any other scientific field.
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satisfies the infinitesimal conservation law

∂tu +∇ · ~ = f in Ω , t > 0, (2)

where∇· denotes “divergence”.
On the boundary ofΩ we assume that the inflow is prescribed, that is,

−ν · ~ = g onΓ , t > 0. (3)

In general, the flux vector~ is related to the densityu by means of a constitutive law. A frequent and
intuitive assumption, being justified in many cases by basic physical considerations, says that mass moves
from places of higher density to those of a lower one along the lines of steepest descent. In other words,

~ = −a∇u, (4)

where∇u is the gradient ofu, anda, the diffusion coefficient, is a positive function. In concrete applica-
tions, (4) is known as Fick’s law, Fourier’s law, etc., according to the given framework.

Inserting (4) into (2) and (3) leads to the following initial boundary value problem foru:

∂tu−∇ · (a∇u) = f in Ω× (0,∞),
a ∂νu = g on Γ× (0,∞),

u(·, 0) = u0 onΩ.

(5)

In the particular case wherea = 1, system (5) reduces to the initial value problem for the heat equation with
Neumann boundary conditions:

∂tu−∆u = f in Ω× (0,∞),
∂νu = g on Γ× (0,∞),

u(·, 0) = u0 onΩ.

(6)

In the general case the differential equation in (5) is of parabolic type.
Of course, in a more realistic model the diffusion coefficient as well as the “exterior densities” depend

onu as well. Thus we are led to investigate the quasilinear parabolic initial boundary value problem

∂tu−∇ · (a(u)∇u
)

= f(u) in Ω× (0,∞),
a(u)∂νu = g(u) on Γ× (0,∞),

u(·, 0) = u0 onΩ.

(7)

Whereas the linear problem (5) is well-studied, we are far from a complete understanding of the quasilinear
problem (7), although much research is presently devoted to the investigation of problems of this type.

In most mathematical models of relevant physical (chemical, biological, sociological, etc.) situations
one has to consider systems involving several (sayN ) species moving withinΩ and interacting with each
other. The basic hypotheses are in this case the assumptions that with each speciesk we can be associate a
densityuk and that the law of conservation of mass holds for each speciesk. Thus we arrive at the system
of N conservation laws

∂tuk +∇ · ~k = fk in Ω× (0,∞),
−ν · ~k = gk on Γ× (0,∞)

(8)

for 1 ≤ k ≤ N . In general, the flux vector~k as well as the exterior densitiesfk and gk of speciesk
may depend onuk and on all other species as well, that is, on the full vectoru := (u1, . . . , uN ). In this
case a natural generalization of the constitutive law (4) says that the flux vector~k depends linearly on the
gradients∇uk for 1 ≤ k ≤ N , that is,

~k(u) = −ak1∇u1 − · · · − akN∇uN , 1 ≤ k ≤ N,
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where, in general, the diffusion coefficientsaki depend nonlinearly onu. In a great many applications
this hypothesis can be justified on the basis of thermodynamical considerations (cf. [21]). Thus in this
case — and restricting ourselves to the caseN = 2, for simplicity — we obtain the following system of
reaction-diffusion equations:

∂tu1 −∇ · (a11(u)∇u1 + a12(u)∇u2

)
= f1(u)

∂tu2 −∇ · (a21(u)∇u1 + a22(u)∇u2

)
= f2(u)

in Ω× (0,∞), (9)

subject to the boundary conditions

a11(u)∂νu1 + a12(u)∂νu2 = g1(u)
a21(u)∂νu1 + a22(u)∂νu2 = g2(u)

onΓ× (0,∞), (10)

which has to be complemented by the known initial condition

u(·, 0) = u0 := (u0
1, u

0
2) onΩ. (11)

By using vector notation, settingf := (f1, f2) andg := (g1, g2), and introducing the matrix of diffusion
coefficients

a(u) :=
[

a11(u) a12(u)
a21(u) a22(u)

]
,

system (9)–(11) can be concisely represented in the form

∂tu−∇ · (a(u)∇u
)

= f(u) in Ω× (0,∞),
a(u)∂νu = g(u) on Γ× (0,∞),

u(·, 0) = u0 onΩ.

(12)

Superficially, this system is equal to (7). But now we have to keep in mind thatu, f , andg areN -vectors,
anda is an(N ×N)-matrix (and∇ · (a(u)∇u

)
has to be interpreted in the obvious sense suggested by the

generalization of (9) to the case ofN densities).
Whereas in the scalar case the assumption that the diffusion coefficient be positive, is both natural and

simple, a priori it is not clear what could be the correct generalization of this concept in the(N ×N)-
matrix case. Formally, one might be tempted to assume here also thata > 0, where this inequality is now
to be interpreted to mean thata is symmetric and positive definite. However, this hypothesis is much too
restrictive for many applications to concrete problems of science.

As an example we consider a(2× 2)-predator-prey system. In other words, we consider a population
model in whichu1 is the density of a prey andu2 that of a predator. More precisely, we assume that the
flux vectors are of the particular form

~1(u) = −α(u)∇u1 − β(u)∇u2,

~2(u) = β(u)∇u1,
(13)

whereα(u) > 0 andβ(u) > 0. This allows for the following heuristic interpretation: thanks to the term
−α(u)∇u1, the prey moves from places of high density of his own species to those of lower ones, that
is, the prey “wants to stay away from places of concentration of his own kind”. The term−β(u)∇u2

means that, in addition, the prey “tries to stay away from places of high concentration of predators”. On
the other hand, the form of the flux vector~2 of the predator implies that the latter moves towards places of
high concentration of prey. This is certainly a rather realistic behavior in a predator-prey system, and it is
desirable that our theory be general enough to embrace such cases. Clearly, the matrix

a :=
[

α β

−β 0

]
, α, β > 0,

92



Abstract methods in differential equations

does not satisfya > 0 in the sense of positive definiteness.
In the case (5) of a scalar unknown, in particular in the case of the heat equation (6), it is known that

the corresponding parabolic equation possesses an important smoothing property guaranteeing that any
solution is infinitely smooth inΩ for t > 0 if f has this property, no matter how irregular its initial valueu0

may be. This is one of the basic features of parabolic equations which we want to preserve in the case
of (N ×N)-systems. Thus we have to find hypotheses ona guaranteeing this property and being general
enough to embrace the simple predator-prey system (13). It turns out that the correct generalization to
(N ×N)-systems is a general concept of parabolicity to be discussed in more detail below.

Thus thereaction-diffusion system(12) is a particular instant of a generalparabolic initial boundary
value problem.It exhibits two features adding substantially to its complexity:

• the system is quasilinear, meaning that

the diffusion coefficients depend nonlinearly on the solution itself;

• the boundary conditions are nonlinear as well.

3. Natural questions

Clearly, given a quasilinear parabolic initial boundary value problem, there arise a number of natural ques-
tion. In the first place:

(A) Is problem(12) well-posed in the sense of Hadamard, that is, does it posses a unique
solution depending continuously on the data?

Since we are interested in problems which are mathematical models for complex phenomena of science
(engineering, sociology, etc.), well-posedness is essential. Should it turn out that a given system is not
well-posed, it cannot be a valid model for describing and predicting realistic phenomena.

Having established well-posedness of system (12), there occur immediately further questions concern-
ing the qualitative behavior of its solutions. First of all:

(B) Do some (or all) solutions exist globally, that is, for all times, or does there occur “blow-
up” in finite time? In other words: is the model capable of describing long-time phenomena?

Ideally, one would like to get a complete description of the “flow” generated by (12) on an appropriate
“phase space”, that is, the space where the solutionu(·, t) lives during its existence. It is well-known that
this is not even possible in the much simpler case of ordinary differential equations, in general. Thus one
has to be more modest and ask for particularly simple structures in the “phase portrait”. For example:

(C) Do there exist critical points, periodic orbits, limit cycles, etc.?

Note that even these questions are enormously difficult since in our problem the phase space is an infinite-
dimensional space of functions, in general. For example, the question of the existence of a critical point
of (12) amounts to the problem of guaranteeing the solvability of the nonlinear (elliptic) system

−∇ · (a(u)∇u
)

= f(u) in Ω,

a(u)∂νu = g(u) on Γ.

Having found simple orbits, like critical points or periodic orbits, there arise naturally questions of
stability:

(D) Is a given critical point or periodic orbit stable? If not: can one characterize its amount
of instability, say dimensions of unstable manifolds?

A much more ambitious question is the one concerning the stability of the phase portrait under variations
of parameters in the equations, that is, of the functionsf , g, anda:
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(E) Is system(12)structurally stable?

The questions raised in (A)–(E) are of fundamental theoretical and practical importance. It is obvious
that they are exceedingly difficult and form a program of research for generations to come. It is also clear
that even partial answers to those questions will be of immense value since they can contribute to a deeper
understanding not only of mathematics but also of nature and the world we are living in.

A well-developed theory of quasilinear parabolic systems is also the basis for the use of these models
to manipulate a given setting to achieve a more desirable situation. To illustrate this we return to the
predator-prey system defined by (13). The heuristic considerations given above indicate that that system
can describe situations in which “a predator chases a prey which runs away from it”. In such a case one
could be interested in a stable situation in the sense that a periodic behavior prevails. In other words: one
can ask if exterior datafk andgk can be chosen in such a way that problem (8), that is, problem (9), (10)
with the flux vectors~1 and~2 given by (13), possesses periodic solutions. Sincef andg depend onu, in
general, this amounts to afeed-back control problemfor (12).

4. Weak solutions and evolution equations

Unlike in the case of ordinary differential equations, in the theory of partial evolution equations there is no
natural state space in which (12) is to be considered. The correct choice of the state space is of predominant
importance and crucial for the success of the investigation.

Unfortunately, spaces of continuously differentiable functions — seemingly the most natural candidates
— are “not good” in a very precise sense, as is well-known in the theory of partial differential equations.
This is related to the fact that the fundamental Laplace operator∆ does not define an isomorphism from

C2
γ(Ω) :=

{
u ∈ C2(Ω) ; u |Γ = 0

}

onto C(Ω), although it mapsC2
γ(Ω) injectively into C(Ω) and has a dense image. For the same reason

spaces of distributions whose derivatives of low order are integrable, that is, Sobolev spacesW k
1 (Ω), are

“not good”.
“Good” spaces, as far as isomorphism theorems for linear elliptic problems — or more fundamen-

tally: Fourier multiplier theorems — are concerned, areLp-Sobolev spaces, that is, spacesW k
p (Ω), for

1 < p < ∞.
Whereas in the theory of linear partial differential equations there is no real need to resort to the more

difficult cases for whichp 6= 2, for nonlinear equations the possibility to work withp 6= 2 is crucial. The
correct choice ofp is dictated by the concrete problem and depends on the growth of the nonlinear functions
f andg at infinity. If p is inappropriately selected, say if one choosesp = 2 in order to use the advantages
of an easy Hilbert space setting, (12) will, in general, not be well-posed.

Having proven the well-posedness of (12) in an appropriateLp-setting, the study of the long-time behav-
ior of its solutions, that is, of the flow generated by it, requires, as a rule, the establishing of a priori bounds
for some or all solutions. It is clear that it is much easier to find such bounds in spaces of low regularity
than in spaces of regular functions. For example, in concrete problems, physical laws like the conserva-
tion of mass, energy, etc. sometimes guarantee that integral averages of the solution, say

∫
Ω

u(x, t) dx or∫
Ω

u2(x, t) dx, remain bounded throughout the evolution, whereas it may be difficult or even impossible to
establish the boundedness of integral norms (let alone uniform norms) involving spacial derivatives. This
suggests to construct a solvability theory for (12) and similar problems in a generalized sense, that is, in the
sense of distributions, as it is known from the theory of linear partial differential equations (e.g., [27]).

However, locally convex spaces of distributions, in particular the spaceD(Ω) of Schwartz distributions,
are “not good” for nonlinear problems. First: this is due to the fact that it is not possible to define a
“point-wise” product of two distributions, in general. Second: locally convex spaces which are not Banach
spaces are not suitable for nonlinear analysis, mainly because the inverse function theorem fails to hold in
such spaces.
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Thus one has to find a setting which, on the one hand, involves spaces of low regularity and, on the
other hand, uses Banach spaces of distributions which are not too singular. Of course, this necessitates a
concept of solvability which does not involve classical but distributional derivatives. Consequently, one is
led to look forweak solutionsrather than for classical ones.

Originating in the work of Leray [30], Friedrichs [24], Sobolev [35], and others, a concept of weak
solutions is well understood and easy to explain:

Suppose thatu is a classical solution of (12). Then, given a “test function”ϕ ∈ C1(Ω), we multiply
the first equation in (12) byϕ, integrate overΩ, integrate by parts by means of Green’s formula, and, using
obvious notation, arrive at

∫

Ω

ϕ∂tu dx +
∫

Ω

∇ϕa(u)∇u dx =
∫

Ω

ϕf(u) dx +
∫

Γ

ϕg(u) dσ.

Setting

〈v, w〉 :=
∫

Ω

vw dx , 〈v, w〉Γ :=
∫

Γ

vw dσ,

this relation can be expressed more succinctly by

〈ϕ, ∂tu〉+
〈∇ϕ, a(u)∇u

〉
=

〈
ϕ, f(u)

〉
+

〈
ϕ |Γ, g(u)

〉
Γ
, (14)

which has to hold for eachϕ ∈ C1(Ω). Now a functionu is said to be aweak solutionof (12), providedu is
such that each term of (14) is well-defined forϕ ∈ C1(Ω) and such that (14) holds for everyϕ ∈ C1(Ω).
Thus every classical solution is a weak one, whereas the converse does not hold, in general.

Observe that the concept of weak solutions is much closer to the physical relevant formulation (1) than
this is the case for the (mathematically idealized) infinitesimal conservation law (2).

In order to understand the concept of weak solutions better, first assume thatw is a given function
in L∞(Ω) (where, here and below, we do not indicate notationally that our function spaces are either spaces
of RN -valued orRN×N -valued functions, depending on the context). Thena(w) belongs toL∞(Ω) also,
so that

〈∇ϕ, a(w)∇v
〉

is well-defined if∇ϕ and∇v are square integrable. This suggests to introduce the
Sobolev spaceV := H1(Ω) of all functions inL2(Ω) whose first derivatives belong toL2(Ω) as well. Then

(
(ϕ, v) 7→ (∇ϕ, a(w)∇v

))
: V × V → R (15)

is a continuous bilinear map. Observe thatV
d

↪→ H := L2(Ω), where
d

↪→ means continuous and dense

embedding. Consequently,H
d

↪→ V ′, whereV ′ is the dual space ofV , and we see thatV
d

↪→ V ′. Elementary
functional analysis guarantees the existence of a unique bounded linear operatorA(w) from V into V ′,
that is,

A(w) ∈ L(V, V ′),

such that 〈
ϕ,A(w)v

〉
V ′ =

〈∇ϕ, a(w)∇v
〉

, ϕ, v ∈ V, (16)

where〈·, ·〉V ′ denotes the duality pairing betweenV ′ and(V ′)′ = V . Similarly, by using the trace theorem
from the theory of Sobolev spaces and imposing suitable restrictions onf andg, one finds that there exists
a uniqueF(w) ∈ V ′ satisfying

〈
ϕ,F(w)

〉
V ′ =

〈
ϕ, f(w)

〉
+

〈
ϕ |Γ, g(w)

〉
Γ

, ϕ ∈ V.

We do not go into detail concerning hypotheses forf andg since, in our models, the operatorF(w) is (in
a certain precise sense) less important than the bilinear term (16) involving spacial derivatives. Hence we
concentrate on that latter term.

Lastly, interpreting∂tu as an element,̇u, of V ′, one sees that (14) takes the form

〈ϕ, u̇〉V ′ +
〈
ϕ,A(u)u

〉
V ′ =

〈
ϕ,F(u)

〉
V ′ , ϕ ∈ V,
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which can be expressed equivalently by saying thatu is a solution of the initial value problem

u̇ +A(u)u = F(u) , t > 0 , u(0) = u0 (17)

in the Hilbert spaceV ′. Thus we have found a formulation of our model problem (12) as an ordinary
differential equation — a nonlinear evolution equation — in a Banach space, namely inV ′.

5. Why classical methods fail

Now we have to find conditions guaranteeing the solvability of (17). A standard hypothesis in the theory of
continuous bilinear forms in Hilbert spaces is a coercivity requirement. It amounts to assuming that there
exists a constantα > 0 such that

〈
v,A(w)v

〉
V ′ ≥ α ‖v‖2V , v ∈ V , w ∈ L∞(Ω). (18)

It is not difficult to verify that this uniform coercivity condition implies, in the case of our model prob-
lem (12), that the matrix of diffusion coefficients satisfies the strong ellipticity condition

a(w) + a(w)> ≥ 2α , w ∈ C(Ω). (19)

Now suppose that condition (18) is satisfied. Then, in order to solve problem (17), it is natural to
consider two steps.

In step(i) we linearize the equation in (17) by fixingT > 0 and

w ∈ L∞
(
(0, T ), L∞(Ω)

)
(20)

and insertingw in all nonlinear terms. Thus we arrive at the linear initial value problem

v̇ +A(w)v = F(w) , 0 < t ≤ T , v(0) = u0. (21)

Thanks to hypothesis (18) we can employ a Galerkin method, as introduced in the theory of evolution
equations by E. Hopf [26] in his famous paper on the global weak solvability of the Navier-Stokes equations
from mathematical fluid mechanics, and as widely exploited and popularized by J.L. Lions [31], O.A. Lady-
zhenskaya [29], and others. This method provides us with a unique solution

v := v(w) ∈ L2

(
(0, T ), V

) ∩H1
(
(0, T ), V ′)

of (21).
Step(ii) then consists in showing that the map

w 7→ v(w) (22)

possesses a fixed point, which is obviously a solution of the nonlinear problem (12).
However, this approach poses serious difficulties, namely:
• problem(1): The solution of the linearized equation will not belong to the same class asw, in general,

that is,
v(w) /∈ L∞

(
(0, T ), L∞(Ω)

)
,

in general. Consequently, the fixed point map (22) does not map back into its domain. Thus it is not possible
to apply methods from topology or nonlinear functional analysis guaranteeing the existence of a fixed point.
In other words: step (ii) does not work, in general.

The situation is much better ifA, that isa, is independent ofu since in that case the regularity of (20)
is not needed. Thus it is possible to use the above scheme to prove the well-posedness of thesemilinear
initial value problem

u̇ +Au = F(u) , t > 0 , u(0) = u0,
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which is induced by the semilinear parabolic system obtained from (12) in the case wherea is independent
of u. In fact, most of the papers published on semilinear parabolic problems employ the popular Galerkin
approach of step (i).

But, even restricting us to the narrow, but still important subclass of semilinear problems, we now
arrive at

• problem(2): Keeping in mind that we are predominantly interested insystems, it turns out that the
coerciveness assumption (18) is too restrictive and not satisfied in most important problems originating in
physics. For example, condition (19) is obviously not valid for the simple predator-prey system (13).

There are other methods for handling nonlinear evolution equations, namely the theory of monotone
operators going back to Minty and Browder, and the theory of accretive operators which has been developed
by Bénilan, Crandall, and others (see [37] for detailed explanations of those methods, as well as for concrete
examples). Although both theories apply to many problems of interest and then yield excellent results, they
do not cover systems of reaction-diffusion equations and related problems, and require coerciveness. Except
for very particular circumstances,systems of parabolic equations do induce neither monotone nor accretive
operators. In particular, they are not coercive.Thus a different approach is required.

6. Lp-theory

In analyzing the failure of the linearization approach outlined in the previous section we see that one of the
reasons why it does not work lies in the fact that the solutionv(w) of the linearized problem (21) does not
possess enough regularity to yield a well-defined fixed point problem (22). However, better regularity can
easily be obtained.

For this we return to the definition of the linear operatorA(w) via the bilinear form (15). We again fix
w ∈ C(Ω) and also fix a real numberp > n. Then it is easily verfied that

(
(ϕ, v) 7→ 〈∇ϕ, a(w)∇v

〉)
: H1

p′ ×H1
p → R (23)

is a well-defined continuous bilinear form, whereH1
q := H1

q (Ω) = W 1
q (Ω) is the usual Sobolev space of

order1 for 1 < q < ∞, and1/q + 1/q′ = 1. Now we note that

X1 := H1
p

d
↪→ Lp , H1

p′
d

↪→ Lp′ .

Thus, settingX0 := (H1
p′)
′ with respect to the duality pairing naturally induced by〈·, ·〉, that is, the

Lp-duality pairing, it follows that

X1
d

↪→ Lp
d

↪→ X0.

Consequently, (23) implies the existence of a unique

A(w) ∈ L(X1, X0)

satisfying 〈
ϕ,A(w)v

〉
X0

=
〈∇ϕ, a(w)∇v

〉
, v ∈ X1 , ϕ ∈ H1

p′ .

Similarly as in theL2-case, given suitable assumptions forf andg, we can define a nonlinear mapF by
〈
v, F (w)

〉
:=

〈
ϕ, f(w)

〉
+

〈
ϕ |Γ, g(w)

〉
Γ

, ϕ ∈ H1
p′ . (24)

SinceC1(Ω) is dense inH1
p′ , it follows that the weak form of (12) gives rise to an initial value problem

u̇ + A(u)u = F (u) , t > 0 , u(0) = u0 (25)

in the Banach spaceX0. Thus (12) is now given aweakLp-formulation.This harmless looking slight twist,
the passage fromL2 to Lp, increases considerably the level of sophistication. But, as a reward, it yields a
powerful method to deal with noncoercive problems.
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Now we proceed similarly as above. We fixT > 0 and

w ∈ C
(
[0, T ], C(Ω)

)
(26)

and consider the linearized problem

v̇ + A(w)v = F (w) , 0 < t ≤ T , v(0) = u0. (27)

Supposethat (27) has a unique solution

v(w) ∈ C
(
[0, T ], X1

) ∩ C1
(
[0, T ], X0

)
.

Then, sincep > n impliesX1 ↪→ C(Ω) by Sobolev’s embedding theorem, it follows that

v(w) ∈ C
(
[0, T ], C(Ω)

)
.

Thus (26) shows that the fixed point mapw 7→ v(w) is well-defined in the Banach spaceC
(
[0, T ], C(Ω)

)
.

Hence step (ii) of the procedure outlined in Section 5 is now possible, in principle.
But now we are faced with the problem of solving the linear initial value problem (27). For this we first

study an even simpler version whereA is a constant map (note thatA(w) is an operator-valued function
of t). In other words, suppose that

A ∈ L(X1, X0)

and consider the linear problem

v̇ + Av = f , t > 0 , v(0) = u0 (28)

in X0, wheref : R+ → X0 is given (satisfying suitable restrictions).
In our present setting the Galerkin approach cannot be used anymore. In fact, sincep 6= 2 (if n ≥ 2),

a coercivity assumption, which is the basis of that method, does not even make sense.
It is well-known that linear differential equations in general Banach spaces can be efficiently handled

by the theory of operator semigroups. Recall that we are predominantly interested in reaction-diffusion
systems containing as a particularly simple and important submodel the linear heat equation. One knows
that the heat operator gives rise to a so-called analytic semigroup. This class of semigroups possesses an
important smoothing property, being the abstract counterpart of the smoothing property inherent in the heat
equation. Thus in the general case of (28) we impose the condition that

−A generates an analytic semigroup onX0.

Linear operators possessing this property can be characterized by the validity of a resolvent estimate of
the form

‖(λ + A)−1‖L(X0) ≤ c/|λ| , Reλ ≥ ω, (29)

wherec andω are suitable positive constants (and equation (29) is to be interpreted in its complexified
version). Thus we have to prove thatA satisfies (29), whereA is defined by

〈ϕ,Av〉X0 := 〈∇ϕ, a∇v〉 , v ∈ X1 , ϕ ∈ H1
p′ , (30)

a being an(N ×N)-matrix-valued continuous function onΩ.
Note thatX0, the dual ofH1

p′ , is not a space of distributions onΩ and that the definition ofA is implicit.
Thus it is by no means clear how to verify the validity of the resolvent estimate (29).

However, observe that (30) is related to the weakLp-formulation of the linear parabolic problem (5)
(in the case whereu is anN -vector-valued function). In other words,A is induced by the “boundary value
problem”

u 7→ (A0u,B0u) :=
(−∇ · (a∇u), a ∂νu

)
.
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With this boundary value problem we can associate itsLp-realizationA0, defined by

dom(A0) := H2
p,B , A0u := Au,

where
H2

p,B :=
{

u ∈ H2
p (Ω) ; a ∂νu = 0

} d
↪→ Lp(Ω).

The operatorA0 can be studied by techniques from the theory of linear partial differential equations, using
a combination of Fourier analysis inLp-spaces, functional analysis, and hard analysis. By this way it is
possible to establish resolvent estimates of type (29) forA0 on the Banach spaceLp(Ω), provideda satisfies
the followingnormal ellipticitycondition:

given anyx ∈ Ω, all eigenvalues of the(N ×N)-matrixa(x) possess strictly positive real parts.(31)

In fact, this condition is necessary and sufficient for the validity of (29) (cf. [1, Theorems 2.4 and 4.4]).
One easily sees that (31) is satisfied if the coercivity assumption (19) is true, that is, if the operatorA0

is strongly uniformly elliptic. But, ifN > 1, (31) is much weaker than (19). For example, condition (31)
is always satisfied in the predator-prey problem (13).

It should be mentioned that (31) is satisfied iff the linear operator∂t +A0 is Petrowski parabolic.

7. Interpolation-extrapolation scales

According to the preceding considerations we know that we can solve (in principle) problem (28) ifA is
replaced byA0. However, there are many good (technical and other) reasons for studying (12) in spaces
weaker thanLp(Ω), particularly inX0. We recall two of the most fundamental ones:

• a weak setting facilitates the derivation of a priori bounds;

• in a weak setting it is easy to incorporate nonlinear boundary conditions,

namely, by incorporating them into the right-hand side of (25) as is indicated by (24).
To render the weakLp-approach successful, we have to derive estimate (29) in the “weak space”X0.

Surprisingly, this can be done by completely abstract techniques which apply to other, seemingly different,
problems also:

We start with a reflexive Banach spaceE0 and a densely defined closed linear operatorA0 in E0 having
a nonempty resolvent set. Then we can construct a variety of scales of Banach spaces and related operators

[
(Eα, Aα) ; α ∈ R,

]
,

so-calledinterpolation-extrapolation scalespossessing the following properties:

(a) Eα
d

↪→ Eβ for α > β;

(b) Aα ∈ L(Eα+1, Eα), α ∈ R;

(c) −Aα generates an analytic semigroup onEα iff −A0 possesses the corresponding property onE0;

(d) Aβ ⊃ Aα for α > β.

Except for isomorphisms, the spacesEα and operatorsAα are uniquely determined by(E0, A0), provided
α ∈ Z. For α ∈ R\Z the corresponding spaces and operators are determined by interpolation techniques
and depend on the interpolation methods being used. (We refer to [6, Chapter V] for a detailed study of the
interpolation-extrapolation theory and to [3] for concrete examples.)

In the particular case where

E0 := Lp(Ω) , A0 := Lp-realization of(A0,B0),
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it is possible to construct an interpolation-extrapolation scale such that

E1/2 = X1 , E−1/2 = X0 , A−1/2 = A,

whereA is defined by (30), that is,A is the operator corresponding to the weakLp-formulation of the
boundary value problem(A0,B0). This is due to the fact that forα < 0 the pair(Eα, Aα) can be charac-
terized by a fundamental duality theorem.

Hence it follows from (29), the fact that this estimate holds iffA0 is normally elliptic, and from(c) that

−A generates an analytic semigroup onX0

iff a satisfies the normal ellipticity condition (31).

Of course, a good solvability theory for (28) is just a first (and easiest) step on the way to a solvability
theory for (25). Since the linearized operatorA(w) in (27) depends ont ∈ [0, T ], the next step is such a
theory for nonautonomous problems

v̇ + A(t)v = f(t) , 0 < t ≤ T , v(0) = v0. (32)

In this connection it is important that mild regularity hypotheses forA andf are imposed only. These
questions are studied in detail in the monograph [6].

8. Quasilinear evolution equations

By the preceding considerations we have put our model problem (12) into a general abstract framework
which we can study independently of the concrete application. More precisely, we are led to investigate
quasilinear evolution equations of the form

u̇ + A(u)u = F (u) , t > 0 , u(0) = u0 (33)

in an arbitrary Banach spaceE, given the basic hypothesis thatA(w) is, for each fixed time-independentw,
the negative generator of an analytic semigroup. By “quasilinearity” of (33) we mean that the nonlinearityF
is subordinate toA, and the dependence of the linear operatorA(w) onw is also weaker than the dependence
of u 7→ A(w)u onu. These vague formulations can be precisely quantified by studying (33) in appropriate
interpolation-extrapolation scales.

Having at our disposal a good theory for the nonautonomous parabolic evolution problem (32), argu-
ments basically known from the theory of ordinary differential equations can be adapted to our more general
situation to prove that (33) generates a local semiflow, which means, in particular, that (33) is well-posed
and depends continuously on the initial datumu0. Precise formulations and properties of the semiflow can
be found in [3].

It should be remarked that our approach is different from the “maximal regularity method” developed
by Da Prato, Grisvard, and Lunardi and presented in detail in [32]. Whereas those authors handle “fully
nonlinear equations” of the form

u̇ = f(u) in (0, T ] , u(0) = u0

with f being a suitable nonlinear map in some Banach space, our approach is particularly well suited for
the important class of quasilinear problems where it produces results which are superior to those obtained
by other methods.

In the particular case where (33) is the abstract formulation of (12) it follows that the reaction-diffusion
system (12) generates a local semiflow on the phase spaceH1

p (Ω). This well-posedness result is the basis
for qualitative studies addressing some of the questions outlined in (A)–(E) of Section 3. For example, by
means of a Hopf type bifurcation analysis it can be shown that the feedback problem for the predator-prey
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system (13), referred to in Section 2 is solvable, that is, there existf andg such that problem (8), with~k

given by (13), possesses periodic solutions (cf. [2]).
It is clear that problem (33) embraces a multitude of concrete applications different from (12). Moreover,

the interpolation-extrapolation technique is very flexible and gives rather precise results. Once a concrete
problem has been given an abstract formulation of type (33), in order to establish its well-posedness it
“only” remains to show that−A(w) generates an analytic semigroup for eachw in an appropriate phase
space and the mapsw 7→ A(w) andw 7→ F (w) are appropriately Lipschitz continuous. Of course, the
“correct” choice of the interpolation-extrapolation space in which the abstract formulation is set up is of
fundamental importance for the success of this method.

Admittedly, the verification of the properties outlined above is no easy task and often involves a lot of
sophisticated mathematics. However, this approach is capable of solving problems — in particular, nonco-
ercive ones — which are out of reach for the other known techniques. We refer to (the introduction of) [3],
as well as to the references given there, for some applications to parabolic problems not being reaction-
diffusion systems. More recent applications concern the Navier-Stokes equations ([10], [13], [14]), non-
Newtonian fluids ([4], [5], [7]), coupled systems of countably and uncountably many reaction-diffusion
equations arising from coagulation-fragmentation models ([9], [17]), parabolic equations involving mea-
sures ([12], [15], [16], [33], [34]), semilinear parabolic equations with nonlinearities of critical growth
([16], [18], [19]), and nonlinear dynamical boundary conditions [20].

9. A broader view

In order to summarize and to give a somewhat broader view I discuss now some of the interrelationships
of the theory of parabolic evolution equations with other fields of analysis, as indicated in the following
diagram
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I have put parabolic evolution equations in the middle, since they are in the center of my present interest,
and have grouped around them several other subjects. I did not put arrows on the connecting lines since in
many cases the interaction is bilateral.

Let us start at the left upper corner. It is well-known — and I have taken reaction-diffusion systems as
an example — that many concrete models for the understanding of phenomena in science lead to parabolic
evolution equations and, vice versa, results on parabolic evolution equations have immediate interpretations
and consequences for those models.

Partial differential equations are, of course, intimately connected with parabolic evolution equations.
However, neither forms a subfield of the other. For example, parabolic evolution equations encompass also
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other systems like integro-differential equations or infinite systems of reaction-diffusion equations involving
even uncountably many unknowns, as they occur in statistical physics (see [9], [17]).

The connection between parabolic evolution equations and Fourier analysis lies on a more technical
level and can be described adequately by more detailed explanations only.

As pointed out earlier, the choice of the correct state space is fundamental when studying partial differ-
ential equations, parabolic evolution equations in particular. The well-developed theory of function spaces
provides us with a wide variety of possibilities. Spaces more refined than integer order Sobolev spaces like
Besov and Bessel potential spaces have become increasingly important during the last years. This is true,
in particular, in the study of the Navier-Stokes equations (cf. [10], [13], [14], and the references therein).

Interpolation theory provides us, on a more abstract level, with the right tool for measuring very pre-
cisely regularity properties which are the key to a successful approach to nonlinear equations.

As I have explained, semigroup theory is precisely what is needed — on the abstract level — to derive
the most general local existence theory for parabolic evolution equations. Spectral theory comes in when
one starts to study stability questions and the long-time behavior.

I could not into detail on the relation between parabolic evolution equations and infinite-dimensional
harmonic analysis. Among other things, it has to do with “maximal regularity” questions and has, in par-
ticular during the last few years, stimulated much research in Banach space theory. I only want to mention
recent results of Weis [36], Kalton [28], and others on Fourier multiplier theorems with operator-valued
symbols in vector-valuedLp-spaces. Those results are tied to the theory of UMD spaces, for example.
(Also see [22], [23] and, for results valid for arbitrary Banach spaces, [8], [11].)

Finally, methods from nonlinear functional analysis, fixed point theorems, bifurcation theory, etc., play
an important r̂ole in the difficult and fascinating investigation of qualitative properties of the semiflows
generated by parabolic evolution equations.

I hope that this enumeration of subjects, which is far from being complete, shows that the field of
parabolic evolution equations is a fascinating one, invoking a lot of deep and beautiful mathematics.

10. Future directions

I close this article by a word on possible future directions of research. In order not to get lost in general
speculations, I mention one particular aspect only, namely the fact thatsystemsof evolution equations
are of predominant interest for applications. This is true, in particular, for strongly coupled systems of
quasilinear reaction-diffusion equations. In this case, as indicated in the preceding sections, the basic theory
on local existence, uniqueness, and continuous dependence on the data is now available. Thus it is time to
concentrate on the study of the qualitative behavior of the associated semiflow.

Admittedly, this is a formidable task since most of the known tools, which have been used very success-
fully in the study of a single parabolic equation, do not work in this case. In particular:

• In most systems of interest there is no variational structure for the principal part. This implies that
energy estimates are not available, in general.

• The maximum principle does not hold for systems. That principle is — implicitly or explicitly —
one of the main tools for the qualitative study of a single second order parabolic equation.

The nonavailability of these basic tools makes these problems extremely difficult. However, it is a great
challenge and fascinating task to develop new techniques and new ideas.

Clearly, there is no recipe for finding new results and having new ideas. Nevertheless, David Hilbert
has a worthwhile advice for this case also. In his Paris speech of the year 1900 he says:
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Wenn uns die Beantwortung eines mathematischen Problems nicht gelingen will, so liegt
häufig der Grund darin, daß wir noch nicht den allgemeineren Gesichtspunkt erkannt haben,
von dem aus das vorgelegte Problem nur als einzelnes Glied einer Kette verwandter Proble-
me erscheint. Nach Auffindung dieses Gesichtspunktes wird häufig nicht nur das vorgelegte
Problem unserer Erforschung zugänglicher, sondern wir gelangen so zugleich in den Besitz
einer Methode, die auf die verwandten Probleme anwendbar ist. . .
Eine noch wichtigere Rolle als das Verallgemeinern spielt — wie ich glaube — bei der
Bescḧaftigung mit mathematischen Problemen das Spezialisieren. Vielleicht in den meisten
Fällen, wo wir die Antwort auf eine Frage vergeblich suchen, liegt die Ursache des Mißlin-
gens darin, daß wir einfachere und leichtere Probleme als das vorgelegte noch nicht oder noch
unvollkommen erledigt haben. Es kommt dann alles darauf an, diese leichteren Probleme
aufzufinden und ihre L̈osung mit m̈oglichst vollkommenen Hilfsmitteln und durch verallge-
meinerungsf̈ahige Begriffe zu bewerkstelligen.2
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[26] Hopf, E. (1951).Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen.Math. Nachr., 4,
213–231.
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[35] Sobolev, S. (1936). Ḿethode nouvellèa resoudre le problème de Cauchy pour leśeqautions lińeaires hyper-
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