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Properties of refinable measures

Tim N. T. Goodman

Abstract. We give some new properties of refinable measures and survey results on their asymptotic
normality. We also give a survey on the asymptotically optimal time-frequency localisation of refinable
measures and associated wavelets.

Propiedades de las medidas refinables

Resumen. Se presentan algunas nuevas propiedades de las medidas refinables y se revisan algunos
resultados recientes de su normalidad asintética. También revisamos resultados sobre la localizacion
tiempo-frecuencia asintéticamente dptima de las medidas refinables y de las ondiculas asociadas.

1. Introduction
Let m be a probability measure on R with finite mean
u(m) == / xdm(z).
R
We shall denote by A the set of all Lebesgue measurable sets in R. The following result is proved in [2].

Theorem 1 [2] For a > 1, there is a unique probability measure v on R satisfying
v(A) = / viaA —z)dm(z), A€ A (D
R

Moreover

then v has standard deviation
1
o(v) = (a®=1)"2g(m). O
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Equation (1) is called a refinement equation (or scaling equation) and we call v a refinable measure.
Refinement equations have many applications such as signal processing, data compression and subdivision
algorithms for computer aided design. In Section 2 we give some properties and examples of refinable
measures and this material is mostly new. In Section 3 we give a survey of recent results concerning when a
sequence of refinable measures is asymptotically normal, i.e. it converges to the normal distribution. There
are also results on the order of convergence. This is of interest in application because, in particular, the
normal distribution has optimal time-frequency localisation. This is discussed in Section 4 where we survey
recent results on the time-frequency localisation of asymptotically normal measures and corresponding
results for the associated wavelets.

2. Refinable measures

Equation (1) can be reformulated neatly by introducing random variables. Suppose that X is a random
variable with measure m, i.e. P(X € A) = m(A), forall A € A. If Z is a random variable with measure
v which is independent of X, then for any A € A,

P(X;Z €A> :P(X+Z€aA):/R,u(aA—a:)dm(x).

Thus (1) is equivalent to
Y =a (X +2), )

where Y is a random variable with measure v.
Tterating (2) gives forn =1,2,.. .,

n
X, Z
Y = A 3
Dot 3)
j=1
where X1, ..., X,, all have measure m and Xy, ..., X,,, Z are independent. In order to take the limit as

n — oo in (3) we need to define a notion of convergence. Following [4, Chapter 8] we say lim, o m, =
m for probability measures m,,, m on R, if

lim m,(I) = m(I) 4)

n—oo
for any finite interval I = (a,b) C R for which a, b are not atoms of m, i.e. m({a}) = m({b}) = 0. This
implies that (4) holds for any interval whose end-points are not atoms of 1. Moreover for lim,, o m, = m
to hold it is sufficient that

lim my,((—o0,2)) = m((—o0,z))

n—oo
for all € R which are not atoms of m. If lim,_yoom, = m and X, X,,, n = 1,2,..., are random
variables with measures m, m,, n = 1,2, ..., respectively, then we say lim,, ,o, X,, = X.

Theorem 2 Equation (1) holds if and only if

X,
A ]
y=3 — (5)
=1
where Y is a random variable with measure v and X;, j = 1,2, ..., are independent random variables

each with measure m.

PrOOF. If (5) holds, then it follows easily that (2) holds and hence so does (1).
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Now suppose that (1) holds. So (3) holds. Take = € R which is not an atom of v. Then forn = 1,2, ...

P(Y— ain <x> :/Ru((—oo,ﬂay—n)) dv(y).

Choose € > 0 and take K with v([-K,K]) > 1 —e€. Thenforn =1,2,...,

K

/RV ((—oo,:v + %)) dv(y) — /_KI/ ((—oo,x + 5_")) dv(y)| < e.
Also
Tim. ZV ((—oo,:v + %)) dv(y) = /IK (00, 2)) du(y) = v((—o00, 2))v([~ K, K]).
Thus
nh_}rrgoP <Y - a—Zq; < x) = v((—o0,x)),
Jim, P ihf POT<)

which, by definition, is equivalentto (5). H

Corollary 1 If (1) is satisfied and m has support in [a, b], then v has support in [ 2%, —-].

a—1’a—1
PROOF. If m has supportin [a, b], thena < X; < b, j =1,2,.... Hence
oo

=1
aza,— <255

The most usual case of equation (1) is when o« = 2. In this case it can be interpreted as follows.
Suppose that the random variable with measure m denotes the payback from some gambling game. Then
from Theorem 2 we can see that the random variable with measure v denotes the payback from putting
half the stake on the game, half the remaining stake on a second play at the game and so on ad infinitum
(assuming different plays at the game are independent). As seen from Theorem 1, the expected return from
this strategy is the same as for a single play, but the standard deviation decreases by a factor of /3.

If m has support on a single point a, i.e. m({a}) = 1, then clearly (1) is satisfied by the measure v with
support at the point (a — 1)~!a. The most usual case considered is when m has support on a finite number
of integers. In contrast, we see in the next result that v cannot have support on a finite number of points
except in the trivial case above.

Theorem 3 Suppose that (1) is satisfied and m is not supported on a single point. If v has any atom, then
it has an infinite number of atoms.

PROOF. Let X # () denote the set of atoms of v and Y the set of atoms of m. By (1), forz € X,

v({z}) = Y m({yhr({az —y})

yey
=S {m({y)r({z}):y €Y,z € X,y + 2 = ax).
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Then
v(X) <> {m{yhv({z}) iy €Y,z € X} =m(Y)r(X) < v(X).

Since v(X) > 0, m(Y) =1, i.e. m is discrete. Also foranyy € Y,z € X,y + 2z = ax forsome z € X,
i.e.a '(y +2) € X. Take any z € X. Since Y contains at least two points, Iy € Y with z # £,
Then the points 5 + Sy Z.n=1,2,..,liein X and form a strictly increasing (respectively strictly

decreasing) sequence if z < (respectively >) afl . Thus X comprises an infinite number of points. W

We now consider the simple case when o = 2 and m has support on two points. By a shift and change
of scale, there is no loss of generality in assuming that the support is {0, 1}, i.e.

m({0}) =p, m({1})=¢, p.¢>0, p+g=1
Take z € [0, 1) of form

n
x:Zan_j, aj=0orl, n>1
j=1

Then we define

v([z,z+2" ") =p" "q", wherer = Zaj. (6)
j=1
Note that
vz +2770) = pHrg = pm((nz +277),
vz +27 2+ 27) = pr T = gz x4 27)).
Thus

v,z +27") =v(z+2" ) +r(z+2" L +27").

It can easily be deduced that v can be extended to a probability measure on R with support on [0, 1].
Now for I = [z,z 4+ 2" ") asin (6) with I C [0, 3), 2] = [2z,2z + 27 "), where

n n—1
2 = Zaﬂ_ﬁ'l = Z aj+12_17
j=1 j=1

since a; = 0. So

v(2D) =p" " = p T v(]).

Similarly for J = [z, +27") C [3,1),2J — 1 = [22 — 1,22 — 1 + 27"!), where 2z — 1 =
Z?;ll aj+1277, and so

>
v(2J 1) =p" "¢ =q ().
Thus for any Lebesgue measurable sets U C [0, 3), V C [3,1),
v(U) = pr(2U), v(V)=qv(2V -1),
and since 2U — 1 C (—00,0], 2V C [1, o0),
v(UUV) =pr(QUU2V) + qu((2U — 1) U (2V —1)).

Hence for any A € A,
v(A) = pr(24) + qv(24 - 1),

i.e. v satisfies (1).
We note that v has no atoms. Also forn =1,2,...

v([0,277) =p", v([1-27"1)) =",
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and hence v is not absolutely continuous (with respect to Lebesgue measure) except when p = ¢ = %,
when it reduces to Lebesgue measure on [0, 1].
Now take z € [0, 1] and write

oo
— 9—J L
x—g a;j27’, aj=0orl.
Jj=1

Put g = 0 and forn > 1,
n
Ty = Z aj2*j.
j=1

Taken > 0. If apy1 = 0, then 241 = @y and v([xy, 2py1)) = 0. If apgq = 1, then

V([En, 2ns1)) = ([En, 70 +277L)) = g
where r = Z?:l aj.
So foralln > 0,
v([Tn, 2ng1)) = an+1pn+1_rqr.
Thus forn > 1,
n n
V([O,l'n)) = V([xk*hxk)) = Zakpkirqukv
k=1 el

where 7, = Zf;ll a;. Thus
o0
v((—o0,x)) = Y arpt "R )
k=1

If we denote the above measure by v, for 0 < p < 1, then we see that for any = € [0, 1],

lim vp((—o0,2)) = @,
p—3

i.e. vp converges to Lebesgue measure on [0,1] as p — %

The above example shows that refinable measures need not be absolutely continuous (with respect to
Lebegue measure). However when the measure v in (1) is absolutely continuous, with density ¢, then (1)
can be rewritten as

o(y) = /RO@(Oéy —z)dm(z), yeR

3. Asymptotic normality
Forn =1,2,...let m,, denote the binomial distribution

mn({j}):2”<?>, j=0,...,n. 8)

Then it is well-known that the corresponding solution of the refinement equation (1) with a = 2 is the
measure with density the uniform B-spline B,, of degree n, i.e.

n
B,(z) = 227’”1 <7;> B,(2z—3j), z€eR
j=0
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It is well-known that, when suitably scaled, the binomial distribution converges as n — oo to the normal
distribution, i.e. the measure N with density the Gaussian

[N

G(z) := L e~ T,

As a special case of a result of Schoenberg [8], the B-splines B,,, when suitably scaled, also converge
as n — oo to the Gaussian. This result is useful in practice because the Gaussian arises naturally in
physical situations and has optimal time-frequency localisation (as we discuss in Section 4), while the B-
splines inherit many of the rich properties of the Gaussian and also provide fast algorithms for practical
computation. We shall study more generally the convergence of scaled refinable measures to the normal
distribution. Firstly we make precise the notion of this convergence.

For any probability measure /m on R with mean p and standard deviation o, we define a probability
measure 1 on R by

m(S) =m(cS+pu), Se€A

Thus m has mean 0 and standard deviation 1. If m has density ¢, then 7 has density

o(z) = op(ox +p), =€R
We say a sequence (1m,,) of probability measures on R is asymptotically normal if
lim 7, = N.
n—oo

Our example above of the binomial distribution and the B-splines extends to the following result.

Theorem 4 [2] For n = 1,2,... let m,, be a discrete probability measure on Z with finite mean and
standard deviation, and let vy, be the corresponding solution of (1). Then (m,,) is asymptotically normal if
and only if (vy,) is asymptotically normal. O

In order to extend this to more general measures m,,, we need a condition which is most easily expressed
in terms of the Fourier transform m of a measure m, i.e.

m(u) := /Re*"““lc dm(z), weR

Indeed the Fourier transform is a crucial tool in proving the results of this and the next section.

Theorem 5 [2] For n = 1,2,... let m, be a probability measure on R with finite mean and standard
deviation, and let vy, be the corresponding solution of (1). If (m),) is uniformly bounded on a neighbourhood
of 0, then (my,) is asymptotically normal if and only if (v,,) is asymptotically normal. O

We now consider conditions under which (m,,), and hence (v,,), is asymptotically normal. We shall

assume that forn = 1,2, ..., m, is a discrete probability measure on {0, 1,...,n} given by
mp({k}) = ang, k=0,1,...,n 9
Thus (1) takes the form
vn(A) =Y anivn(@A—k), A€ A (10)
k=0
We define ry, j, j = 1,...,n so that for z € C,
n n
Z+ Ty,
> anadt =[] 57 (1)
k=0 j=1 'n.j
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It is easily seen that m,, has mean p,, and standard deviation ,, given by
n 1 n

2 T'n.j
= = —_ 12
Hn Z 1+7,,; Tn Z (1+7n;)? (12)

j=1 =1

We shall assume that all the values 7, ; lie in a region D., for some € [0, §), where D, is the set of

all z € C satisfying
z z
I —_— <t R —_— ).
‘ m{<1+z>2}‘— o e{<1+z>2}

It can be seen that D., contains the sector | arg z| < +, and for z = +re,r >0,7<6 <,z liesin D,
if and only if

B~}

sin(*5%) _ sin(47)
)~ T sin(%F)

M

B
+ o
)

sin(

w‘

In particular D., contains the unit circle |z| = 1.

Theorem 6 [2] For n = 1.2,..., let m,, be a probability measure given by (9). Suppose that ry, j,
j=1,...,n,n=1,2,.., given by (11) lie in D., for some ~y € [0, T), and are bounded away from —1.
Suppose further that o,, in (12) satisfies o, — 00 as n — oo. Then (my,) is asymptotically normal. O

A special case of this result, when all r,, ; > 0 was proved by probabilistic methods in [1], [9]. The
completely different analytic techniques used in [2] not only prove asymptotic normality for a much larger
class of measures m,, but give some results on the order of convergence, which we proceed to discuss. First
we give a result on the convergence of the scaled refinable measures  to IV in the frequency domain. We
note that

&)

u

Nu)=e %, ueR

Theorem 7 [2] Assume that the conditions of Theorem 6 hold and that forn = 1,2, ..., vy, is the proba-
bilty measure satisfying the refinement equation (10). Then as n — oo,

17 = Nlloo = O(e;, ).

Moreover ifZZ:O an’kzk is a reciprocal polynomial, i.e. ano # 0 and app, = app—p. k = 0,1,...,m,
then
2 { —2
17 = Nlloo = O(0,,7).
If in addition,

n
ot Zrn,j(r%j — 47y, +1)(1 + 7, ;)" is bounded, (13)
j=1
then . .
[ = Nlloc = O(0,%). O

We note that 72 — 4r + 1 = 0 when 7 = 2 & /3 and so (13) requires that in some sense the roots of
Zzzo an, 2% are close to —2 + V/3. In particular (13) will be satisfied if

Po(2) = Qu, (2)(2% 4+ 4z + 1)k

where @, is a reciprocal polynomial of degree I,, = n — 2k,, and n~'/2[,, is bounded over n. In this case
Theorem 7 gives order of convergence O(a,,%) = O(n~2).

Also note that for the case (8), when v, has density B,,, ZZ:O zk = 27714 z)™, all Tn,; = 1, and so
Theorem 7 gives order of convergence O(o;,?) but not O(c ).

The next result gives estimates of the error between the measure m,, in Theorem 6 and the scaled
Gaussian.
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Theorem 8 [2] Assume that the conditions of Theorem 6 hold and that all r, j lie in the sector |argz| < .
Then as n — oo,

k—pn, -1
7 tna = G P = Olon ),
while ifZZ:O amkzk is reciprocal, then
k— _2
max |opany — G(—r2) = 0(on ?). O

k=0,...,n On

We remark that in [1] this problem is considered, using probabilistic techniques, for the special case
when ay, g, ..., G, are the Eulerian numbers. In this case o, = y/7(n + 1) /6. Thus our result gives order

of convergence O(c,, %) = O(n~ %), while [1] shows only convergence O(n~%).

To finish the section we give a result on the uniform convergence of #,, to N in the time domain. To
prove this we need some results from [7] which were given only for a = 2. Here it is shown that if the
numbers 7, j, j = 1,...nin (11) include 1 and all have non-negative real part, then for n > 2 the refinable
measure v, in (10) has a continuous density ¢,,, say. Then (10) takes the form

On(@) = 2anidn(2e—k), zER (14)

k=0
It is further shown in [7] that ¢,, has nice ‘shape properties’ which are used to prove the following.

Theorem 9 [2] Assume that the conditions of Theorem 6 hold and that for n = 2,3, ..., the numbers ry, j,
7 =1,...,ninclude 1 and have non-negative real part. Then for the density function ¢,, in (14),

160 = Gllse = O(0n ),

while if Y, _, amkzk is reciprocal, then

[$n = Gllos = O07).

If, in addition, (13) is satisfied, then

Hén - GHoo = O(U;§)~ U

4. Uncertainty products

One of the main reasons why the asymptotic normality of refinable measures is useful is that the normal
distribution has optimal time-frequency localisation in the sense we shall now describe. For an L? function
¢ for which [, 27|¢(x)|* dx exists, j = 1,2, we write

1o = (16115 / 216()P de,

1
3
Ao loll*{ [ (o= neloto) )
Similarly if [, u|p(u))? da exists, j = 1,2, we may define pg and Ajg. Thus Ay is the standard

deviation of the density function ||#||5 || and gives a measure of the localisation of ¢ in the time domain.
Similarly A ; is the standard deviation of ll#]15%|¢|> and measures the localisation of ¢ in the frequency
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domain. The uncertainty product A yA é gives an overall measure of the time-frequency localisation of ¢.
Clearly for any k, u € R, o > 0, the function k¢(o. — p) has the same uncertainty product as ¢.
Heisenberg’s Uncertainty Principle states that for any ¢ as above,

1
Ashy > 3

and equality holds if and only if ¢ = kG(o. — p) for some k, p € R, o > 0, see [5] for a general
discussion. We see in the next result that, under a mild extra assumption, the refinable functions ¢,, in
Theorem 9 approach optimal time-frequency localisation as n — 0.

Theorem 10 [6] Assume the conditions of Theorem 9 and that for n = 2,3, ..., the numbers ry_j, j =

1,...,ninclude 1 twice. Then
1

This result was proved earlier in [3] for the special case when the polynomial in (11) is reciprocal, has
negative roots, and has a factor of (z + 1)™=, where m,, > Cn for a constant C' > 0. Under the same
conditions, they also proved a similar result for the corresponding wavelets v,,, extending work in [10]
for the B-spline wavelets. For completeness we recall the definition of a wavelet ¢,, corresponding to a
refinable function ¢,, satisfying (14). Let V; denote the subspace of L?(R) spanned by ¢,,(. — k), k € Z,
and let Vi = {f(2.) : f € Vu}. Then 1), is a wavelet corresponding to ¢,, if ¥,,(. — k), k € Z, span the
orthogonal complement of V; in V.

Now [ 1), = 0 and for a function with this property (called a bandpass filter), the definition of the uncer-

tainty product is modified to reflect the fact that 1/3 treats positive and negative frequency bands separately.

Let s
it o= o VR du
P fooo |¢(U)|2 du )
At .— fooo(u - l‘:;)2|’lz)(u)|2 du) 2
i [ 10 ()2 du

)

where we assume that these are well-defined. (Note that for a real-valued function 1, |1/3| is even and so
fooo [ih(u) |2 du = %”1&”% and the definition of Az is unaltered by replacing fooo by fi)oo in the above
definitions.) Then a measure of the time-frequency localisation of 1) is given by A Ag.

It is shown in [3] thatif ¢» € L? N L! is a real-valued symmetric or anti-symmetric function for which
the above definitions are well-defined and [ ¢) = 0, then

1
+ -
quAd} > 5

and the lower bound cannot be improved or attained. Next we see that under appropriate conditions, the
wavelets 1),, approach optimal time-frequency localisation as n — oc.

Theorem 11 [6] Forn = 1,2,..., let ¢, be the density satisfying (14) and 1,, a corresponding wavelet,

where the polynomial (11) is reciprocal and r,, j, j = 1,...,n are positive and include 1 twice. Then
lim Ay AT =2 O
oo Sy, T o

When the polynomial (11) is reciprocal we can choose the wavelet ¢, to be symmetric or anti-symmetric
as n is even or odd. Theorem 11 follows from the fact that a suitable normalisation of v,, behaves like a
‘modulated Gaussian’ as n — oo, as is made precise in our final result.
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Theorem 12 [6] Under the conditions of Theorem 11, there are wavelets 1),, and numbers a.,, € (2%, 1)
such that the following hold as n — oo, where o, are given by (12). For even n,

3

Yn(op) — cos(opane)G(z) — 0,

and for odd n

Up(op) — sin(opane)G(x) — 0,

where the convergence is in LP(R), 2 < p < oc. O
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