RACSAM

Rev. R. Acad. Cien. Serie A. Mat.
VoL. 97 (1), 2003, pp. 41-51
Estadstica e Investigaéin Operativa / Statistics and Operations Research

A study of the tangent space model of the von Mises-Fisher
distribution

A. Chakak and L. Imlahi

Abstract. For a random rotatioX = Moe®®) whereM, is a3 x 3 rotation,e is a trivariate random
vector, andp(¢) is a skew symmetric matrix, the least squares criterion consists of seeking a radtation
called the mean rotation minimizirtg[(M — E(X))* (M — E(X))]. Some conditions on the distribution
of € are set so that the least squares estimator is unbiased. Of interest is vsheormally distributed

N (0,%). Unbiasedness of the least squares estimator is dealt with according to eigenvalues of

Un estudio del espacio tangente modelo de la distribuci 6n de von
Mises-Fisher

Resumen. Dada una rotadin aleatoriaX = Moe®®), dondeM, es una rotadin de3 x 3, un
vector aleatorio trivariantey ¢(¢) es una matriz antisiétrica, el criterio de fimimos cuadrados consiste
en hallar una rotabh M denominada rotadh minimizantetr[(M — E(X))*(M — E(X))]. Algunas
condiciones sobre la distribdni dee son dadas de manera que el estimador @emos cuadrados sea
insesgado. Es relevante el caso en elgest normalmente distribuidd’ (0, ). La carencia de sesgo
del estimador de mimos cuadrados es tratada mediante los autovalorEs de

1. Introduction

Downs (1972) introduced the matrix von Mises-Fisher distribution to describe a random position of a rigid
object. This general exponential distribution is parametrized by anp (p < n) matrix F, which is
decomposed as a product of two square matridg#’ where M, is an(n x n) matrix called the polar
component minimizingr[(F — X)'(F — X)], and K is ap x p called the elliptical component. Large
eigenvalues of{ correspond to a concentrated distribution around its modal ValgieThis matrix distri-

bution has been studied by Downs (1972), Khatri and Mardia (1977), Jupp and Mardia (1989), and Mardia
and Jupp (2000). Prentice (1986) notes that almost in every practical applisatiody and suggests de-
veloping statistical inference ofiO(3) the space 08 x 3 rotations. In applications where data are close

to a fixed rotation, it is better to develop statistical inference on the tangent space. The tangent space to
SO(3) at M, is the tri-dimensional space 8fx 3 skew symmetric matrices. #(=) is a skew symmetric
matrix whose elements are components, oM, (I + ¢(¢)) describes the rotations aroudd, whene is

close t0(0,0,0)*. HoweverMy(I + ¢()) is not a rotationInsteadM,e?®) is a rotation whem is close

to (0,0, 0)t. The space of such rotations is called the tangent space approximatifyn Binder the matrix

Presentado por Francisco Javierdair

Recibido 21 de Noviembre de 200Aceptado 8 de Mayo de 2002.

Palabras clave / KeyworddViatrix von Mises-Fiser distribution, rotation, unbiased least squares estimation, tangent approximation
model.

Mathematics Subject Classificatioré2 E

(© 2003 Real Academia de Ciencias, Hsaa

41



A. Chakak and L. Imlahi

von Mises-Fisher distribution, Downs (1972) shows that the tangent approximation model is sucis that
distributed asV (0, ). An application of this model is provided by Rancoetial (2000).

In Downs (1972) the maximum likelihood estimation/df), under the matrix von Mises-Fisher distri-
bution, is the rotatiord/ called the mean rotation closestAl§.X ) in the least squares sense; thatdss the
rotation minimizingtr[(E(X)— M)!(E(X)— M)], wheretr(A) designates the trace of the square matrix
A. Equivalently)M is the rotation maximizingr[M*E(X)]. For a random sample of rotations of size
, X, = 13" | X, is substituted taZ(X) and that the maximum likelihood estimate Jof, is obtained
from the singular value decomposition &f, asM = PQ* whereX,, = Pdiag(y1,v2,73)Qt, P etQ are
rotations andy; > 2 > |v3|. Unfortunately this latter inequality is not always satisfied. In this paper we
investigate the unbiased least squares estimate of the mean rotation under the tangent approximation model.
Precise results are obtained when in addition N (0, X).

In section 2, we set some conditions so that the least squares estimate of the mean rotation is unbiased.
These conditions are mainly obtained from singular decomposition of the megficbfrelative to the
distribution ofe, in which case not all of its eigenvalues are null and the sum of pairs of its eigenvalues
must be non-negative. In section 3 we determine the set of maliceisfying some sufficient conditions
set in section 2 when ~ N(0,X). It turns out that the expressions obtained are sometimes messy. A
temptative fit is then provided when necessary.

2. General setup

A rotation is a matrixM satisfyingM¢M = I anddet(M) = 1, whereM? is the transpose of the matrix
M. Every non nul vector provides a skew symmetric matrix, which provides a rotation by exponentiation.
Lete = (e1,2,23)" € R3, and letp(c) be the skew symmetric matrix associated s

0 —E&3 €2
¢(€) = €3 0 —€1
—&9 €1 0
By definition of the exponential of a matrix,
1 in (60 1-— 0
1 sin(6) cos( )E€t.

[0(e)]" = cos(0)] + J b(e) + =

s

o) — i
=0

This is a rotation of anglé = (<'c)'/? around axis/(st<)'/2.

Let M, be a3 x 3 rotation andX = M,e?(©) be a random rotation around the rotatibfy, wheres is
the random vector representing the experimental error. Denofg(Bj) the mathematical expectation of
X with respect to the distribution af Usually E(X) is not a rotation, then it differs from,.

To define a measure of location for the random rotafigrwe take the closest rotation f(X) in the
least squares sense. $i0(3), the least squares estimalté minimizestr[{ E(X) — M }'{E(X) — M}].
Howevertr[{ E(X) — M}{E(X)— M}] = tr[E(X)'E(X)]+ 3 — 2tr[M'E(X)], thenM is the rotation
maximizing ¢tr[M*F(X)]. This criterion provides a mean rotation equivariant to changes in the system
of axes in which it is recorded. I#/ is the mean rotation ok, then the mean rotation af/; X M, is
My M M, wherelM, M, are rotations.

It seems natural to require that the mean rotation araupds M. The next proposition presents two
conditions on the distribution af so that{; is the mean rotation ok .

Proposition 1  The mean rotation ok = M,e?©) is M, provided that the two conditions hold:

1) BE(2O) = (0,0,0)".

2) The eigenvalues;, v, and s of the matrixH = E[cos(©)I + 1’%2(@) eet], written in decreasing
order are not all equal td and satisfyy, > 75 > |ys|, where® = Vete = ||¢].
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PROOF One hasw(X) = MyH. To find the rotation\/ maximizingtr (MM, H ), following Mackenzie
(1957) and Stephens (1979), one uses the singular value decomposilifytof This decomposition can
be expressed in terms of the eigenvaluegiohs H = PI'Pt. HenceMyH = MyPI'P! wherel is the
diagonal matrix of they;'s andtr(M*MyH) = tr(M'MyPTP') = tr(P*M'MyPT). This expression is
maximum whenP! MMy P = I, that isM = M, and the maximum value E?:l ~v;. N

Remark 1 The condition 2 of Proposition 1 holds when the three sms= v; ++v; > 0,1 <i < j < 3,
andtr(H) =y +7v2+73>0. B

Although the assumption that > 2 > |v3| is not explicitly stated in the proof, it is necessary for the
conclusion of the Proposition 1 to hold. When it fails( M} E(X)) may not be maximum anymore. For
instance ife gives the probability mass/2 to both (7, 0,0) and(—,0,0), theny; = —v = —y3 = 1.
The mean rotation ok is not M, but Mydiag(1, -1, —1).

If the distribution ofe is invariant to changes in the sign of any of its components ﬂi@%—@)s) =
(0,0,0)%, and the conclusion of Proposition 1 holds provided that> 72 > |vs| andZ?:1 v > 0. A
sufficient condition for this i [cos(0)] > 0, sinceE(l’%S(e)est) is a diagonal matrix with elements

E(l‘%s(@)ﬁ) > 0. This is the case when most of the probability massisfin the spherets < (7/2)2.

7
Proposition 2 The singular value decomposition of the matkxs:

1 _ 3
%@)\LZZ)QP};

whereX = Zle Aie;el is the singular value decompositiondf and theZ, , Z,, Z5 are i.i.d. N(0, 1).

PROOE Let)\; > Ay > A3(> 0) be the eigenvalues &, written in a decreasing order, associated to
the eigenvectors;,i = 1,2,3 respectively. The sequende;, s, e3} form an orthonormal basis. The
singular value decomposition &fis ¥ = Ajeje! + Aaeseh + Azeses. A decomposition of on the basis

of the eigenvectors is = s1e; + 269 + 3e3, Where fore; = ete; is normally distributed with zero mean
and variance\;. Moreovercov(e;,e;) = d;;\;, 0;; = 1, for i = j and0 otherwise. Normalizing the
componentss; = A Zi,i = 1,2,3, the Z; 's are i.i.d. N(0,1). Thuse = 32°_ \/A; Zie;, and ||| =

O = Vele = /M Z2 + Xy Z2 + A3 Z2. One hage! = Zf’jzl VNN ZiZjeiet. © is an even function of
the Z;'s, which are independent with zero mean. THER=232) 7,] = 0, andE[/A\\; =59 7, 7,] =

0,1 <i # j < 3. Therefore

3
E{[1 —cos(0)]ee’/0%} = Z VANNEZZ;(1 — cos(@))/@Q)]e,;eé

ij=1

3
Z NE[Z2(1 — cos(©))/0%]e;el.

=1

Writing I = Zle e;el, the singular value decomposition Bf is

1 — cos(©
T() )\ZZ,? }eieﬁ,

with eigenvalues; = E[cos(®)+1_%i(e)

respectively. B

X\ Z?],i = 1,2,3 associated to the eigenvectersi = 1,2, 3
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3. Application to the tangent approximation model

Recall that under the von Mises-Fisher distribution, the tangent approximation mddgt#$>) with ¢ ~
N(0,%). ThenE(%fO) e) = (0,0,0)". The condition (1) of Proposition 1 is always satisfied in this case.

Proposition 3 For A3 = Ay = 0 < Ay, the condition 2) of Proposition 1 holds.

PROOFE When); = Ay = 0 < \;, © = /)1 |Z;|. The eigenvalues off arey; = 1, 72 = 73 =

Elcos(v/A1|Z1])] = Elcos(v/A1Z1)] = E(e'V?171) = e=*1/2, as the characteristic function of a stan-

dardizedN (0, 1) evaluated at/\;. Thereforetr(H) = 1+ 2e~*1/2 > 0,andS;; >0, 1 <i#j <3.
WhenXs =0 < X2 < \j, © = /A1 Z7 + X\ Z2. The eigenvalues ol are

M = FElcos(©)+ 57 M Z3,
1 — cos(©
Yo = FElcos(©)+ o2 ( )/\QZ%],
vs = FElcos(0)].
Then the sums of pairs of eigenvalues are
Si2 = v+ 72 =1+ Elcos(0)],
1 — cos(©) 9
S13 = 71 +73 = E[2c0s(0) + TAlzl]v
1-— (C]
523 = 2 + Y3 = E[2COS(@) + %())\QZQQ]

Note that(Z,, Z5) and(Z2, Z;) have the same distributioy; 3 is obtained fromS,3 by interchanging\,
and\,. Particularly,S13 = So3 whenA; = .

First S12 = 1 + E[cos(©)] > 0. To derive expressions &f;3 and Sz3, we evaluate®[cos(©)]. The
distribution of©? = \; Z? + X\, Z3 is a linear combination of two independent chi-squgfelistributions.
Put® = vWU, with W = Z2 + Z3 andV = (\1 Z7 + \2Z3)/(Z% + Z3). ClearlyW is distributed as a
X3 (with density%), independently distributed fromy, = % ~ B(1/2,1/2) the beta distribution.
ThenW is independent o = (\; — \2)51 + A2. Given[¥ = ¢}, and expanding the cosine in series,

EY=[cos(©)] = Eleos(y/ )] = Eli2e 5 )
).

The moments oft’ are E(W*) = 2%!. Given[¥ = /],

EM="cos(0)] = G(1h) =1 — 1) + ¥ - v +
B B 31 531 7
Puty = ¢, leads toG(¢?) = 1 — ¢D(¢), where
_ ¢ P ¢’
Do) =¢-33 %557 7531
D(¢) satisfies a simple differential equatiob?(¢) = 1 — ¢D(¢), whose solution is

2 (z) 2
D(¢) =e? /2/ e 2 du.
0

Therefore

2 ¢ 2
G(6*) = 1= 6D(6) =1 g /% [ e /2qu.

0
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Transforming back t@), we have

Ve
EY="[cos(0)] = 1 — /e V12 / ¢ Pdu =1~ /YF ()
0

whereF (z) = e~%/2 foﬁ e /2du, x> 0. Recall that\, Z2 /(A Z2 + Ay Z2) = Ao(1 — 1)/ ®. Then

Ao Z2

MZ2%+ AQZQQ]

Xo(1 - Br)
(0

S = EY=[2c05(0) + (1 — cos(0))

= 2B (cos(0)) + (1 — EY=%)(c0s(O)))

VF -
- 2+\/ie—w/2(/0 euzdu)[AQ(lw h) g

= 24+ VUF (@ Al=F) 2.
We consider the two situationgd; > Ao, and\; = A, separately. B

Proposition 4 For )\3 =0 < Ay < Ay, the condition 2) of Proposition 1 holds on the $€A;, A2, 0) :

)\1 > )\2 > 07 W < )\]_ S 66_1'8>\2 + %62'3(>\2_3) + 48}

PROOF  When); > o, 31 = =5

(A2 — 2A1) + A A2
ViA1= A2)

¥ is an affine transformation d8(1/2,1/2) with density

S =24 F(y)[

!

The explicit expression is

1
7/ (=2A2) (A=)

then
Vi
— —/2 22 (A2 — 2M1) + Aidg
523 2+E{€ (/0 e du)[ \/17}()\1 7)\2) ]
M 1 _ VI Lz (g — 2X1) 4 At As
— /2 2 dip.
2+/A2 W\/(‘tl)—Az)(/\l—il))e (/0 @ du)l Vib(A1 = A9) Jav

Sa3 has no explicit expression, and the equatiy (A1, A\2) = 0 has no explicit solution. Numerical
methods are used to determine the approximate contour of solutions. Then the{¢dbskt,0) : Ay >
Ag > 0 W < Ap < 6em 182 4 1e2:3(32=3) 4 4 8} provides a convenient it to the region where
So3 is positive.

Now interchanging\; and\s, in Sa3,

Vi
g = —y/2 22 (AL —2X0) + A de
S13 2+E{e (/0 ez du)| 7 0m — ) ]
M 1 871&/2(]0@6%‘”) (A1 — 2A2) + A2
= 2 dip.
. = T oy W
Fory € [Ag, \]:

PY(A1 — 2A2) + A1 g <

mzn()\l,Q)\g) S /\1 — )\2

az (A1, 2X2).
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[W(A1 — 2X2) + A1 2]/ (A1 — A2) is an increasing function af for A; > 2\, with minimum value2)\, at
¥ = Ag, and maximum valu@; atey) = ;. ThereforeSis > 2 + min{\;, 2)\2}?(%) > 2, which shows
thatS;3 is positive. W

Proposition 5 For0 = A3 < Ay = Ay, the condition 2) of Proposition 1 holds.

PROOF When\; = X2, © = /A (Z% + Z2) and V¥ is a constant equal td;. One hasZ[cos(O)]
1 — /A1 F()\1). This provides

Sas = 2E[cos(0)] + E[(1 — cos(©))]

Vi,
2+\/)\16_M/2/ e du[E(3) — 2.
0

Vi o,

2 — g\/ )\16_’\1/2/ e T du.
0

Noting thatd < /A1 F(\;) < 1.28495, thenSy3 = S13 > 0.07257 > 0, which implies that all they/s are
not null.

The last three cases deal with situations wheris positive. We haver(H) = 1 + 2E][cos(0)].
The distribution of©? is a linear combination of i.i.d.x? distributions. Let's write® = W W, with
W =Z}+ 72+ 73, and¥ = \1 81 + \ofB2 + N33, Whered; = Z2 /(22 + Z3 + Z3) ~ B(1/2,1). W
X3, independently distributed from;, i = 1,2, 3; and hence independent®f Given[¥ = ] in [A3, \],
one has

Elcos(x/ W) = Z Wz)

=

The moments ofV are

4 00 it1/2p—2/2
EW?* = ————d
U / @2

2t /OO i+1/2 —y
= (1 e Ydy
I'(3/2) Jo

2t .
= WF(Z +3/2)

(2¢ + 1)!
214!
Therefore

=0

S D= L UCTRRY

4 2
=0

e V21— ).

We get
tr(H) =1+ 2F[cos(©)] = E[1+2(1 — ¥) exp(—%)].

Howeverl + 2exp(—%)(1 — ¥) > 1 — dexp(—2) > 0.1074. Thustr(H) > 0 implying that not all
eigenvalues off are nullwhenm\s > 0. B
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Proposition 6 For 0 < A5 = Ay = Ay, the condition 2) of Proposition 1 holds .

PROOE When); = Ay = A3 > 0, the eigenvalues off are all equal and) = X\;. The three sums of
pairs of eigenvalues are

1

S12 = Si13 = Sa3 = [1 + 2(1 — )\1) exp(—%)] > 0.0716

[SVRN )

which ends the proof. B

For the remaining cases we show tl$at is positive first. Using the same argument as for the trace,
one has

1— ©
v o= E[cos(@)+%())\lzi2]
- Aifi XiBiy .
Ele™ Q=) - —=) + =) i=1,2,3.
makes \ \
SijZE[ef‘P/Q(l—\Il)(l—&— }fk)—kl— Ifk],lgi;éj;ékga

That is,

SR A,

o - e

Sw o= BleVPU- w2 Lo 2

Expressiort is obtained fron,3 by interchanging\; and),, since the joint distribution ofZ2, 22, Z3)
is the same for all permutations of tg’s.

To evaluateS;2, we write U = )\363 + (]. — ﬁg))\gclg, whereC'5; = ()\1Z12 + )\2222)/[)\3(Z12 + 222)],
which takes values if\2 /A3, A1 /A3). The random variable$; andC,, are independent, becauseg, is
independent of 27 + Z3, Z2). Then it is also independent 6§ as a continuous function 6#% + 72, Z3).
Writing

Sy = E{[e‘1//2(1_‘1/)4';][1+53+0£?E1—53)]}
1 3 p
+ E[§ B (5)53 + 012?1 - 53))]

The firstterm{e=/2(1—W)+(1/2)][1+3s/(B3+C12(1—33)] > e ¥/2(1-W)+1/2 > 0. As to the second
term,Ci2 > /\2/)\3 >1 impliesﬁg + 012(1 — 63) >1 makingE[l/Q — (3/2)(ﬁ3/(ﬁ3 + 012(1 — ﬁ3))] >
1/2 — (3/2)E(B3) = 0. This shows thab;2 > 0.

Proposition 7 For 0 < A3 < Ay < Aq, the condition 2) of Proposition 1 holds in the following situations:
|) 0.7A1 < A3 < Ay < A1
arctg(\/i(lz,c)) X C

ii) ZE((2-C)e M2 = C) +arctg(y/252) — [o € 2cosz (1+%)d2 >0,
Whereﬁ—f <C < min(%,O.?).

PROOE ForA; > Ao > Az > 0, we studySsz = 72 + 73 first. One has

Sys = Ele™V/2(1 — 0)(1 + A&J—ﬂ) +1- A&l—ﬁ],
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whereV = (A Z? + \oZ3 + X\3Z3) /(23 + Z3 + Z3). To evaluateSyz, we write W = \; 3+ (1 — B)\1 C,
whereC = (M\aZ3 + X\3Z3)/(M(Z3 + Z3)), andB = Z}/(Z} + Z3 + Z3). Note that3 andC are
statistically independent, and that/A\; < C < X\y/)\ < 1. Furthermorefs ~ B(1/2,1). Thus, one has
P(B < t) = t'/2. In the sequel leE(-) denote the expectation with respecttavhenC is fixed. One has,

Sg3 = BE(e~MAHI=0MO)/2(1 _ w)(1 4 %) +1— %)

One can write

S = B{leVP0-9)+ 30+ A

1 3 B )

e Q5rea—n

Noting thatvy: e=%/2(1 — ) +1/2 > 1/2 — 2¢=3/2 = .0537 and thatC' < 1. One has

J&i e 1-C 1-C
EGra=ge) ~aooprlV @~ ey )]
A lower bound forSsy3 is then given by
o321 o 3 VC 1-C 1-C
1—2e +(-1-—2e¢ )(1 _0)3/2[ G arcty( e )]

This is positive as long a§' is bigger thar).7. We now consider the case where< C < 0.7. Direct
calculation gives

Blesp(~2/2)(1 - W)(1 + 22%)) =

exp(—=A1C/2) /0 exp(=A1(1 —C)2z?/2)[1 — M C — M\z?(2 - C)

T

+C’+(1 — O)z?

Jdx

One has

1 > 2 — ! > 2 —
/O ef)\l(lfC)m /2[/\1$2(2 _ C)]d.l? — — g /O e*Al(lfc)iE /de _ - gefkl(lfC)/2

Thus

B(exp(~0/2)(1 ~ w)(1+ 230

1
eXp(—)\lC/Q)/O exp(— A (1 — C)x2/2)[f% WS

22 2-C

d
ToracoR Tt ie

exp(—A1/2)
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Writing WECW = 2=01- ﬁ) and rearranging the terms, we get
Blesp(~¥/2)(1— w)(1+ 7)) -
VG

= oy PN /0 exp(—MC(1 — C)a2/(2C))

1+MC0-C)1+(1—0C)a?/C)
1+ (1-O)2/C }d(‘r (1-

T/ + 228 expl(—2u2)

Changing variablg = (1 — C)'/?2/C'/? leads to

B(exp(~1/2)(1 - 0)(1 + 1)) =

_(1—\5)3/2/0 7 ep(-MC(1+57)/2)

14+ MC(1 —C)(1+y?) 2 —
1+4° ]dy+1_

| © exp(—/2)

Using the change of variable = arctg(y) and usingl + tan(z)?> = 1/cos(z)?, the last part of the
expectation gives

Blexp(~/2)(1 —~ w)(1+ ) =

(1—\53/?/0 exp(—A1C/(2c0s%2))
c1-0)

0s2 2z

ldz + 2-¢ exp(—A1/2)

1
1+ XM\ —C

Adding terms, we have

Saz = E[<1 \/33/2{‘/ 1 ;C((Q — C)e™ /% — 0) + arctan( %)

arctan(\/(lfc)) L
_/ C Ry MWH
o cos
= E[A(M,O)].
Sincely > A3, C = 22= A‘fﬂ + iS has a density eS| in (% T?) ThenSss > 0

7\'\/(A16 )\3)()\2 /\10)
if A(\,C) > 0.

To evaluateS;; we write U = Ay 32 + (1 — 32)A\2C, whereC = (M Z7 + X\322)/(M\2(Z2 + Z2)), and
B2 = Z3/(Z} + Z2 + Z2). C is in the interval A3 /A2, A1 /A2) which contains 1. Recall that

X252
)\

A2 32

Si5 = E(e /21 -0)(1+ )

) +1—
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Calculation of the expectation relative 2 changes according 6 > 1 or C < 1. WhenC = ¢ €
[A3/A2, 1], interchanging\; and\,, in Sas,

E(e /21 - w)(1+ Affz) +1- ’\fS)
Ve 1—c —c

- {(1 — )32 - [(2 = c)e 2/ — ] + arctan( ;

(& 260522[ 3
0 cos® z

arctan(\/@) . A 1—
/ 4 2229

WhenC' = ¢ € [1,\;/)o], using the same argument as f, we first note tha (e~ ¥/2(1 — ¥)(1 +
Aabay 41— 2202y 5 (. Moreover, one has

A2 B2 A2 B2

E(e V21 -0)(1+ 7 )+1— T )
SRR SR I

—A2¢ + A2 f2(c — 2))],
1
B2 ) :/ —t &
c—(c—1)p o c—(c—1tavt
. . . 1 . 2 1 1 . . .

Changing the variablg = /%, / =, and WHting =z = 57— + 305y — 1, direct calculation gives
B 52 - Ve l0(1+\/1—1/c)_ 1
c—(c=1)B9 _2(0—1)3/2 91_ /1—1/c c—1

Also, using a change of variabhle= /%,

B2
m — A2+ Aafa(c — 2))

1
_ [~A2ct(e=D)A2a®]/27 _ ) T Noz2(c — 2)d
/0 e [ 2c+c—(c—1)x2+ 227 (c — 2)]dx.

and

E(e Y21+

2

. . )\2 .
The density of”' is oy Fw W v Finally,

! A Ve Loy o2,
s, 73/ Oac = As) O — dac) (1= 0)3/2{\/T[(2 ) )

A2

oo

) — 6_2c052z[1

dz}d
c 0 cos? z ldz}de

+ arctan(

1— arctan(\/@) N A 1
C / 2 n 20( C)
. / Ao el m)
1oy e = As)(\ = Age) (e—1)  2(c—1)3/2 & 1—/1-1/c
1 2
—Xact(c—1)A22%]/2 T 9
+/O 6[ 2 ( ) 2 ]/ [1 —_ )\QC + m + )\21’ (C — 2)}daj}dc

which is always positive by numerical methodsl
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Proposition 8 For 0 < A3 = A2 < Aq, the condition 2) of Proposition 1 holds ofi(A1, A2, A2) : 0 <
)\2 < )\1, m § )\1 S 76_2'3)\2 + 3.35 =+ T10€3(>\2_2)}.

PROOF When\; > Ay = A3 > 0,C = Ay/A;. Sa3 reduces to

Sy = m{m[@ = Aa/A)e M2 = g /A]

+ arctan(y/A1/Aa — 1) —

A convenient fit for the region wherg,s is positive in the set

€2cos?z ]
0 [ A1 cos? z

arctan(\/m) A —
/ 2 + M}dzj}’

25 —2.3) L 30n-2)
: <A < Te 23 4335 4 — 322
{()\1,)\2,)\2) /\210g(1+/\2) _)\1 _76 +335+ 106 } |
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