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Bayesian methods in Hydrology: A review
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Abstract Hydrology and water resources management are inherently affected by uncertainty in many
of their involved processes, including inflows, rainfall, water demand, evaporation, etc. Statistics plays,
therefore, an essential role in their study. We review here some recent advances within Bayesian statistics
and decision analysis which will have a profound impact in these fields.

Métodos bayesianos en Hidrologia. Una revision.

Resumen. LaHidrolog{ay la gestién de recursos hidrolégicos estdn afectados de forma inherente por la
incertidumbre presente en muchos de los procesos asociados, como los de afluencias, lluvia, demanda de
agua, evaporacion, etc. La estadistica desempefia, por tanto, un papel esencial en su estudio. Revisamos
aqui algunos avances recientes dentro de la estadistica bayesiana y el andlisis de decisiones que tendran
un impacto profundo en estos campos.

1. Introduction

Water resources are becoming more and more important. Indeed, its scarcity is a major problem in dry
areas, whereas its overabundance may occasionally create flood problems in other regions. Water quality
is also getting very relevant with the ever increasing interest in the environment. This is clear by merely
looking at the priority given to water issues in national and EU research programs. We could also say that
water problems are at the core of many political disputes, as in, e.g., those related with transfers from the
Ebro river to South-Eastern Spain.

A peculiarity of water resource problems is that uncertainty is inherent in many of the processes in-
volved, including rainfall and runoff, evaporation, infiltration, water demand for various purposes,... This
has been widely acknowledged in the hydrological literature, see e.g. references like Bras and Rodriguez
Iturbe [1993], Helsel and Hirsch [1992], Clarke [1994] or Parent et al [1997], which describe how statisti-
cal methods have been used, among others, to deal with the simulation of hydrologic processes, hydrologic
forecasting, the design of data collection networks, or reservoir system management.

Bayesian methods, see e.g. French and Rios Insua [2000], are facing rapid expansion not only from a
theoretical point of view, but also affecting many application areas, including hydrology, see e.g. Parent et
al [1997]. In this paper, stemming from previous work in Berger and Rios Insua [1998], we expose recent
developments in Bayesian analysis which have impacted or may impact various areas in hydrology. We
shall concentrate on water quantity issues.

Presentado por Jests Ildefonso Diaz.

Recibido: 7 de Julio de 2002. Aceptado: 9 de Octubre de 2002.

Palabras clave / Keywords: Water resources, Bayesian Analysis, Dynamic Models, Spatial Models, Simulation, Water management.
Mathematics Subject Classifications: 62-01, 62C10, 90-01, 90C39

(© 2002 Real Academia de Ciencias, Espafia.

461



D. Rios Insua, R. Montes Diez and J. Palomo

After a brief overview on recent general developments, mainly Bayesian computations and model se-
lection, we then emphasize time issues, spatial issues, space-time issues and decision making. We conclude
with a brief discussion.

2. Bayesian analysis

The Bayesian framework provides a unified and coherent approach to solve inference and decision making
problems under uncertainty. As such, we would expect a great impact of Bayesian methods in hydrology. To
wit, hydrologists gather and analyze data to improve water resource management. Data is usually affected
by uncertainty, therefore begging for statistical analysis. In water resources problems, the end use of such
analysis is often to make a decision, hence requiring to formally account for uncertainty in the decision
making process. Bayesian analysis seems the appropriate approach to inference in hydrology, as it provides
a coherent framework that integrates multiple sources of uncertain information within decision making.

Many other advantages would seem to support the use of Bayesian methods in hydrology. For example,
it is frequently the case that in this application area there is prior information available, possibly from
previous related studies, from which our analysis might benefit, if appropriately modelled. Spatial and time
issues are extremely important in water resources and recent Bayesian models provide useful tools to handle
them. However powerful we might think the Bayesian approach is, we should admit that most statistical
analyses in this field are still performed within the classical framework, though the situation seems to be
changing gradually. See some references in Parent et al [1997] and Bras and Rodriguez Iturbe [1993].

The Bayesian framework for inference and decision making problems may be easily described. Indeed,
we feel that, at a conceptual level, one of its strengths is, precisely, the ease with which basic concepts are
put into place. Rather frequently one of the typical goals in hydrology will be to learn about one (or more)
parameters (e.g., mean monthly water inflows, daily rainfall,...) which describe a hydrological phenomenon
of interest. Let us designate with § such parameters. To learn about them, we shall collect data (e.g., inflows
at various points,...) and form the likelihood p(«|@), which describes how data depends on the parameters.
In the Bayesian approach, we also take into account other sources of information about the parameters,
based on expert information, past experience, previous studies, the physics of various processes,... which
we shall model through the prior distribution p(6).

Bayes’ formula provides the way to combine both sources of information in the posterior distribution

p(0)p(x|0)
p62) = g <P OPo),
which summarizes all information available about the parameters and may be used to solve all standard
inference problems. For example, for point estimation, we could summarize the posterior through, e.g., its
mean, that is

E(6]z) = /0p(0|x)d0.

For prediction, i.e. forecasting further values y of the phenomenon, we would use the predictive distribution

p(ylz) = /p(y|9)p(0|x)d0.

The ultimate aim of statistical research in hydrology will be, most frequently, decision support, e.g.
to choose among several release policies. For each action a and each future result y, we would associate
a consequence c(a,y). For example, if the water policy is a, we would have incurred in certain costs,
created some jobs and recovered a certain piece of land for recreational purposes. Such consequence will
be evaluated through its utility u(a,y) and we would choose the alternative @ maximizing the expected
utility

/umwm@mmy
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In some sense, the recent prevalence of Bayesian methods is due to the development and general-
ized use of Markov chain Monte Carlo simulation techniques (MCMC). Essentially, we choose a Markov
chain on the parameter space, ©, whose stationary distribution is the posterior. Then, starting at an initial
point #(®) € O, we generate a sequence of points #1) #(2) .. (™) from the chain. Then, for large m,
(™) is (approximately) distributed as p(f|x) and we may approximate posterior expectations of the type
J 9(6)p(6]x)d through sample means

By now, there are several standard approaches to build such Markov chains including Gibbs sampling,
Metropolis and hybrid algorithms, which we illustrate later on.

Another area which has been fairly fruitful and might be very relevant in hydrology is model selection,
see Bertolino and Racugno [1967] for recent references. A typical issue might be whether inflows to a
reservoir follow a lognormal or a gamma distribution. In a general model selection problem, the data, x,
is assumed to have arisen from one of several possible models M, ..., M,,. Under M;, the likelihood is
pi(x]6;), where 6; is an unknown vector of parameters of p;. The Bayesian approach to model selection
begins by assigning prior probabilities, P(M;), to each model. It is also necessary to choose prior distri-
butions p;(#;) for the unknown parameters of each model. The analysis then proceeds by computing the
posterior probabilities of each model,

P(M;)m;(x)

P(Mz|$) = m
;P(Mj)mj(x)

)

where m;(z) = [ p;(x|6;)p;(6;)db;. Typically, one selects the model (or models) with largest posterior
probability.
Our purpose here is to illustrate how the above framework may be used in various hydrology problems.

3. Time issues

Many problems in hydrology require modelling and forecasting time series. In this section, we briefly
review classes of models which we have found useful in dealing with hydrological time series.

3.1. Hydrological forecasting with Dynamic Linear Models

An essential step in many hydrology problems is the forecasting of time series, as e.g. when forecasting
inflows to a reservoir. Numerous recent modelling and computational enhancements have made Dynamic
Linear Models (DLLMs) readily available for applications, see West and Harrison [1997]. Specific appli-
cations to hydrology may be seen in Rios Insua and Salewicz [1995], Rios Insua et al [1997], and Muster
and Bardossy [1998].

We aim at determining, at time instant ¢, the next k values of the variable of interest (or a transformation
of it), say v, from instant ¢ + 1 to instant ¢ + k, given the available information D;. For that, we use DLLMs
which, in their simplest formulation, have the following structure, for every instant of time ¢t = 1,2,3,.. .,
where F}; and G are known:

e Observation equation:
Yo = Fibly + vy, v ~ N(0, V)

where y; denotes the observed value, which depends linearly on the state variables 6;, perturbed by a
normal noise.
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o System evolution equation:
0r = Gibi—1 +wy, wy ~ N(0,Wy)

describing the evolution of the state variables, linearly dependent on the variables in the previous time
plus a random perturbation.

e [nitial information:
8o| Do ~ N(mg, Co)

describing the prior beliefs of the forecaster.

The error sequences vy and w; are independent, and mutually independent. Moreover, they are independent
of 00 .

DLMs are useful to hydrologists for many reasons. One that is especially important is that they allow
for moving away from stationarity assumptions, since process parameters are time varying. Also, they are
flexible enough to model the usual behavior of hydrological time series including seasonal patterns and
trends, and permit the incorporation of covariates, such as rainfall for inflows, based on the superposition
principle. As a consequence, we use a model building strategy based on blocks, representing trends, sea-
sonal patterns, dynamic regression (if covariates are available), and, if required, an autoregressive term to
improve short term forecasting. Depending on the forecasting horizon different blocks may be used. For ex-
ample, long-term planning will require monthly forecasts for, say, the next twelve months, and we typically
use:

o A term referring to a level or a piecewise linear trend.

¢ A seasonal effects term, to account for monthly patterns.

e A regression term, based on covariates (like rainfall, snowfall,...).
e An autoregressive term, to improve short term forecasting.

For short-term forecasting, we usually apply a trend term, an autoregressive term and, possibly, a regression
term.

DLMs are also computationally fast, enabling real time decision making and the large-scale simulations
habitual in hydrology. Finally, they permit the incorporation of all prior information, including that due to
interventions, hence incorporating a principle of management by exception, fundamental in the Bayesian
forecasting philosophy (West and Harrison, 1997): a set of models is routinely used for processing informa-
tion, making inferences and forecasting, unless exceptional circumstances arise. Examples, would include
a sudden rainfall or a big release from a reservoir upstream. In this case, the system is open to external
intervention, typically by inclusion of additional subjective information.

Forecasting is performed sequentially based on all available information. Updating procedures and
the use of this model for forecasting are described in detail in West and Harrison [1997]. Essentially,
inferences about both parameters and forecasts, one or more steps ahead, are based on a normal model,
with corresponding parameters computed recursively.

Here we briefly illustrate a DLLM that we have used, see Rios Insua et al [1997], to forecast inflows to
the Kariba-Cahora Bassa system of hydro-power reservoirs at the Zambezi river, the Kariba being upstream.

Example Given the location of both reservoirs, we consider a forecasting model for the inflows to Kariba,
and a forecasting model for the inflows to Cahora Bassa. This one will depend on those inflows not coming
from Kariba, which we call incremental inflows, and on the releases from Kariba, accounting for interreser-
voir dynamics.
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Figure 1. Inflows to Kariba lake

Inflows to Lake Kariba Figure 1 shows monthly inflows to Kariba. After a log transformation, we
modeled that time series with a level term, a term representing seasonal (annual) variation and a low coef-
ficient, first order autoregressive term to improve short term forecasts. Consequently, we ended up working
with the following DLM:

e Observation equation.
yr =08 + 025 + 0% +of, of ~ N(0,VF)

where y = log(i¥) is the logarithm of the inflow to Kariba; 6}* designates the level of the series; §2%
and 3" refer to the seasonal term; 6% refers to the autoregressive term; and v} designates a Gaussian
error term of constant, but unknown, variance V.

o System equation.

ok = O +wit

0% = cos(m/6)67% | + sin(n/6)65%, + wit
0% = —sin(n/6)07", + cos(m/6)67%, + wit
gk = 40M + ik

with w§ = (w}*, w?*, w3k, wi*) being an error term such that

k *k
w0 (70 ).

where o7 is the autoregressive variance; and Wk is the variance matrix (up to v¥) of the first three
terms, defined using discounting, with a level discount factor § and a seasonal part discount factor
5k
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e Prior information.
050" ~ N(mg, o"C™*)

o* ~ Gamma(nk /2,dk 2)
with 6§ = (65%, 63", 65*, 65%), ¢* = J and prior parameters specified judgementally from an expert.
Dynamic regression Kariba—Cahora Bassa Exploratory data analyses suggested regressing dy-
namically the inflows to Kariba and Cahora Bassa, after a log-transformation. For that, we define the

logarithm of the inflow to Cahora Bassa y{ = log(i§) and z; = y¢ — y¥. We ended up working with the
following DLLM:

e Observation equation.
__plc 2c 4c 6c c c c
2t =0, +0;°+ 6.+ 60, + v, vi~N(0V

where 61¢ designates the level of the series; 67¢ and 03¢ refer to the first harmonic of the seasonal
term; 0216 and 0t50 refer to the second harmonic and 0?0 refers to the autoregressive term; and vf
designates a Gaussian error term of constant, but unknown, variance V¢.

e System equation.

;" = 0+
07¢ = cos(m/6)67¢, + sin(m/6)0; | + wie
03¢ = —sin(n/6)67, + cos(m/6)63° | + wi€
0}¢ = cos(m/3)0{°, + sin(n/3)07° | + wie
67 = —sin(m/3)0{%, + cos(m/3)65, + wic
6% = .40%, +wl*

with w§ = (w}, w?, ..., w$) an error term such that

w§~N<O7<vIg/t ;)2))7
C

with o2 the autoregressive variance; and W;* the variance matrix (up to term v°) of the first five
terms. This matrix was defined using discounting, with a level discount factor 6{ and a seasonal part
discount factor 45.

e Prior information.
05|9° ~ N (mg, v°C™*)

¢° ~ Gamma(ng/2,dg/2)

with 65 = (63¢,63¢,...,05°) and ¢¢ = L, assessed judgamentally

Inflows to Cahora Bassa The model we propose now for Cahora Bassa depends on the release
af from Kariba and the incremental inflow (inc;) to Cahora Bassa from the tributaries and basin between
Kariba and the inlet to Cahora Bassa. Taking into account that water travelling time, from Kariba to Cahora,
is less than a month, we use the following relation:

co_ k .
1 = ay +1nce.

466



Bayesian methods in Hydrology: A review

Given that releases will depend on the release policy adopted, we shall estimate incremental inflows as
follows. First, if there was no reservoir, we would have:

. .k .
iy =1y + incy.

The second relation describes a dynamic regression between inflows to Cahora and Kariba, and reflects the
physical relation that inflow is related with basin size:

if = Byiy.
Simple computations suggest modelling incremental inflows by
incy = (B — 1)iy,

and inflows to Cahora by
if = ai + (B — 1)ig.-

Observe that we no longer have a dynamic linear model, since both the regression weights 3; and
regressors if are subject to uncertainty. Besides, the distribution of a¥ is not standard and is controlled by
the reservoir manager. Forecasting ¢{ is easily done by simulation, since we know or can easily sample the
distributions involved: that of i¥ is obtained from the inflow to Kariba model above; af is obtained from a
release model from Kariba; the distribution on 3; comes from the inversion of the transformation and the
dynamic regression Kariba-Cahora Bassa above.

3.2. Forecasting nonlinear series

As our example showed, we may not always use DLMs to forecast time series. In some cases, we may
appeal to nonlinear models. One class is that based on neural network. Here we describe their use as
nonlinear autoregressions. A full description may be seen in Menchero et al [2002]. We use this to illustrate
model selection and MCMC methods.

Suppose we have univariate time series data {y;,ys,...,yn}, like rainfall or inflows. We model the
generating stochastic process in an autoregressive fashion,

n

p(y17y2>"'7yn):p(ylvyZ)"')yq) H p(yt|yt71,yt72,~-~,yt7q)
t=q+1

Specifically, we shall assume that each y; is modelled by a nonlinear autoregression function of ¢ past
values plus a normal error term:

Yy = f(ytflvyt*%"')yt*q)+Ut7tZQ+]—7"')n
Ve N(0,0'2).

For f we propose a mixed model as a linear combination of a linear autoregression term and a feedforward
neural network.

A feedforward neural network model with ¢ input nodes, one hidden layer with A/ hidden nodes, one
output node and activation function ¢ is a model relating a response variable 7j; and ¢ explanatory variables,
inour case &, = (Ye—1,Yt—2, - - -, Yt—q):

M
Ye(zt) = Zﬁj@($£7j +65)

j=1

with 3; € R, 7; € R? The biases §; may be assimilated to the rest of the ~; vector if we consider
an additional input with constant value one, say z; = (1,y¢—1,...,¥i—q). Without loss of generality, we

467



D. Rios Insua, R. Montes Diez and J. Palomo

assume the basis function ¢ to be ¢(z) = exp(z)/(1 + exp(z)). In our mixed model, the linear term will
account for linear features and the FFNN term for nonlinear ones:

M
Gelee) = A+ Y Bjelapyy), t=q+1,...on ()

Jj=1
The parameters in our model are the linear coefficients A\ = (Ao, A1, ..., ;) € R 971, the hidden to output

weights 3 = (31, B2, ..., Bum), the input to hidden weights v = (71,72, ...,7:), the error variance o2

and the number M of hidden nodes.

Note that, as particular cases, we include the simple linear autoregression model (which may be viewed
as a DLM)

?//\t - f(ytflvyt*%"'ayt*q) = -Ti)\a t= q+ 17"'5”
and a nonlinear autoregression feedforward neural net model

M
@\t = f(yt—17yt—2a~"ayt—q) = Zﬁ]@(x27])7 t= Q+ 17“"”
j=1

for each value of M.
The prior over model parameters will be:

ﬂj ~ N(p‘ﬁang)v )‘NN(:UA’O&I)v
v ~ Ny, %), 0® ~ InvGamma(a,,b,).

When there is non-negligible uncertainty about prior hyperparameters, we may complete the prior model
with a hyperprior over them, by using, for example, standard choices in hierarchical models for y =
(g, ag, Hxs O3y fiys Soyy gy by ). Since the likelihood is invariant to relabelings, we include an order con-
straint to avoid trivial posterior multimodality, due to permutations of indexes. For example, we could use
Yip < Y2p - - < VMg

MCMC posterior inference with fixed model Consider first the mixed model (1). With our prior
assumptions, the joint posterior distribution is given by:

p()‘vﬂv’YaUzvX | DI) Ocp(qu,...,yN | ylv-~-7yq7Aaﬂa’%oj)p()‘vﬂv’y’UzaX)M!

where

pAB.7,0%X) = p(pa 03, 18,05, 1y, Sy) p(0”)
M
PO | pas a3 Dp(B | g, a3D) [] p(vi | 1y )

i=1
is the joint prior distribution, x = (px, 03, 3, 0123, i, ) is the set of hyperparameters and M! takes into
account the order constraint on -y .

Exact analytic inference in such model is not possible and we need to appeal to MCMC methods to

obtain a sample from the posterior. In this case, we propose a hybrid, partially marginalized sampling
scheme, see Menchero et al [2002] for a detailed description:

1. Use a Metropolis step to update the input to hidden weights +; using the marginal likelihood over
(B,A): p(D" | y1,- .-, Yq,7,02) to partly avoid the random walk nature of Metropolis algorithm.

2. Generate new values for parameters 3, A and o2 by drawing from the corresponding full conditional
posteriors.

3. Given current values of (fy, By A, 02) , generate a new value for each hyperparameter iy, o3, 1. 0123 s My
and ¥, drawing from their complete conditional posterior distributions.
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Model Selection Once defined how to perform inference with any of the models considered above,
we propose a reversible jump MCMC (Green, 1995) in order to perform model selection. We use a pair
of indexes (h, k), to index models: h = {0, 1}, denoting whether or not the linear autoregression term
is included and £ = 0, 1,..., denoting the number of hidden nodes in the FFNN term. The algorithm,
described in Menchero et al [2002], evolves through various models as described in Figure 2.

Joas Jaa
/_\ Joas Js
jzd, j‘&ds j4d p
Linear

. +NN(Q2)

myo

Figure 2. Possible models along with moves available from each one.

Example We consider the time series of monthly inflows to Lake Kariba (see Figure 1). We split the
Kariba data set into a training data set (first 350 observations) and a test data set (last 82). Exploratory data
analysis suggests seasonal behavior of the time series. We shall therefore model each y; on the basis of the
immediately past value, y;_1, as well as the corresponding previous year value y;_12.

Prior distributions for the unknown parameters and hyperparameters in the model, are chosen as follows

ug ~ N(0,3), 0'% ~ InvGamma(9, 1)
pux ~ N((0,0,0),3), o3 ~ InvGamma(9,1)
ity ~ N((0,0,0),31), £, ~ InvWishart(10,2.51)

0? ~ InvGamma(1,1)

The number of nodes M is given a geometric prior distribution with parameter 2.

Two runs of the algorithm were carried out from different starting points, namely M/ = 0 and M = 15.
A burn—in of 1000 iterations was used and then 9000 additional iterations were monitored for inference
purposes. Figure 3 shows the histogram of the posterior distribution of M, respectively, suggesting M = 2
as the most likely number of nodes for the hidden layer of the FFNN term, although 1, 3 and 4 nodes receive
nonnegligible mass. There is, clearly, some nonlinearity in the series.

Figure 4 shows the time series data, after log-transformation and the predicted values for the test data
set, showing good performance of the Bayesian nonlinear autoregression model developed.

3.3. Modelling long term effects

Long-memory time series models are used to formalize the notion of strongly dependent series of obser-
vations. In hydrology, this is known as Hurst effect (Hurst, 1951). While studying the issue of reservoir
capacity storage, Hurst empirically observed that if 4, is the inflow to a reservoir at time t and y; = > 7_, i,
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Figure 3. Histogram of the posterior distribution of M, suggesting M = 2 nodes for the hidden layer of the
FFNN term.

the rescaled adjusted range, or R/S statistic, defined by

R/S = max; (Y — yo — £ (Yx — yo)) — ming(y: — yo — £ (yx — yo))7

DIUEE

behaves, for large values of k approximately as a constant times k¥ for some H > 1/2, whereas for
standard short memory models we get H = 1/2. The phenomenon is also known as Noah and Joseph
effect (Mandelbrot and Wallis 1968).

The use of standard short memory models, such as ARMA, to analyze strongly correlated data generally
results in underestimating uncertainty inherent to the results of the analysis. This would result, for example,
in illusory nonstationarity. Beran [1994] is a good introduction to the statistics of long-memory processes.
Petris [1997] and Petris and West [1998] provide Bayesian models for long-memory time series.

4. Spatial issues

Spatial issues are also extremely relevant in hydrology, as illustrated in e.g. Bras and Rodriguez Iturbe
[1993]. For example, an appropriate spatial model may aid in using regional information to enlarge scarce
data sets. They are also relevant in rainfall generation models. Kriging is also a spatial technique used to
forecast a certain phenomenon based on spatial information. To give a feeling of the ideas involved, we
outline a simple spatial regression model which may be useful in some hydrologic problems. See Marin et
al [2002] for further details.
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Figure 4. Time series (log-transformed) and predicted values for the test data set.

4.1. A model for spatial regression

We consider here a model to account for spatial variations in a variable of interest, say e.g. rainfall at various
locations. The phenomenon in clustered mainly by location, for which we use mixtures. Diebolt and Robert
[1994] provide a general framework for modelling with mixtures. An issue of importance is the number of
terms in the mixture; Richardson and Green [1997] provide a solution for the case of mixtures of normals
of variable size, based on reversible jump MCMC samplers.

Here we shall provide a general model to deal with multi-level mixture phenomena. We limit the dis-
cussion to two levels. We assume we have data D = {zy,..., 2y} where z; = (z;, y;), with z; describing
the bivariate location of certain phenomena, whereas y; will describe a (possibly) multivariate hydrologic
phenomena, say rainfall at location z;.

At the level of the observed data, we induce clustering by assuming a mixture of (bivariate) normal
models with an unknown number of terms, M

M
ZZ'NZQJ'N('“L]',E]'), ’izl,...,N
j=1

implying a locally weighed mixture of normal linear regressions, with weights varying as a spatial process.
Equivalently, the implied clustering may be formulated in terms of latent indicator variables r; with

Pr(ri =j)=q; and p(zi|r; =j) = N(u;, ;).

The latent indicators r; define clusters I'; = {i : r; = j}.
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At a second level of the nested cluster model, we need to deal with cluster locations y; and covariance
matrices ¥ ;, which we shall assume to be clustered by a similar process themselves

L
0;= (1, 35) ~ > pe W [, (v Se) ] NCIBrop %)), j=1,....,M.
k=1

where W[-|-,-] denotes Wishart distribution. We can rewrite this mixture, using latent indicators s; €
{1,...,L}, as

Pr(sj=k)=pr and p(uj, Sjls; = k) =W [S57 v, (v Se) '] N(ul8k, p %)

As in the top level mixture, the latent indicators s; define super-clusters A, = {j : s; = k}.

The model is completed with priors on the unknown parameters, for the mixture sizes M and L, the
mixture weights ¢ = (q1,...,qm) and p = (p1, ..., pr.), and the second level mixture hyperparameters [y
and Sy.

Posterior simulation for mixture models is habitually implemented using the latent indicator variables
(ri, sj), conditional on which, the problem is reduced to the corresponding model without the mixture.
Conditional on the parameters of each term in the mixture, resampling the indicators only requires multi-
nomial sampling. In our specific problem, assuming M and L fixed for now, the Gibbs sampling scheme
would be

1. Sample from r;| M, i, ¥;, D (multinomial).

Sample from g|r, M, D, (M-dimensional Dirichlet).

Sample from p;|r, X5, s; = k, By, D, (normal).

&

Sample from X;|p5,r, 55 = k, By, D, (inverse Wishart).
5. Sample from s;|L, B, Sk, D, (multinomial).

6. Sample from p|s, L, D, (k-dimensional Dirichlet)

7. Sample from [ |s, u, X5, D (normal).

8. Sample from S|s,X;, D, (inverse Wishart).

wheret =1,...,N, 7 =1,...,M, k=1,...,L and D designates dependence from data.

Keeping random the size of the mixture, as in our case with L and M, considerably complicates poste-
rior simulation, and reversible jumpers or other methods like Stephens’ [2002] should be used. Full details
may be seen in Marin et al [2002].

5. Spatio-temporal issues

Space time issues have gained also popularity in recent years due to an abundance of environmental sciences
applications, including hydrology. For example, we could be interested in forecasting rainfall through time
and space over a region. Space-time data sets are often large and, therefore, require substantial computing
resources to fit even simple models, which generally combine time series models with features of spatial
statistics.

Here we briefly describe a powerful model in Stroud ez al [2001], which they illustrate with space-time
forecasting of rainfall. Let y(x) be the observed variable (e.g. rainfall) at location . The proposed spatial
model is of the form

J
y(x) = Z i () fj(2)8; + v(x)
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Whe.re ijl j (x) fi(@)8; = S (xfO) is a spatial mean functign, WhiCl'.l is a locally weighted mixture
of linear regressions, where f;(z) is a set of known basis functions, 6; is a vector of unknown random
parameters, 7;(x) is a non-negative weighting kernel, J is the number of components and v(z) is a Gaussian

noise process.

An observation of the process is y = (y(z1),...,y(zy)) at n locations x4, ..., &y. Then, if we define
;= (mj(21),...,mj(x,)) and Fj = (fj(21), ..., fj(zn)), we may rewrite the model as
Y =Ff+w.

To introduce time effects, we let the parameters evolve through time and consequently consider the DLLM

ye = FEb + v, vy ~ N(0, V)
0 = Gib_1 +we, we ~ N(0, W)

completed with a prior on the initial state.

The approach proposed is computationally efficient, allowing for on-line implementation and full poste-
rior inference. As new data are collected, the model provides updated estimates of the mean and uncertainty
field as well as predictions at any desired location. This is critical in problems like monitoring rainfall,
where fast algorithms are necessary to issue warnings in a timely manner.

6. Hydrological extreme value analysis

Extreme value modelling of environmental processes is a standard practice for the design of many large
scale constructions, say reservoirs. The main problem here is that at the most extreme levels data are
scarce, see Figure 1, whereas for design purposes it is the behavior at these levels which is of greatest
interest. Scarcity of data makes Bayesian methods even more relevant, when expert information may be
used to take into account physical information based on the understanding of the corresponding processes.
The most interesting application, from an hydrology point of view, is the prediction of extreme rainfall.
Here we shall briefly outline ideas in Coles and Tawn [1996] and Coles [2001], who include additional
references.

Assume y1,¥s,...,Y, are observations (rainfall) with common distribution. Our interest lies in esti-
mating the upper tail behavior of such distribution. We assume that for large thresholds u, the sequence
Y1,Y2,- .-, Yn, viewed on (u, 00) is, approximately, a non-homogeneous Poisson process with intensity

function
—(y+1) /9
1 _
A(y)z;max{(lwy ”) ,0},

g

the parameters being yu, o, v, resulting in the distribution function

Y — /Y
Pr(max(yy,...,yn) < ylp,0,9) = exp— [max <1+wT> ,0

corresponding to a generalized extreme value distribution.

In extreme value analysis, data tends to be sparse and knowledge of the expert hydrologist may be used
to supplement information, based on general understanding of the physical generation of rainfall, and a
specific knowledge of the rainfall characteristics within the vicinity of the particular site. Note that the
1 — p quantile of the maximum distribution is given by

ap = p+ o[{~log(1 — p)} ¥ — 1]/
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Values of ¢, for small p are design parameters in various applications. The idea would be to elicit prior
information in terms of (gp,, ¢p, qps) for, specified, small values of p; > ps > ps. Given the order
constraint ¢,, < gp, < ¢ps, We may alternatively work with the differences

G = qp —0 2
92 = dp, —d4p;
g3 = dpz — Qp,
and assume
qi ~ gamma(ai7ﬁi)7 1= la 273 (3)

To determine «; and 3;, 7 = 1, 2, 3, the experts are asked for estimates of, e.g., the median and .90 quantile
of each ¢; and then the corresponding equations are solved.

From the prior specification given by equations (2) and (3), the joint prior distribution for the g, is
obtained as

3

f(qpl ) qp27qp3) X 9311_1 exp (_/81Q;D1) H(Q;Di - QIM—1)OH_1 €xp {_ﬁi(Q;Di - Q;Di—l)}
i=2

which multiplied by the likelihood

n

Ly, 6ly) = exp (= 1-Alu,00) ) [T Aw)

=1
where

Afu, 00) = / Yo

gives the posterior p(u, o,|y), up to a proportionality constant. Explicit analytical calculation of the
marginal posterior distributions is intractable, however direct simulation based on a hybrid MCMC sampler
is straightforward. See Coles and Tawn [1996] for further details. This may be used, e.g., to forecast the
maximum rainfall over a future period of L years.

7. Decision making issues: Reservoir operations

The previous sections showed models which are useful in dealing with time-space features which are fre-
quent in hydrology problems. We emphasize now decision making issues, with reference to reservoir oper-
ations. It is worth mentioning that the field of reservoir operations has been a motor for the development of
novel optimization methods, see Yeh [1985] and Yakowitz [1982] for reviews.

7.1. Sequential optimization for water resources management

The aim of the control policy is to determine at every discrete moment of time (for instance, once a month)
controls a¢41, . .., aitk, that is, volumes of water to be released, where k is the planning horizon and ¢ is
the current time. Usually, we distinguish types of releases associated with various operational purposes,
e.g. for hydro-power generation, irrigation, flood control, spill, ...so that a; = (a},a?,...,a), where a'
denotes the volume of water released for purpose [ at time ¢.

Information about the inflow process is given in the form of a predictive density h(y;t1, . . . , Yt+x|Dt)
based on the analysis of historical data records, possibly with models described in Section 3.. A preference
model u evaluates the consequences ¢(a,y) associated with releasing a when the inflows are y. Storage

values at time ¢ are denoted s;. An evaluation of the final state of the reservoir is given through a function
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®. Then, at time ¢, the reservoir management planning problem consists of finding controls a; 11, ..., @iy
maximizing the expected utility

K
/ > ule(arr gy yers)) + (sernr1) | h@erts - yerwl D)y - dyers @)

=1

taking into account the dynamics of the reservoir system, constraints over controls and reservoir storages.
Typical constraints would include bounds on various types of releases, bounds on maximum and minimum
allowed reservoir storages, and continuity conditions relating storages from previous to consecutive periods
of time given inflows, releases and evaporation according to equation:

l
St+1 =St — €t + Yt — E Ay,
l

where e; is the evaporated volume.

Should we apply the above framework to large reservoirs, we would require a 36 month, or longer,
planning horizon. The corresponding maximization problem becomes unmanageable for such long planning
horizons. Note also that the solution of such problem requires, for the evaluation of each control, the
solution of a high dimensional integral. Additionally, the uncertainty about the inflow process rapidly
propagates through the considered time horizon.

For problems solved over shorter horizons, stochastic programming provides appropriate computational
and/or approximation schemes, see Birge and Louveaux [1997] for a review, and Carlin et al [1997] for
alternative approaches based on forward simulation. White [1993] reviews several solution procedures
including linear programming, policy improving algorithms and value improving algorithms. Rogers et al
[1991] use aggregation-disaggregation techniques to deal with large scale algorithms. Many other methods
aim at mitigating the dimensionality curse, either by taking advantage of the problem structure, including
search methods, decomposition methods or methods to approximate the value function, e.g, with neural
networks, as in Bertsekas and Tsitsiklis [1996]. We describe here an alternative method. Another possibility
is to use the augmented simulation method extended to sequential problem, as in Virto [2002].

7.2, A perturbated myopic approach

An alternative strategy based on a reference trajectory may be adopted. This strategy assumes availability
of a reference storage level for each period. Then, the problem can be formulated as

max/(u(c(at+layt+1)) +6(8t+1, 8141)) 0 (Yt+1|Di)dys41, )]

where §(s;11,s;,,) represents the deviation of the final storage s;1 from the reference storage sy, ;.
Intuitively speaking, if reference storages are defined in such a way so as to account for the dynamic aspects
of the problem, we would not loose too much with this modified myopic approach.

To compute the reference trajectory, we use a deterministic version of problem (4), with inflows fixed
at their predictive expected values ;. We use the same dynamic equations and constraints on storages
and controls, and select an initial storage so. The objective function to be maximized is then

k

Z u(c(ait s, Jevs)) — p (Strhs1 — s0)°. (6)
j=1

where p is a weight for the reference trajectory. The optimal solution of (6) provides a reference trajectory.
The (deterministic) dynamic programming problem (5) may be solved using discrete dynamic program-
ming.
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7.3. Decision support systems

In many cases, a decision making problem with important enough consequences has to be solved repeatedly
through time as in, e.g., reservoir operations. In such case, we may encode the knowledge obtained in a
Decision Support System (DSS), which is a computer system that supports the decision making process,
helping decision makers to explore the implications of their judgments in order to make decisions based
on understanding of the underlying assumptions, available information and consequences of plausible de-
cisions.

One example is BayRes (see Salewicz et al, [2002]) which is a decision support system for reservoir
operations, supporting all phases of the decision making process, including:

e a module to load historical and new data from their sources, typically a text file, into the system,

e a module to build a forecasting model, facilitating the construction of the model, say for example,
specification of the DLLM process or data analysis,

e a module to build a preference model, including the computation of a reference trajectory,
e an optimizer to solve problems of type (5),

e several sensitivity analysis tools.

The features of the application and its operation are described and controlled through several windows.
From the main menu, you can launch one of five different modules depending on the stage you are in the
process: loading data, building the forecasting model, building the preference model, optimizing or making
sensitivity analysis. As this is not a sequential process, each module can be launched at a time with no order
predefined except, of course, that optimizing and sensitivity tools require a previous model to work on it.

As an example, the preference module has the following steps: 1) Introducing the number of attributes
and their characteristics (maximum value, minimum value,...), 2) Obtaining some values of the utility func-
tion through lotteries for each attribute, 3) Fitting the different utilities function to a concave-convex or
convex-concave family depending on the monotonicity properties, 4) Obtaining the weights of each utility
function for the general additive multiattribute utility function, 5) Construction of the general multiattribute
additive utility function.

As a result of the optimization module, BayRes shows different charts for the control policy in the next
k periods. BayRes provides capabilities to modify the suggested control policy as external input arrives.

Energia

Ci¥Wmes

Figure 5. Example of a control policy obtained after the optimization process.

For example, its forecasting module allows for interventions, illustrating a principle of management by
exception mentioned above. Examples would include a sudden rainfall, a big release from an upstream
reservoir, or the detection of a wet period. In such cases, the system is open to external (user-initiated and
user-performed) interventions, typically by inclusion of additional subjective information.
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8. Synthetic hydrology

As we have mentioned, another purpose of statistical analysis within water resources management is syn-
thetic hydrology. Once we have identified and estimated a model for a hydrologic phenomenon of interest,
we may use it to simulate sequences of observations that mimic the phenomenon behavior for engineering
design or analysis. Note however, that the standard method of i) estimating model parameters; ii) plug-
ging the estimates into the model; and iii) using the estimated model for prediction or simulation; typically
greatly underestimates uncertainty in predictions, since the uncertainty in the model parameters is not taken
into account. In exchange, in Bayesian forecasting the output is the entire predictive distribution, not just
summaries. Thus, we can use this distribution for any purposes taking expectations or simulating the future.

To wit, suppose we use a simulation model to evaluate some engineering design. There will typically
be some design parameters A and some (random) input parameters 6, some fixed costs f(\) and variable
costs g(\, #) and we aim at minimizing (in \)

fA) + E(g(\.0)).

The standard approach would estimate 6 and use simulation to estimate

~

fA) + E(g(\.0)),

ignoring uncertainty about 6. Alternatively, we could have a sample {6, } from the posterior distribution of
# and based our cost estimate on the sample

acknowledging uncertainty about §. Further details on the impact of Bayesian methods on Monte Carlo and
discrete event simulation may be seen in Palomo and Rios Insua [2003].

9. Discussion and conclusions

The intrinsically uncertain nature of hydrological processes makes Bayesian analysis natural within this
field, whenever statistical problems are considered. We have tried to convey the relevance of such studies
through various examples, covering wide areas of interest in hydrology including modelling and forecasting
time—space features, decision making issues relating reservoir operations and simulation models to help
engineering design or analysis.

Space prevents from dealing with many other relevant topics. For example, hydrologists have been tra-
ditionally interested in changepoint detection problems, to study bursty phenomena like waterflow of rivers,
e.g. in order to prevent floods. Vellekoop and Clark [2002] provide a recent Bayesian analysis of the prob-
Iem. We have illustrated decision making issues with reservoir operations, however the ideas are relevant
in many other problems; for example, Sansé and Miiller [1998] use the augmented simulation model to
redesign a rainfall monitoring network. Water metering problems have been studied from a Bayesian per-
spective in Pasanisi et al [2002]. Finally, recall that we have stressed water quantity issues; some Bayesian
references in water quality include Dilks ez al [1992], Solow and Gaines [1995] and Dominici et al [1997].
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