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tral function can often contain an integral involving a cyclic product of ker-
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1. INTRODUCTION

The problem of identification in stochastic linear systems has been a matter of acti-
ve research for the last four decades. One of the simplest models considers a «black
box» which enjoys some input and gives a certain output. The input may be single or
multiple, and one can choose between the assumption that it is perfect or noisy. The
same applies to the output irrespective of the input. This variety of possibilities gene-
rates a great amount of models to be considered, and one still has a choice between
a parametric or nonparametric framework. The scope of applications of these models
is fairly extensive, ranging from signal processing and automatic control to econome-
trics (errors-in-variables models). For more details, see Schetzen (1980), Hannan and
Deistler (1988), Söderström and Stoica (1989). Each of these books may be a good
starting point for further bibliographic references. When only second-order statistics
are involved, the question arises about the uniqueness of the solution of a parametric
identification problem, see Green and Anderson (1986), Deistler and Anderson (1989).
The use of higher order cumulant statistics leads to consistent estimates of the para-
meters, see Tugnait (1992), and also proves to be useful in nonparametric settings, see
Akaike (1966).

Our interest in the topic was stimulated by the problem of estimation of the so-called
impulse response function (also called the transfer function in the time domain) of an
SISO (single-input single-output) system. One of the usual tools used for this estima-
tion is the discrete-time cross-correlogram between the input and the output, and one of
the basic methods applied to prove statistical properties of the estimate is Brillinger’s
method of cumulants, see Brillinger (1981). Our impression is that the application of
this method would always lead us to a certain class of integrals. These integrals also
appear in other nonparametric statistical problems, and the peculiarity of this kind of
integrals is that they involve cyclic products of kernels, meaning that the internal struc-
ture of integrals is always the same. The ability to handle these integrals in general can
give a clue to obtaining good upper bounds. If one switches to a spatial setting, the
Rosenblatt approximation by quadratic forms is often applied, see Rosenblatt (1985).
It is interesting that integrals involving cyclic products of kernels also appear in the
cumulants of bilinear forms of Gaussian random vectors, challenging us even more.

Since the weak convergence of estimators is often proved using high-order cumulants
(see, e. g., Zhang and Shaman (1991), Grimmett (1992), Brillinger (1996), Haber-
zettl (1997)), making a closer look at integrals involving cyclic products of kernels
worthwhile. Earlier studies of integral representations of cumulants of second-order
statistics of stationary stochastic processes were carried out by Lithuanian statisticians
R. Bentkus (1972, 1976) and Statulevičius (1977). A later paper by R. Bentkus (1977)
deals with cumulants of polynomial statistics. Other integral representations of cumu-
lants of the periodogram of a homogeneous random field were considered by Guyon
(1995), Benn and Kulperger (1998), Rosenblatt (2000). Interesting classes of multi-
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ple stochastic integrals were introduced by Surgailis (1981), Engel (1982), Fox and
Taqqu (1987).

Let us introduce the object we would like to focus on in what follows. Denote by �
the set of positive integers, � the set of all integers, � the set of real numbers, and let
�m :� �1� � � � �m� for m � �. Let ���µ� be a measurable space endowed with a σ-finite
measure µ. We define an integral involving a cyclic product of kernels as the following
Lebesgue integral:

(1)
�

I n �K1� � � � �Kn; ϕ1� � � � �ϕn� :�
�
� � �

�
�n

�
n

∏
p�1

Kp�tp� tp�1�ϕp�tp�

�
µ�dt1� � � �µ�dtn�

where tn�1 � t1. The functions Kp :� �Kp�s� t�� s� t � ��� p � �n , are called kernels.
In general, both the kernels Kp, p � �n , and the functions ϕp :� �ϕp�t�� t � �� are
complex-valued.

The remaining part of this paper is organized as follows: Section 2 gives an overview
of the situations where integrals (1) appear. Section 3 states some new results on the-
se integrals: a Young–Hölder inequality (Theorem 1) and the convergence to zero of
an integral depending on a parameter (Theorem 2). These results are applied to prove
asymptotic normality of a nonparametric estimate of the impulse response function in
a Volterra system (Theorem 3).

2. SOME MOTIVATING EXAMPLES

Integral representation of a cumulant of a set of bilinear forms of Gaussian
random vectors

Assume that m � �, n j � �, j � �m , and let �Xj�1 :� �Xj�1�k�� k � �n j �� �Xj�2 :� �Xj�2�k��
k � �n j �� j � �m � be real-valued zero-mean jointly Gaussian random vectors. Consi-

der the following set of bilinear forms: S j :� ∑
n j
k�1 a j�k�Xj�1�k�Xj�2�k�� j � �m � where

a j�k� � � are nonrandom numbers for all k � � n j , j � �m . Consider also the joint sim-
ple cumulant (see the definition, for example, in Brillinger (1981), Section 2.3), denoted
by cum �S1� � � � �Sm�, of the random variables S1� � � � �Sm. By Theorem 2.3.2 in Brillinger
(1981) and by some algebra, one can show that

(2) cum �S1� � � � �Sm� � ∑
�����α���P�2�m�1

n1�����nm

∑
k1�����km�1

�
m

∏
p�1

a jp�k jp�C
αp�αp�1
jp� jp�1

�k jp �k jp�1�

�

where�� :� � j1� j2� � � � � jm�,�α :� �α1�α2� � � � �αm�, with the convention that j1 � jm�1 �
1� α1 � αm�1 � 2, and where
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C
αp�αp�1
jp� jp�1

�k jp �k jp�1� :� �Xjp�αp�k jp�Xjp�1�αp�1�k jp�1�� αk :�

�
2� if αk � 1�

1� if αk � 2�

The notation �����α� � �P�2�m�1 applied to the vectors �� � � j1� j2� � � � � jm� and �α �
�α1�α2� � � � � αm� is interpreted as follows:

j1 � 1� α1 � 2� and �� j2� � � � � jm���α2� � � � �αm�� � Perm�2� � � � �m���1�2�m�1

where Perm�2� � � � �m� denotes the set of all permutations of �2� � � � �m�. If card�A� is
cardinality of the set A, then it is clear that card

�
Perm�2� � � � �m���1�2�m�1

�
� 2m�1�

��m�1�!

Let j� j� � �m and α�α� � �1�2�. Assume further that there exists a Lebesgue integrable

complex-valued function Gα�α�

j� j� �u�v�, �u�v� � �
2 , such that

�Xj�α�k�Xj��α��k�� �
� �

�2
exp�i�uk�u�k���Gα�α�

j� j� �u�u
��dudu��

In this case (2) implies that

(3) cum �S1� � � � �Sm� � ∑
�����α���P�2�m�1

�
� � �

�
�m

�
m

∏
p�1

Q�����α�
p �vp�vp�1�

�
dv1 � � �dvm

where vm�1 � v1 and

Q�����α�
p �s�u� :�

�
�

G
αp�αp�1
jp� jp�1

�s� t�Ajp�1�t�u�dt� p � �m ;

Aj�t�u� :�
n j

∑
k�1

a j�k�exp�i�t �u�k�� j � �m �

Each integral on the right-hand side of (3) involves a cyclic product of kernels and the
cumulant cum �S1� � � � �Sm� is the sum of these integrals.

Let j� j� � �m and α�α� � �1�2�. Assume that there exists a complex-valued mea-

sure Mα�α�

j� j� on ���π�π�� ����π�π��� such that �Xj�α�k�Xj��α��k�� �
� π
�π ei�k�k��λMα�α�

j� j�

�dλ�. Here and in what follows, ��A� denotes the Borel σ-algebra on A. Then

(4) cum �S1� � � � �Sm� � ∑
�����α���P�2�m�1

�
� � �

�
��π�π�m

�
m

∏
p�1

A�����α�
p �λp�λp�1�

�
�

�µ����
�α�

1 �dλ1� � � �µ
�����α�
m �dλm�
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where λm�1 � λ1 and A�����α�
p �u�v� :� ∑

n jp
k�1 a jp�k�exp��ik�u� v��� p � �m ; µ����

�α�
p :�

M
αp�αp�1
jp� jp�1

� p � �m � Suppose now that for any �����α� and any p we have µ�����α�
p �B� �

�
B f ����

�α�
p �λ�dλ� B � ����π�π��. Then

(5) cum �S1� � � � �Sm� � ∑
�����α���P�2�m�1

�
� � �

�
��π�π�m

�
m

∏
p�1

A�����α�
p �λp�λp�1� f ����

�α�
p �λp�

�
�

�dλ1 � � �dλm

where λm�1 � λ1. Formulas (4) and (5) give further representations of the cumulant
cum�S1� � � � �Sm� as a finite sum of integrals involving cyclic products of kernels.

The book by Mathai and Provost (1992) is a good reference on quadratic forms, and the
papers of Mathai (1992) and Holmquist (1996) focus on quadratic and bilinear forms in
normal variables.

Inequalities for a cumulant of the cross-correlogram in a Gaussian time series

Let Y �t�� t ���be a real-valued zero-mean stationary Gaussian process with covariance
function C�t� :� �Y �t�Y �0�, t � �� and spectral function F�λ�, λ � ��π�π�. Consider
the sample correlogram Ĉ�τ;N� :� ∑N

k�1 a�k; τ�N�Y �τ� k�Y �k�� τ � �� N � � where
a�k; τ�N� are nonrandom real-valued weights for all k � � N , τ � �� N � �. Formula
(4) implies the following inequality:��cum �Ĉ�τ1;N�� � � � �Ĉ�τm;N��

��(6)

� 2m�1�m�1�!
�
� � �

�
��π�π�m

�
m

∏
p�1

���A�N��λp�λp�1; τp�1�
���
�

dF�λ1� � � �dF�λm�

where λm�1 � λ1 and A�N��u;τ� :� ∑N
k�1 a�k; τ�N�exp��iku�, τ � �, u � ��π�π�. If,

for example, a�k; τ�N�� 1�N, then (6) implies that��cum �Ĉ�τ1;N�� � � � �Ĉ�τm;N��
��

� N�m2m�1�m�1�!
�
� � �

�
��π�π�m

�
� m

∏
p�1

������
sin

�
N�λp�λp�1�

2

	
sin

�
λp�λp�1

2

	
������


�dF�λ1� � � �dF�λm��

A representation carried out by R. Bentkus of a cumulant of a second-order
spectral estimate in a stationary time series

Let Y �t�, t ��, be a weak sense stationary zero-mean real-valued time series. Consider
the second-order spectral estimate:
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Ê�N��g j� �

� π

�π
g j�x�I

�N��x�dx� j � �m � m � ��

where g j � L1��π�π�, j � �m � and where

I�N��x� :� �2πN��1

�����
N

∑
s�1

Y �s�e�isx

�����
2

� x � ��π�π�� N � ��

is the so-called periodogram (Brillinger (1981), Section 5.2). Assume that the pro-

cess Y ��� has n-th order spectral density ϕn

�
λ1� � � � �λn�1��∑n�1

j�1 λ j

	
, �λ1� � � � �λn�1� �

��π�π�n�1� for any n � 2� � � � �2m. Then a result by R. Bentkus (1977) after some alge-
bra implies that

cum �Ê�N��g1�� � � � � Ê
�N��gm��

�
2

�2π�mN

�
� � �

�
��π�π�2m

2m

∏
p�1

�
sin�N�vp� vp�1��2�
sin��vp� vp�1��2�



G�v1� � � � �v2m�dv1 � � �dv2m

where v2m�1 � v2m, and where the function G��� is expressed in terms of g1���� � � � �
gm��� and ϕ1���� � � � �ϕ2m���. This formula shows that cum �Ê�N��g1�� � � � � Ê�N��gm�� is
reduced to an integral involving a cyclic product of kernels.

Long-range dependence. The Rosenblatt distribution

Let Y �t�, t ��, be a stationary Gaussian real-valued zero-mean stochastic process with
covariance function C�t�� t � �. Assume that C�0� � 1 and lim �t��∞ α�1�t��βC�t� � 1�
where α � 0 and β � 0. If β � �0�1�2�, then Y ��� is called a process with long-
range dependence. Consider the sample correlogram Ĉ�τ;N� � N�1 ∑N

k�1Y �τ�k�Y �k��
τ � �� N � �� For a process with index α � 1, the limit distribution as N 	 ∞ of
Nβ�Ĉ�0;N��1� is non-normal, see Rosenblatt (1985), p. 72. This distribution is often
called the Rosenblatt distribution. The characteristic function ϕ�u��u � �, of the Ro-
senblatt distribution has the following form: ϕ�u� � exp

�
�1�2�∑N

k�2�2iu�kIβ�k��k
�
�

u � �� where

Iβ�k� �
�
� � �

�
�0�1�k

�
k

∏
j�1

�x j � x j�1�
�β

�
dx1 � � �dxn

for any k 
 2 and where xk�1 � x1. It is clear that each of the integrals Iβ�k�� k 
 2,
involves a cyclic product of kernels.
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3. SOME RESULTS ON INTEGRALS INVOLVING CYCLIC PRODUCTS OF
KERNELS

The Young–Hölder inequality for an integral involving a cyclic product of kernels

For K � �K�s� t�� s� t � �� we put �K�∞�p :� µ–ess sups���K�s� ���p, where � � �p is
the standard norm in Lp���, p � �1�∞�. We also introduce another norm: ���K��� p :�
max��K�∞�p��K��∞�p� where K � is the dual function of K, that is K ��s� t� :� K�t�s� for
any �s� t� � �2. Put L∞

p ��
2� :� �K : ���K���p � ∞�. An inequality having the form

(7) �
�

I �K1� � � � �Kn; ϕ1� � � � �ϕn�� �
n

∏
j�1

����Kj ���p j � �ϕ j�q j�

with 1� p j�q j �∞, j � �n , will be called a Young inequality for integral (1). If each q j

is the real conjugate exponent of p j, j � �n , that is �1�p j���1�q j� � 1 for all j � �n ,
then (7) is called a Young–Hölder inequality for integral (1).

Theorem 1. Let n � �, n
 2. Assume that 1� q1� � � � �qn � ∞ and

(8) max
j1 �� j2

��1�q j1���1�q j2��
 1�

If Kj � L∞
p j
��2�� ϕ j � Lqj ��� for each j � �n � where p�1

j �q�1
j � 1� j � �n � then

(9)
����I n �K1� � � � �Kn; ϕ1� � � � �ϕn�

���� n

∏
j�1

���Kj ���p j�ϕ j�q j �

Sketch of the proof

Let

(10) j1 � Argmax

�
1
q j
� j � �n

�
� j2 � Argmax

�
1
q j
� j �� j1

�
�

Then we obtain by (8)

(11)
1

q j1
�

1
q j2


 1�

Put

(12) p j � q�j� j � �n �
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and consider the following collections:

��p j1� j2�1��q j1�1� j2�1� � �q�j1q j1�1q�j1�1 � � �q j2�1q�j2�1��

��p j2� j1�1��q j2�1� j1�1� � �q�j2q j2�1q�j2�1 � � �q j2�1q�j1�1��

By (10) and (12), we have

1
p j1

�
1

q�j1
� 1�

1
q j1

� min
j��n

1
p j

and
1

p j2
�

1
q�j2

� 1�
1

q j2
� min

j�� j2� j1�1�

1
p j

�

that is

(13) p j1 � max
j�� j1� j2�1�

p j� p j2 � max
j�� j2� j1�1�

p j�

Furthermore

(14)
1
q j

�
1
p j

�
1
q j

�
1
q�j

� 1� j � �n �

and moreover�
∑ j�� j1� j2�1�

1
p j

�
�

�
∑ j�� j1�1� j2�1�

1
q j

�
�

1
q�j1

�∑ j�� j1�1� j2�1�

�
1
q j

�
1
q�j

�
�

�
1

q�j1
��� j2� j1��1��

Therefore

(15)
1

a j1� j2�1
�

1
q�j1

� �0�1��

In a similar manner, we can prove that

(16)
1

a j2� j1�1
�

1
q�j2

� �0�1��

We also have

(17)

�
n

∑
j�1

1
p j

�
�

�
n

∑
j�1

1
q j

�
�

n

∑
j�1

�
1
q�j

�
1
q j

�
� n�
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Now Theorem 1 can be obtained from Theorem 9.5.1 in Edwards (1965), and formulas
(11), (13)–(17) using the techniques employed in Section 5 of Buldygin et al. (2000).

�

Corollary 1. Let n
 2� Assume that 1� q1� � � � �qn �∞ and �8� holds. Then there exist
numbers p j � �1�∞�� j � �n � satisfying ∑n

j�1�p
�1
j � q�1

j � � n and such that �9� holds

whenever Kj � Lpj ��
2� for each j � �n �

Convergence to zero of an integral involving a cyclic product of kernels, with the
kernels depending on a parameter

Assume that the kernels K1� � � � � Kn appearing in the integrals
�

I n depend on a parame-

ter σ, that is Kj �K�σ�
j for all j��n , σ��. We then write

�

I
�σ�
n :�

�

I �K�σ�
1 � � � � �K�σ�

n ; ϕ1�
� � � �ϕn�. Consider the following majorant condition: for any p � �1�∞�, there exists a

constant Cp 
 0 not depending on σ �� such that max j ���K
�σ�
j ���p �Cp�ρ�σ��1�2�1�p

where ρ�σ�� 0, σ ��.

Theorem 2. Let n � �, n 
 3� Assume that: (i) the kernels K �σ�
j � j � �n � satisfy the

majorant condition; (ii) among the functions ϕ1� � � � �ϕn� there exist n1 
 0 functions
belonging to the space L1��

d �� n∞ � n1 functions belonging to the space L∞��
d �� and

n2 � n�2n1 
 0 functions belonging to the space L2��
d �� Then limρ�σ��∞ I�σ�n � 0�

The proof of Theorem 2 follows the lines of that of Part B) of Theorem 5.3 in Buldygin
et al. (2000) with slight modifications related to the form of the majorant condition
above.

Asymptotic normality of a cross-correlogram estimate of the response function in
an SISO system

Take a time-invariant continuous SISO (single-input single-output) linear system with a
real-valued impulse response function H :� �H�τ��τ ���, also called the transfer func-
tion in the time domain. This means that the system is an input-output type «black box»,
and the response of the system that enjoys an input x�t�, t � �, has the following form:
y�t� �

� ∞
�∞ H�t� s�x�s�ds� where the function H��� is unknown. The problem is to es-

timate H from observations after the input and the output interpreted as stochastic pro-
cesses X and Y , respectively. Suppose that a family of continuous spectral densities f ∆,
∆� 0� satisfies conditions (1a)–(1g) in Buldygin et al. (1998). Let X ∆ :� �X∆�t�� t ����
∆ � 0, be a family of separable stationary zero-mean Gaussian processes with spectral
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densities fX∆ � f∆, ∆ � 0. Consider a stochastic process Y∆ representing the response
of the system to the input X∆. Define the sample cross-correlogram:

Ĥ∆�N�τ� :�
1
N

N

∑
n�1

Y∆�nh�∆��X∆�nh�∆�� τ�

where h�∆� :� π��2λ0�∆��, λ0�∆� :� sup�λ � 0 : f∆�λ� � 0� � ∞, and λ0�∆� 	 ∞
as ∆ 	 ∞, see condition (1b) in Buldygin et al. (1998). By (6) and Theorem 2, the
following statement can be proved.

Theorem 3. If H � L2���, then for any n
 1 and all τ1� � � � �τn � � one has

�

�
n

∏
j�1

Ẑ∆�N�τ j�

�
	 �

�
n

∏
j�1

Z�τ j�

�
as �∆�Nh�∆��	 ∞.

In particular, all finite-dimensional distributions of the process Ẑ∆�N � �Ẑ∆�N�τ�� τ� ��
converge weakly to the corresponding finite-dimensional distributions of the Gaussian
process Z. Here, Ẑ∆�N�τ� :�

�
Nh�∆�

�
Ĥ∆�N�τ���Ĥ∆�N�τ�

�
, Z � �Z�τ�� τ � �� is a

zero-mean Gaussian process whose correlation function is

�Z�τ1�Z�τ2� �
1

2π

� ∞

�∞

�
ei�t1�t2�λ�H��λ��2 � ei�t1�t2�λ�H��λ��2

�
dλ� τ1�τ2 � ��

and H� is the L2 Fourier transform of H.

The proof presents no technical difficulties and can be obtained similarly to the proof
of Theorem 4.1 in Buldygin et al. (2000) with the reference to Part B) of Theorem 5.3
replaced by that to the above stated Theorem 2.
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