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A study of the tangent space model of the von Mises-Fisher
distribution

A. Chakak and L. Imlahi

Abstract. For a random rotationX = M0e
φ(ε) whereM0 is a3 × 3 rotation,ε is a trivariate random

vector, andφ(ε) is a skew symmetric matrix, the least squares criterion consists of seeking a rotationM
called the mean rotation minimizingtr[(M−E(X))t(M−E(X))]. Some conditions on the distribution
of ε are set so that the least squares estimator is unbiased. Of interest is whenε is normally distributed
N(0, Σ). Unbiasedness of the least squares estimator is dealt with according to eigenvalues ofΣ.

Un estudio del espacio tangente modelo de la distribuci ón de von
Mises-Fisher

Resumen. Dada una rotación aleatoriaX = M0e
φ(ε), dondeM0 es una rotación de3 × 3, un

vector aleatorio trivarianteε y φ(ε) es una matriz antisiḿetrica, el criterio de ḿınimos cuadrados consiste
en hallar una rotación M denominada rotación minimizantetr[(M − E(X))t(M − E(X))]. Algunas
condiciones sobre la distribución deε son dadas de manera que el estimador de mı́nimos cuadrados sea
insesgado. Es relevante el caso en el queε est́a normalmente distribuidoN(0, Σ). La carencia de sesgo
del estimador de ḿınimos cuadrados es tratada mediante los autovalores deΣ.

1. Introduction

Downs (1972) introduced the matrix von Mises-Fisher distribution to describe a random position of a rigid
object. This general exponential distribution is parametrized by ann × p (p ≤ n) matrix F, which is
decomposed as a product of two square matricesM0K whereM0 is an(n × n) matrix called the polar
component minimizingtr[(F − X)′(F − X)], andK is a p × p called the elliptical component. Large
eigenvalues ofK correspond to a concentrated distribution around its modal valueM0. This matrix distri-
bution has been studied by Downs (1972), Khatri and Mardia (1977), Jupp and Mardia (1989), and Mardia
and Jupp (2000). Prentice (1986) notes that almost in every practical applicationn = 3, and suggests de-
veloping statistical inference onSO(3) the space of3 × 3 rotations. In applications where data are close
to a fixed rotation, it is better to develop statistical inference on the tangent space. The tangent space to
SO(3) at M0 is the tri-dimensional space of3 × 3 skew symmetric matrices. Ifφ(ε) is a skew symmetric
matrix whose elements are components ofε, M0(I + φ(ε)) describes the rotations aroundM0 whenε is
close to(0, 0, 0)t. HoweverM0(I + φ(ε)) is not a rotation. InsteadM0e

φ(ε) is a rotation whenε is close
to (0, 0, 0)t. The space of such rotations is called the tangent space approximation atM0. Under the matrix
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von Mises-Fisher distribution, Downs (1972) shows that the tangent approximation model is such thatε is
distributed asN(0, Σ). An application of this model is provided by Rancourtet al (2000).

In Downs (1972) the maximum likelihood estimation ofM0, under the matrix von Mises-Fisher distri-
bution, is the rotationM called the mean rotation closest toE(X) in the least squares sense; that isM is the
rotation minimizingtr[(E(X)−M)t(E(X)−M)], wheretr(A) designates the trace of the square matrix
A. EquivalentlyM is the rotation maximizingtr[M tE(X)]. For a random sample of rotations of sizen
, Xn = 1

n

∑n
i=1 Xi is substituted toE(X) and that the maximum likelihood estimate ofM0 is obtained

from the singular value decomposition ofXn asM = PQt whereXn = Pdiag(γ1, γ2, γ3)Qt, P etQ are
rotations andγ1 > γ2 > |γ3| . Unfortunately this latter inequality is not always satisfied. In this paper we
investigate the unbiased least squares estimate of the mean rotation under the tangent approximation model.
Precise results are obtained when in additionε ∼ N(0,Σ).

In section 2, we set some conditions so that the least squares estimate of the mean rotation is unbiased.
These conditions are mainly obtained from singular decomposition of the mean ofeφ(ε) relative to the
distribution ofε, in which case not all of its eigenvalues are null and the sum of pairs of its eigenvalues
must be non-negative. In section 3 we determine the set of matricesΣ satisfying some sufficient conditions
set in section 2 whenε ∼ N(0, Σ). It turns out that the expressions obtained are sometimes messy. A
temptative fit is then provided when necessary.

2. General setup

A rotation is a matrixM satisfyingM tM = I anddet(M) = 1, whereM t is the transpose of the matrix
M . Every non nul vector provides a skew symmetric matrix, which provides a rotation by exponentiation.
Let ε = (ε1, ε2, ε3)t ∈ R3, and letφ(ε) be the skew symmetric matrix associated toε as

φ(ε) =




0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0


 .

By definition of the exponential of a matrix,

eφ(ε) =
∞∑

i=0

1
n!

[φ(ε)]n = cos(θ)I +
sin(θ)

θ
φ(ε) +

1− cos(θ)
θ2

εεt.

This is a rotation of angleθ = (εtε)1/2 around axisε/(εtε)1/2.
Let M0 be a3× 3 rotation andX = M0e

φ(ε) be a random rotation around the rotationM0, whereε is
the random vector representing the experimental error. Denote byE(X) the mathematical expectation of
X with respect to the distribution ofε. UsuallyE(X) is not a rotation, then it differs fromM0.

To define a measure of location for the random rotationX, we take the closest rotation toE(X) in the
least squares sense. InSO(3), the least squares estimateM minimizestr[{E(X) −M}t{E(X) −M}].
Howevertr[{E(X)−M}t{E(X)−M}] = tr[E(X)tE(X)]+ 3− 2tr[M tE(X)], thenM is the rotation
maximizing tr[M tE(X)]. This criterion provides a mean rotation equivariant to changes in the system
of axes in which it is recorded. IfM is the mean rotation ofX, then the mean rotation ofM1XM2 is
M1MM2, whereM1,M2 are rotations.

It seems natural to require that the mean rotation aroundM0 is M0. The next proposition presents two
conditions on the distribution ofε so thatM0 is the mean rotation ofX.

Proposition 1 The mean rotation ofX = M0e
φ(ε) is M0 provided that the two conditions hold:

1) E( sin(Θ)
Θ ε) = (0, 0, 0)t.

2) The eigenvaluesγ1, γ2, andγ3 of the matrixH = E[cos(Θ)I + 1−cos(Θ)
Θ2 εεt], written in decreasing

order are not all equal to0 and satisfyγ1 ≥ γ2 ≥ |γ3| , whereΘ =
√

εtε = ‖ε‖.
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PROOF. One hasE(X) = M0H. To find the rotationM maximizingtr(M tM0H), following Mackenzie
(1957) and Stephens (1979), one uses the singular value decomposition ofM0H. This decomposition can
be expressed in terms of the eigenvalues ofH asH = PΓP t. HenceM0H = M0PΓP t whereΓ is the
diagonal matrix of theγi’s andtr(M tM0H) = tr(M tM0PΓP t) = tr(P tM tM0PΓ). This expression is
maximum whenP tM tM0P = I, that isM = M0 and the maximum value is

∑3
i=1 γi. ¥

Remark 1 The condition 2 of Proposition 1 holds when the three sumsSij = γi +γj ≥ 0, 1 ≤ i < j ≤ 3,
andtr(H) = γ1 + γ2 + γ3 > 0. ¥

Although the assumption thatγ1 ≥ γ2 ≥ |γ3| is not explicitly stated in the proof, it is necessary for the
conclusion of the Proposition 1 to hold. When it fails,tr(M t

0E(X)) may not be maximum anymore. For
instance ifε gives the probability mass1/2 to both(π, 0, 0) and(−π, 0, 0), thenγ1 = −γ2 = −γ3 = 1.
The mean rotation ofX is notM0 butM0diag(1,−1,−1).

If the distribution ofε is invariant to changes in the sign of any of its components thenE( sin(Θ)
Θ ε) =

(0, 0, 0)t, and the conclusion of Proposition 1 holds provided thatγ1 ≥ γ2 ≥ |γ3| and
∑3

i=1 γi > 0. A

sufficient condition for this isE[cos(Θ)] > 0 , sinceE( 1−cos(Θ)
Θ εεt) is a diagonal matrix with elements

E(1−cos(Θ)
Θ ε2

i ) > 0. This is the case when most of the probability mass ofε is in the sphereεtε ≤ (π/2)2.

Proposition 2 The singular value decomposition of the matrixH is:

H =
3∑

i=1

E(cos(Θ) +
1− cos(Θ)

Θ
λiZ

2
i )eie

t
i

whereΣ =
∑3

i=1 λieie
t
i is the singular value decomposition ofΣ, and theZ1, Z2, Z3 are i.i.d. N(0, 1).

PROOF. Let λ1 ≥ λ2 ≥ λ3(≥ 0) be the eigenvalues ofΣ, written in a decreasing order, associated to
the eigenvectorsei, i = 1, 2, 3 respectively. The sequence{e1, e2, e3} form an orthonormal basis. The
singular value decomposition ofΣ is Σ = λ1e1e

t
1 + λ2e2e

t
2 + λ3e3e

t
3. A decomposition ofε on the basis

of the eigenvectors isε = ε1e1 + ε2e2 + ε3e3, where forεi = εtei is normally distributed with zero mean
and varianceλi. Moreovercov(εi, εj) = δijλi, δij = 1, for i = j and0 otherwise. Normalizing the
components,εi =

√
λiZi, i = 1, 2, 3, theZi ’s are i.i.d. N(0, 1). Thusε =

∑3
i=1

√
λiZiei, and‖ε‖ =

Θ =
√

εtε =
√

λ1Z2
1 + λ2Z2

2 + λ3Z2
3 . One hasεεt =

∑3
i,j=1

√
λiλjZiZjeie

t
j . Θ is an even function of

theZi’s, which are independent with zero mean. ThenE[ 1−cos(Θ)
Θ2 Zi] = 0, andE[

√
λiλj

1−cos(Θ)
Θ2 ZiZj ] =

0, 1 ≤ i 6= j ≤ 3. Therefore

E
{
[1− cos(Θ)]εεt/Θ2

}
=

3∑

i,j=1

√
λiλjE[ZiZj(1− cos(Θ))/Θ2)]eie

t
j

=
3∑

i=1

λiE[Z2
i (1− cos(Θ))/Θ2]eie

t
i.

Writing I =
∑3

i=1 eie
t
i, the singular value decomposition ofH is

H =
3∑

i=1

E[cos(Θ) +
1− cos(Θ)

Θ2
λiZ

2
i ]eie

t
i,

with eigenvaluesγi = E[cos(Θ)+ 1−cos( Θ)
Θ2 λiZ

2
i ], i = 1, 2, 3 associated to the eigenvectorsei, i = 1, 2, 3

respectively. ¥
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3. Application to the tangent approximation model

Recall that under the von Mises-Fisher distribution, the tangent approximation model isM0e
φ(ε) with ε ∼

N(0, Σ). ThenE( sin(Θ)
Θ ε) = (0, 0, 0)t. The condition (1) of Proposition 1 is always satisfied in this case.

Proposition 3 For λ3 = λ2 = 0 < λ1, the condition 2) of Proposition 1 holds.

PROOF. Whenλ3 = λ2 = 0 < λ1, Θ =
√

λ1 |Z1|. The eigenvalues ofH areγ1 = 1, γ2 = γ3 =
E[cos(

√
λ1 |Z1|)] = E[cos(

√
λ1Z1)] = E(ei

√
λ1Z1) = e−λ1/2, as the characteristic function of a stan-

dardizedN(0, 1) evaluated at
√

λ1. Thereforetr(H) = 1 + 2e−λ1/2 > 0, andSij > 0, 1 ≤ i 6= j ≤ 3.

Whenλ3 = 0 < λ2 ≤ λ1, Θ =
√

λ1Z2
1 + λ2Z2

2 . The eigenvalues ofH are

γ1 = E[cos(Θ) +
1− cos(Θ)

Θ2
λ1Z

2
1 ],

γ2 = E[cos(Θ) +
1− cos(Θ)

Θ2
λ2Z

2
2 ],

γ3 = E[cos(Θ)].

Then the sums of pairs of eigenvalues are

S12 = γ1 + γ2 = 1 + E[cos(Θ)],

S13 = γ1 + γ3 = E[2cos(Θ) +
1− cos(Θ)

Θ2
λ1Z

2
1 ],

S23 = γ2 + γ3 = E[2cos(Θ) +
1− cos(Θ)

Θ2
λ2Z

2
2 ].

Note that(Z1, Z2) and(Z2, Z1) have the same distribution,S13 is obtained fromS23 by interchangingλ1

andλ2. Particularly,S13 = S23 whenλ1 = λ2.
First S12 = 1 + E[cos(Θ)] ≥ 0. To derive expressions ofS13 andS23, we evaluateE[cos(Θ)]. The

distribution ofΘ2 = λ1Z
2
1 + λ2Z

2
2 is a linear combination of two independent chi-squareχ2

1 distributions.
PutΘ =

√
WΨ, with W = Z2

1 + Z2
2 andΨ = (λ1Z

2
1 + λ2Z

2
2 )/(Z2

1 + Z2
2 ). ClearlyW is distributed as a

χ2
2 (with densitye−w/2

2 ), independently distributed fromβ1 = Z2
1

Z2
1+Z2

2
∼ B(1/2, 1/2) the beta distribution.

ThenW is independent ofΨ = (λ1 − λ2)β1 + λ2. Given[Ψ = ψ], and expanding the cosine in series,

E[Ψ=ψ][cos(Θ)] = E[cos(
√

Wψ)] = E[Σ∞i=0

(−ψW )i

(2i)!
].

The moments ofW areE(W i) = 2ii!. Given[Ψ = ψ],

E[Ψ=ψ][cos(Θ)] = G(ψ) = 1− ψ +
ψ2

3.1
− ψ3

5.3.1
+ . . .

Putψ = φ2, leads toG(φ2) = 1− φD(φ), where

D(φ) = φ− φ3

3.1
+

φ5

5.3.1
− φ7

7.5.3.1
+ ...

D(φ) satisfies a simple differential equation:D′(φ) = 1− φD(φ), whose solution is

D(φ) = e−φ2/2

∫ φ

0

eu2/2du.

Therefore

G(φ2) = 1− φD(φ) = 1− φe−φ2/2

∫ φ

0

eu2/2du.
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Transforming back toψ, we have

E[Ψ=ψ][cos(Θ)] = 1−
√

ψe−ψ/2

∫ √
ψ

0

eu2/2du = 1−
√

ψF (ψ),

whereF (x) = e−x/2
∫√x

0
eu2/2du, x > 0. Recall thatλ2Z

2
2/(λ1Z

2
1 + λ2Z

2
2 ) = λ2(1− β1)/Ψ. Then

S
[Ψ=ψ]
23 = E[Ψ=ψ][2cos(Θ) + (1− cos(Θ))

λ2Z
2
2

λ1Z2
1 + λ2Z2

2

]

= 2E[Ψ=ψ](cos(Θ)) + (1− E[Ψ=ψ](cos(Θ)))
λ2(1− β1)

ψ

= 2 +
√

ψe−ψ/2(
∫ √

ψ

0

e
u2
2 du)[

λ2(1− β1)
ψ

− 2]

= 2 +
√

ψF (ψ)[
λ2(1− β1)

ψ
− 2].

We consider the two situations:λ1 > λ2, andλ1 = λ2 separately. ¥

Proposition 4 For λ3 = 0 < λ2 < λ1, the condition 2) of Proposition 1 holds on the set{(λ1, λ2, 0) :
λ1 > λ2 > 0; 44

λ2log(1+λ2)
≤ λ1 ≤ 6e−1.8λ2 + 1

2e2.3(λ2−3) + 4.8}.

PROOF. Whenλ1 > λ2, β1 = ψ−λ2
λ1−λ2

. We have

S
[Ψ=ψ]
23 = 2 + F (ψ)[

ψ(λ2 − 2λ1) + λ1λ2√
ψ(λ1 − λ2)

].

Ψ is an affine transformation ofB(1/2, 1/2) with density 1

π
√

(ψ−λ2)(λ1−ψ)
. The explicit expression is

then

S23 = 2 + E

{
e−ψ/2(

∫ √
ψ

0

e
u2
2 du)[

ψ(λ2 − 2λ1) + λ1λ2√
ψ(λ1 − λ2)

]

}

= 2 +
∫ λ1

λ2

1
π
√

(ψ − λ2)(λ1 − ψ)
e−ψ/2(

∫ √
ψ

0

e
u2
2 du)[

ψ(λ2 − 2λ1) + λ1λ2√
ψ(λ1 − λ2)

]dψ.

S23 has no explicit expression, and the equationS23(λ1, λ2) = 0 has no explicit solution. Numerical
methods are used to determine the approximate contour of solutions. Then the subset{(λ1, λ2, 0) : λ1 >
λ2 > 0; 44

λ2log(1+λ2)
≤ λ1 ≤ 6e−1.8λ2 + 1

2e2.3(λ2−3) + 4.8} provides a convenient fit to the region where
S23 is positive.

Now interchangingλ1 andλ2, in S23,

S13 = 2 + E

{
e−ψ/2(

∫ √
ψ

0

e
u2
2 du)[

ψ(λ1 − 2λ2) + λ1λ2√
ψ(λ2 − λ1)

]

}

= 2 +
∫ λ1

λ2

1
π
√

(ψ − λ2)(λ1 − ψ)
× e−ψ/2(

∫√ψ

0
e

u2
2 du)√

ψ
× ψ(λ1 − 2λ2) + λ1λ2

(λ1 − λ2)
dψ.

Forψ ∈ [λ2, λ1]:

min(λ1, 2λ2) ≤ ψ(λ1 − 2λ2) + λ1λ2

λ1 − λ2
≤ max(λ1, 2λ2).
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[ψ(λ1 − 2λ2) + λ1λ2]/(λ1 − λ2) is an increasing function ofψ for λ1 ≥ 2λ2 with minimum value2λ2 at
ψ = λ2, and maximum valueλ1 at ψ = λ1. ThereforeS13 > 2 + min{λ1, 2λ2}F (λ1)√

λ1
> 2, which shows

thatS13 is positive. ¥

Proposition 5 For 0 = λ3 < λ2 = λ1, the condition 2) of Proposition 1 holds.

PROOF. Whenλ1 = λ2, Θ =
√

λ1(Z2
1 + Z2

2 ) andΨ is a constant equal toλ1. One hasE[cos(Θ)] =
1−√λ1F (λ1). This provides

S23 = 2E[cos(Θ)] + E[(1− cos(Θ))β1]

= 2 +
√

λ1e
−λ1/2

∫ √
λ1

0

e
u2
2 du[E(β1)− 2].

= 2− 3
2

√
λ1e

−λ1/2

∫ √
λ1

0

e
u2
2 du.

Noting that0 ≤ √
λ1F (λ1) ≤ 1.28495, thenS23 = S13 ≥ 0.07257 > 0, which implies that all theγ′is are

not null.
The last three cases deal with situations whenλ3 is positive. We havetr(H) = 1 + 2E[cos(Θ)].

The distribution ofΘ2 is a linear combination of i.i.d.χ2
1 distributions. Let’s writeΘ =

√
WΨ, with

W = Z2
1 + Z2

2 + Z2
3 , andΨ = λ1β1 + λ2β2 + λ3β3, whereβi = Z2

i /(Z2
1 + Z2

2 + Z2
3 ) ∼ B(1/2, 1). W ∼

χ2
3, independently distributed fromβi, i = 1, 2, 3; and hence independent ofΨ. Given[Ψ = ψ] in [λ3, λ1],

one has

E[cos(
√

Wψ)] =
∞∑

i=0

(−ψ)iE(W i)
(2i)!

.

The moments ofW are

E(W i) =
∫ ∞

0

xi+1/2e−x/2

Γ(3/2)23/2
dx

=
2i

Γ(3/2)

∫ ∞

0

yi+1/2e−ydy

=
2i

Γ(3/2)
Γ(i + 3/2)

=
(2i + 1)!

2ii!
.

Therefore

E[cos(
√

Wψ)] =
∞∑

i=0

(−1)i ψi

(2i)!
(2i + 1)!

2ii!

=
∞∑

i=0

(−1)i

i!
(
ψ

2
)i(2i + 1)

= e−ψ/2(1− ψ).

We get

tr(H) = 1 + 2E[cos(Θ)] = E[1 + 2(1−Ψ) exp(−Ψ
2

)].

However1 + 2 exp(−Ψ
2 )(1 − Ψ) ≥ 1 − 4 exp(− 3

2 ) ≥ 0.1074. Thus tr(H) > 0 implying that not all
eigenvalues ofH are null whenλ3 > 0. ¥
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Proposition 6 For 0 < λ3 = λ2 = λ1, the condition 2) of Proposition 1 holds .

PROOF. Whenλ1 = λ2 = λ3 > 0, the eigenvalues ofH are all equal andψ = λ1. The three sums of
pairs of eigenvalues are

S12 = S13 = S23 =
2
3
[1 + 2(1− λ1) exp(−λ1

2
)] ≥ 0.0716

which ends the proof. ¥

For the remaining cases we show thatS12 is positive first. Using the same argument as for the trace,
one has

γi = E[cos(Θ) +
1− cos(Θ)

Θ2
λiZ

2
i ]

= E[e−Ψ/2(1−Ψ)(1− λiβi

Ψ
) +

λiβi

Ψ
], i = 1, 2, 3.

makes

Sij = E[e−Ψ/2(1−Ψ)(1 +
λkβk

Ψ
) + 1− λkβk

Ψ
], 1 ≤ i 6= j 6= k ≤ 3.

That is,

S12 = E[e−Ψ/2(1−Ψ)(1 +
λ3β3

Ψ
) + 1− λ3β3

Ψ
],

S13 = E[e−Ψ/2(1−Ψ)(1 +
λ2β2

Ψ
) + 1− λ2β2

Ψ
],

S23 = E[e−Ψ/2(1−Ψ)(1 +
λ1β1

Ψ
) + 1− λ1β1

Ψ
].

ExpressionS13 is obtained fromS23 by interchangingλ1 andλ2, since the joint distribution of(Z2
1 , Z2

2 , Z2
3 )

is the same for all permutations of theZ2
i ’s.

To evaluateS12, we writeΨ = λ3β3 + (1− β3)λ3C12, whereC12 = (λ1Z
2
1 + λ2Z

2
2 )/[λ3(Z2

1 + Z2
2 )],

which takes values in(λ2/λ3, λ1/λ3). The random variablesβ3 andC12 are independent, becauseC12 is
independent of(Z2

1 +Z2
2 , Z2

3 ). Then it is also independent ofβ3 as a continuous function of(Z2
1 +Z2

2 , Z2
3 ).

Writing

S12 = E

{
[e−Ψ/2(1−Ψ) +

1
2
][1 +

β3

β3 + C12(1− β3)
]
}

+ E[
1
2
− (

3
2
)

β3

β3 + C12(1− β3)
)]

The first term[e−Ψ/2(1−Ψ)+(1/2)][1+β3/(β3+C12(1−β3)] ≥ e−Ψ/2(1−Ψ)+1/2 > 0. As to the second
term,C12 ≥ λ2/λ3 ≥ 1 impliesβ3 + C12(1− β3) ≥ 1 makingE[1/2− (3/2)(β3/(β3 + C12(1− β3))] ≥
1/2− (3/2)E(β3) = 0. This shows thatS12 > 0.

Proposition 7 For 0 < λ3 < λ2 ≤ λ1, the condition 2) of Proposition 1 holds in the following situations:
i) 0.7λ1 ≤ λ3 < λ2 ≤ λ1.

ii)
√

1−C
C ((2−C)e−λ1/2−C) + arctg(

√
1−C

C )− ∫ arctg(

√
(1−C)

C )

0 e−
λ1C

2cos2z (1 + λ1C(1−C)
cos2z )dz ≥ 0,

whereλ3
λ1
≤ C ≤ min(λ2

λ1
, 0.7).

PROOF. Forλ1 ≥ λ2 > λ3 > 0, we studyS23 = γ2 + γ3 first. One has

S23 = E[e−Ψ/2(1−Ψ)(1 +
λ1β

Ψ
) + 1− λ1β

Ψ
],
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whereΨ = (λ1Z
2
1 + λ2Z

2
2 + λ3Z

2
3 )/(Z2

1 + Z2
2 + Z2

3 ). To evaluateS23, we writeΨ = λ1β + (1− β)λ1C,
whereC = (λ2Z

2
2 + λ3Z

2
3 )/(λ1(Z2

2 + Z2
3 )), andβ = Z2

1/(Z2
1 + Z2

2 + Z2
3 ). Note thatβ andC are

statistically independent, and thatλ3/λ1 ≤ C ≤ λ2/λ1 ≤ 1. Furthermore,β ∼ B(1/2, 1). Thus, one has
P (β < t) = t1/2. In the sequel letE(·) denote the expectation with respect toβ whenC is fixed. One has,

S23 = E(e−(λ1β+(1−β)λ1C)/2(1−Ψ)(1 +
λ1β

Ψ
) + 1− λ1β

Ψ
)

One can write

S23 = E

{
[(e−Ψ/2(1−Ψ) +

1
2
](1 +

β

β + C(1− β)
)
}

+E(
1
2
− (

3
2
)

β

β + C(1− β)
).

Noting that∀ψ: e−ψ/2(1− ψ) + 1/2 ≥ 1/2− 2e−3/2 = .0537 and thatC ≤ 1. One has

E(
β

β + (1− β)C
) =

√
C

(1− C)3/2
[

√
1− C

C
− arctg(

√
1− C

C
)]

A lower bound forS23 is then given by

1− 2e−3/2 + (−1− 2e−3/2)
√

C

(1− C)3/2
[

√
1− C

C
− arctg(

√
1− C

C
)]

This is positive as long asC is bigger than0.7. We now consider the case where0 ≤ C ≤ 0.7. Direct
calculation gives

E(exp(−Ψ/2)(1−Ψ)(1 +
λ1β

Ψ
)) =

exp(−λ1C/2)
∫ 1

0

exp(−λ1(1− C)x2/2)[1− λ1C − λ1x
2(2− C)

+
x2

C + (1− C)x2 ]dx

One has

∫ 1

0

e−λ1(1−C)x2/2[λ1x
2(2− C)]dx =

2− C

1− C

∫ 1

0

e−λ1(1−C)x2/2dx− 2− C

1− C
e−λ1(1−C)/2

Thus

E(exp(−Ψ/2)(1−Ψ)(1 +
λ1β

Ψ
)) =

exp(−λ1C/2)
∫ 1

0

exp(−λ1(1− C)x2/2)[− 1
1− C

− λ1C

+
x2

C + (1− C)x2 ]dx +
2− C

1− C
exp(−λ1/2)
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Writing x2

C+(1−C)x2 = 1
1−C (1− C

C+(1−C)x2 ) and rearranging the terms, we get

E(exp(−Ψ/2)(1−Ψ)(1 +
λ1β

Ψ
)) =

−
√

C

(1− C)3/2
exp(−λ1C/2)

∫ 1

0

exp(−λ1C(1− C)x2/(2C))
[
1 + λ1C(1− C)(1 + (1− C)x2/C)

1 + (1− C)x2/C

]
d(x

√
(1− C)/C) +

2− C

1− C
exp(−λ1/2)

Changing variabley = (1− C)1/2x/C1/2 leads to

E(exp(−Ψ/2)(1−Ψ)(1 +
λ1β

Ψ
)) =

−
√

C

(1− C)3/2

∫ √
1−C

C

0

exp(−λ1C(1 + y2)/2)

[
1 + λ1C(1− C)(1 + y2)

1 + y2 ]dy +
2− C

1− C
exp(−λ1/2)

Using the change of variablez = arctg(y) and using1 + tan(z)2 = 1/ cos(z)2, the last part of the
expectation gives

E(exp(−Ψ/2)(1−Ψ)(1 +
λ1β

Ψ
)) =

−
√

C

(1− C)3/2

∫ √
1−C

C

0

exp(−λ1C/(2cos2z))

[1 + λ1
C(1− C)

cos2 z
]dz +

2− C

1− C
exp(−λ1/2)

Adding terms, we have

S23 = E[
√

C

(1− C)3/2
{
√

1− C

C
((2− C)e−λ1/2 − C) + arctan(

√
1− C

C
)

−
∫ arctan(

√
(1−C)

C )

0

e−
λ1C

2 cos2 z (1 +
λ1C(1− C)

cos2 z
)dz}]

= E[A(λ1, C)].

Sinceλ2 > λ3, C = λ2−λ3
λ1

β + λ3
λ1

has a density λ1

π
√

(λ1c−λ3)(λ2−λ1c)
in (λ3

λ1
, λ2

λ1
) . ThenS23 ≥ 0

if A(λ1, C) ≥ 0.

To evaluateS13 we writeΨ = λ2β2 + (1− β2)λ2C, whereC = (λ1Z
2
1 + λ3Z

2
3 )/(λ2(Z2

1 + Z2
3 )), and

β2 = Z2
2/(Z2

1 + Z2
2 + Z2

3 ). C is in the interval(λ3/λ2, λ1/λ2) which contains 1. Recall that

S13 = E(e−Ψ/2(1−Ψ)(1 +
λ2β2

Ψ
) + 1− λ2β2

Ψ
).
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Calculation of the expectation relative toβ2 changes according toC > 1 or C < 1. WhenC = c ∈
[λ3/λ2, 1], interchangingλ1 andλ2, in S23,

E(e−Ψ/2(1−Ψ)(1 +
λ2β2

Ψ
) + 1− λ2β3

Ψ
)

= {
√

c

(1− c)3/2

√
1− c

c
[(2− c)e−λ2/2 − c] + arctan(

√
1− c

c
)

−
∫ arctan(

√
(1−c)

c )

0

e−
λ2c

2 cos2 z [1 +
λ2c(1− c)

cos2 z
]dz}

WhenC = c ∈ [1, λ1/λ2], using the same argument as forS12, we first note thatE(e−Ψ/2(1 − Ψ)(1 +
λ2β2

Ψ ) + 1− λ2β2
Ψ ) > 0. Moreover, one has

E(e−Ψ/2(1−Ψ)(1 +
λ2β2

Ψ
) + 1− λ2β2

Ψ
)

= 1− E(
λ2β2

Ψ
) + E[e−Ψ/2(1 +

β2

c− (c− 1)β2

−λ2c + λ2β2(c− 2))],

and

E(
β2

c− (c− 1)β2
) =

∫ 1

0

t

c− (c− 1)t
dt

2
√

t
.

Changing the variabley =
√

t
√

c−1
c , and writing y2

1−y2 = 1
2(1−y) + 1

2(1+y) − 1, direct calculation gives

E(
β2

c− (c− 1)β2
) =

√
c

2(c− 1)3/2
log(

1 +
√

1− 1/c

1−
√

1− 1/c
)− 1

c− 1
.

Also, using a change of variablex =
√

t,

E(e−Ψ/2(1 +
β2

c− (c− 1)β2
− λ2c + λ2β2(c− 2))

=
∫ 1

0

e[−λ2c+(c−1)λ2x2]/2[1− λ2c +
x2

c− (c− 1)x2
+ λ2x

2(c− 2)]dx.

The density ofC is λ2

π
√

(λ2c−λ3)(λ1−λ2c)
. Finally,

S13 =
∫ 1

λ3
λ2

λ2

π
√

(λ2c− λ3)(λ1 − λ2c)

√
c

(1− c)3/2
{
√

1− c

c
[(2− c)e−λ2/2 − c]

+ arctan(

√
1− c

c
)−

∫ arctan(

√
(1−c)

c )

0

e−
λ2c

2 cos2 z [1 +
λ2c(1− c)

cos2 z
]dz}dc

+
∫ λ1

λ2

1

λ2

π
√

(λ2c− λ3)(λ1 − λ2c)
{ c

(c− 1)
−

√
c

2(c− 1)3/2
log(

1 +
√

1− 1/c

1−
√

1− 1/c
)

+
∫ 1

0

e[−λ2c+(c−1)λ2x2]/2[1− λ2c +
x2

c− (c− 1)x2
+ λ2x

2(c− 2)]dx}dc.

which is always positive by numerical methods.¥
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Proposition 8 For 0 < λ3 = λ2 < λ1, the condition 2) of Proposition 1 holds on{(λ1, λ2, λ2) : 0 <
λ2 < λ1; 25

λ2log(1+λ2)
≤ λ1 ≤ 7e−2.3λ2 + 3.35 + 1

10e3(λ2−2)}.

PROOF. Whenλ1 > λ2 = λ3 > 0, C = λ2/λ1. S23 reduces to

S23 =
λ1

√
λ2

(λ1 − λ2)3/2
{
√

λ1/λ2 − 1[(2− λ2/λ1)e−λ1/2 − λ2/λ1]

+ arctan(
√

λ1/λ2 − 1)−
∫ arctan(

√
λ1/λ2−1)

0

e
−λ2

2 cos2 z [1 +
λ2(λ1 − λ2)

λ1 cos2 z
]dz},

A convenient fit for the region whereS23 is positive in the set

{(λ1, λ2, λ2) :
25

λ2 log(1 + λ2)
≤ λ1 ≤ 7e−2.3λ2 + 3.35 +

1
10

e3(λ2−2)}. ¥
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