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1. INTRODUCTION

A spatial point pattern is a set of points
X={xeA:i=1,...,n}

for some planar regio@. The x; are called events to distinguish them from generic
pointsx € A. Very often,A is a sampling window within a much larger region and it
is reasonable to regad as a partial realization of a planar point process, the svent
consisting of all points of the process which lie within

Parameter estimation for two-dimensional point pattetia dadifficult, because most
of the available stochastic models have intractable likalds (see Ripley, 1977, 1988
and Diggle, 1983). An exception is the class of Gibbs or Maioint processes (Bad-
deley and Moller, 1989; Ripley, 1989), where the likelihd¢X;8) typically forms an
exponential family and is given explicitly up to a normatigiconstant. However, the
latter is not known analytically precluding the use of exa@ximum likelihood, so
parameter estimates must be based on approximations.

Gibbs point processes first appeared in the theory of statigithysics, where Gibbs
distributions were applied to describe the equilibriuntegaf closed physical systems
of interacting objects. In mathematical statistics Gibbmpprocesses are used as mo-
dels of spatial point patterns. A preliminary paper intrcidg the Gibbs processing into
the statistical literature is Ripley and Kelly (1977). Exales can be found in biology,
plant ecology, forestry and economy.

The topic of this paper concerning Gibbs type processes haseral validity arising
from two aspects: (i) It is a general way of proceeding in sadeexponential families
with dependent samples, and (ii) it has theoretical valug&own. Examples of (i)
are the applications of Markov random fields for lattice d&asag, 1974; Geyer and
Thompson, 1992), Markov random fields in image analysis (@eamd Geman, 1984),
Gibbs point processes and germ-grain models in high levagi@ranalysis (Baddeley
and van Lieshout, 1993), modelling of random graphs andrgéimgeraction models
(Strauss, 1986). Gibbs processes are useful as priotdistnms in image interpretation
tasks, such as object recognition, edge detection andréeatiraction (van Lieshout
and Baddeley, 1995; Molina and Ripley, 1989). Maximum likebd solutions tend to
suffer from multiple response and the prior distributiorves to penalize scenes with
too many almost identical objects, disconnected or crgssdges. Usually, the poste-
rior distribution also possesses a Markov property, engldampling and optimization
by iterative procedures that recursively update the scgreniple operations of addi-
tion or deletion.

In this paper, we consider generally applicable methodestimating the parameter
0 confining our attention to stochastic and non-stochastwamations to the ma-



ximum likelihood estimate (MLE). We use a simple point peeenodel, the Strauss
process (Strauss, 1975), to illustrate and compare thetsmdsawhich could be applied
to more general and complex models. The Strauss processistgppcess model whi-

ch has been used in modelling (non-clustered) point patieraome of the mentioned
references and is a demanding member of the exponentidlféonia dependent sam-

ple.

The interest of the present paper relies on methods of emtimahich can be used
routinely in applications, and which do not place artificedtrictions on the parametric
form of 1 (X;8). The aim is to present a comparative study among the appatixins to
the MLE and to discuss the practical implications. We cossahly homogeneous, i.e.,
stationary and isotropic processes. Throughout this paliéy) stands for the number
of events inA, |A| denotes the area éfandA = E[N(A)] / |A| denotes the intensity of
the process.

For a general introduction to statistical methodology foaitgal point patterns, see for
example Ripley (1981), Diggle (1983), Stoyan, Kendall arecke (1995) and Cressie
(1993). Other parametric methods of estimation, not cameil here, are maximum
pseudo-likelihood and the Takacs-Fiksel method (Diggkd.e1994; Takacs, 1986). In
a different vein, Diggle, Gates and Stibbard (1987) develgmooth, non-parametric
estimator for the interaction function, to which a parameeimily could be fitted by
standard curve-fitting techniques such as non-linear tzpsires.

The plan of the paper is as follows. Section 2 describes theoajmate MLE methods
for a particular Gibbs process, the Strauss model. Sect#hro®s the simulation study
to compare the different methods. The paper ends with aoseatifinal conclusions.

2. APPROXIMATE MLE FOR A GIBBS PROCESS

A class of stochastic models for patternsnafvents in a bounded regidis the class
of pairwise interaction point processe$he joint density for a patter, taken with
respect to the Poisson measprés given by

(1) f(X;0) :C(G)_lﬁnexp{—_isz(ﬂxi — x| ;9)}/n!
i=1]>1

In (1) ||.|| denotes Euclidean distancgy.) is apotential functiordepending on a set of
parameter§, B is a parameter which determines the intensity of the proe@siC(0) is
anormalizing constant. We célh(X;8) = 31, ¥~ ®(||x — Xj|| ; 6) thetotal potential
energy Often, (1) is written in terms of amteraction function &) = exp(—®(t)).
Such class of point processes belongs to a more general kprdaesses calle@ibbs
processe¢Kelly and Ripley, 1976; Daley and Vere-Jones, 1988; Bagidahd Moller,



1989). Note that restrictions on the form of the potental) are needed to ensure that
the normalizing constant in (1) is finite.

A Strauss procesStrauss, 1975) is a pairwise interaction process in wiiietdensity
depends only on the number of neighbour pairs defined by

s(X) = _iZI(Hxi x|l <1).

B

Considering in (1) the Strauss potential function

o) { ~HHO

the likelihood takes the form (Kelly and Ripley, 1976)
|(X;6) = exp(—|A)a(6) 'p"6*

where the normalizing constant@6) = a(6)/exp(—|A|)n! The cased = 1 corres-
ponds to a Poisson process with intengityf 6 = 0, the result is a simple inhibition
process that contains no events at a distance less than artequ Values of6 < 1
correspond to regularity of events, whilst fdr> 1 the process should result in cluste-
ring (see Figures 1a, 1b and 1c). For a clustered patternaaguinted out by Kelly
and Ripley (1976), the conditioh> 1 violates the requirement of a finite normalizing
constantC(0) in (1). This problem can be removed by conditioning to the banof
events, sayN = n. This is not an artificial restriction becaus€X) usually provides
little information about the interactions among the evemtse effect on conditioning
to the MLE for the Strauss family has been demonstrated by Gayd Moller (1994).
Furthermore, conditioning ommakes it easier to generate simulations by the discrete-
time Markov chain method of Ripley (1979, 1987). The cordiéil likelihood function
for the Strauss process is given by

) In(X;6) = 65%) /Cy(8)

where the normalizing constant is given by
®) Ca(8) = [ 85¥dxy---dx.
Jan

Maximum likelihood estimation o® requires the evaluation of (3) which is not usually
obtainable in closed form. We therefore try to maximize gorepimation to the likeli-
hood function. In the following, we develop approximatiaashe MLE for the Strauss
conditional model.



00 02 04 06 08 10
theta=0.1,5(X)=7

00 02 04 06 08 10
theta=1,5(X)=43

S
- c."
. V'
[09] . . .
) . .
S L et
.
© . .
] .
o . . .
.
5| :
. .
N . . ..
o .o,
. .
.
ol v .. .
o

00 02 04 06 08 10
theta=1.3,5(X)=71

© ° . ©
H'... . ‘_.l.‘. o P . .0.
.
. . N D .
o, et ol ‘ @ L ot
o . . . o . . of,
. . . . .
3 of v ¢ . of, .
o [} (. o J
. . . . . .
. . . . .
Sle o e e <], ' . . < [ .
o . e . [} coee, o
N . . . [\ . LN - . T
y 'IO y .
© . e . . © . . N oc. .t .
. . ¢ . ‘ . .
° ., ° . . ° ' . v '
o o o

00 02 04 06 08 10
theta=0.4,5(X)=19

o ° Sl
Ll . — - .
. e
¢ N et ‘.. *
@ o[t . @ .
© N . ,' * © . . * o1, . )
* e . “w '
o - o o Ce e
c [ ° o c .
. . . .
. .
< TP <] . ) <
c . c . . c
. * o
. LY . . . '..
~| . . N el . NI o
: [N . N o K . S o .
ol .. % Y . o ta
. R
ol °* e ol o o e .
o. . O O . .

00 02 04 06 08 10
theta=1.1,5(X)=62

00 02 04 06 08 10
theta=0.8,5(X)=23

00 02 04 06 08 10
theta=1.2,5(X)=65

Figure la.Realizations of simulated patterns under the Strauss model for diffeatuets of
parameteB. In each pattern it is also includexiX), the number of neighbour pairs.
r=0.10



o ° 0
o * * ¢ ' = .‘ . e . . A0 . !
Q[ o0 . . " o] . © : * o .
o ' o . K ‘., o LN
© o © o 3 Y P fe
ol * . . ol . . o . '
' . ¢ . ' . . * . * ) [ .
< e e . < . < .
o . o s . ol * ., .
ST L o f e N, ' .
o o, o LA ' o] % . ‘
ol " ol * N :. [ I '
o * o : o
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
theta=0.1,5(X)=22 theta=0.4,5(X)=39 theta=0.8,5(X)=56
° N ° ° N
o . L 2 ' . . - .
© b . ’ o' t © ",
e o L o L o . '
' . e ’ ". .
© . © e ° e,
ol« ', ., of - . o * L
< . . < , : . . < . : [
o . ] .' . o ,-. .
N ' L N . ' N ., .
[} ) . e} .o . <} . e
., . . " . o ‘%
] . ’ o . . ° * ‘: .
o o o
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
theta=1,5(X)=74 theta=1.1,5(X)=84 theta=1.2,5(X)=127
o
-

0.6 0.8

0.4

0.2

0.0

00 02 04 06 08 10
theta=1.3,5(X)=1205

Figure 1b. Realizations of simulated patterns under the Strauss model for diffeatuets of
parameteB. In each pattern it is also includexiX), the number of neighbour pairs.
r=0.15



00 02 04 06 08 10
theta=0.1,5(X)=43

00 02 04 06 08 10
theta=1,5(X)=147

S
-
@
o
©
o .
%
< :. re
o ) .'25
e
.
N
o
o
o

00 02 04 06 08 10
theta=1.3,5(X)=1194

Q . . ° G .
H . . . H . . H
"l : o o . ' . o L . .
. . . . .
9, ® . . ® ,
. .
[} ol . R o . J .
[P " . . N L
© [} . . o |*
g S ) . .
O o . . . . o . o -'
"
. '00 . . 1)
< < . < .
[ v o ot J o . .
" ' N . . . L
. .o . . o .
N . M N N
{ \ . { R
s . CI , . ° C e,
P . . e ‘Y o . .
ol . : Q of.,
[e] o o

00 02 04 06 08 10
theta=0.4,5(X)=72

© © °©
“ . * - . o
. .
.
o - e, @ " @
° I ° R o
‘ . . .
Q Q oy Q
5] A .o c S o
N o . . )
IR s CLt < i’
.
sl + . e} R ; , o 1
.
N A ' o R N N
3 ; 3 s
ofe v . of, . ) 2%
.
N . . - .
° . . e e ! ©
(=] o o

00 02 04 06 08 10
theta=1.1,5(X)=174

00 02 04 06 08 10
theta=0.8,5(X)=89

00 02 04 06 08 10
theta=1.2,5(X)=1127

Figure 1c. Realizations of simulated patterns under the Strauss model for diffeatus of
parameteB. In each pattern it is also includexiX), the number of neighbour pairs.
r=0.20



2.1. Method of Ogata-Tanemura

Ogata and Tanemura (1981) proposed to use a cluster-egpamsithod of statistical
mechanics assuming that the events of the point procespangey distributed, so that
third and higher-order cluster integrals are negligibleei, using up to the second-
order cluster integral, an approximation to the normatjzionstant is given by

n(n—1)/2
cue) = {1- 0}

whereb(8) is, for the Strauss moded(8) = 1(1— 6)r2. Then, the MLE is given by

4 o S(X) {2/A] -2}
) = W2(n(n—1)/2— X))’

D)

2.2. Method of Penttinen

Penttinen (1984) proposed another sparse-data apprasimtat (3), which for the
Strauss model takes the form

Cn(6) =exp{1/2n(n— 1?6 —1)}
and the MLE is given by

S(X)

2.3. Method of virial expansions

This method consists of the following approximation of (3),

(6)
n~110g(Cn) = (bn/2) [z f1o0% + (02/4) 4 f12f13T2sd%dXs+
(b3/8) Jq6(f12f13f1aT23f2afaa+ 6F12f13F1afoafoa+ 3f12f14To3fa4)dXodXadXs + - - -

whereby, = n/|A| and fij = exp(—®(||x —xj||;6)) — 1 (Ripley, 1988). To implement
this method for the Strauss process we use the fourth orgr@nsion obtained by cal-
culating the integrals in (6):

log(Cn(8)) = —Tn(n— 1)Wr?/(2|A|) — 0,293257 " W3r?/(6/A1%)
—r@mﬂ—;ﬂ{—o,zmsw +2,1854205 — 1,37886V4}r6/(24/A®)

10



whereW =1-6.

Then solving
@) dlog(Cn(6))/d6 = s(X)/8

we obtaind, the approximate MLE o8.

2.4. Stochastic approximation based on a Newton-Raphson gecedure

Penttinen (1984) suggested a Newton-Raphson type algofithsolving the maximum
likelihood estimating equation. Assurd¥t; ) is twice differentiable with respect &
Differentiation of both sides of equation (3) yields
~9Cn(8)
00

where thetotal potential energyfor the Strauss process, is

— Ca(8)Eg[0Un(xa. .. %0 8)/06]

Un(X1,-..,%n;8) = —log8%¥).

The MLE® solvesdlog(ln(X;0))/086 = 0. If 8o denotes an initial guess fér then the
Newton-Raphson algorithm consists of

~ P o~ 11
Bki1 =6k — [rT (ek)} Br(6k) k=0,1,2,...

where

(®) Br@0= 23 21500 - stanit))]
T &6k

and

F1(80 = #3113 [S(On() —S(X)]
{1500 - stan0)] -Br @0}

Note thatg,(1),...,@(T) are simulated according to a Strauss process with parameter
O .

2.5. Stochastic approximation based on Robbins-Monro proakire

This stochastic approximation procedure was first intreduisy Robbins and Monro
(1951) and can be used to estimate the solufibof an equatiorF (6*) = ¢ when

11



there is very little information about the functiéhbut it is possible, for any giveA,
to generate a random varialligwith expectatiorE(Tg) = F ().

For the Strauss model, the goal is to solve
) M(8) = s(X)

for 8, whereX is the observed data and(6) = Eg[s(X)]. Then we seflg = S(Xg),
whereXg is a simulated Strauss process with param@tnd we obtain, recursively, a
sequence of estimates @iising

Bki1 = Ok + E {s(X) —s(Xe,) } -

Then®, — B (a.s.) (Moyeed and Baddeley, 1991).

Defining = M’(8) anda? = Varg[s(X)], if B> 1/(2u) then8y is asymptotically nor-
mally distributed with mea# and variancd0?/(2Bu— 1).

The starting valuy is arbitrary, but should be set to an initial approximatioetsas
that holding in the sparse case

__X)IA
" nin—1ym?

The optimumB, Bgpt, could be estimated by

1 1
Bopt = - = =
M M/(6)
or 24
Bopt n(n—1)1r2

3. A SIMULATION STUDY

3.1. Edge-correction

Commonly, the regior is a sampled sub-region of a much larger region within which
the phenomenon operates and some form of edge-correctuitaliswhenA is a rec-
tangle, a possible strategy is to mamnto a torus by identifying opposite edges. This
periodic boundary is commonly used for computer experisigrgtatistical mechanics.

12



However, for the analysis of real data, periodic boundarésintroduce undesirable ar-
tefacts: toroidal distances can be arbitrarily small eveemthe underlying process has
a positive hard-core distance. In the present comparaitwalation study, the points
patterns were themselves generated using a periodic bogiticken this particular dif-
ficulty does not arise.

To compensate for the omission of contributions to the fodé¢ntial from unobserved
events outsidé we replace summations of the form

> ®(|[x —x[|:8)

>

by
1
5 > Wit e(x —xi|;6)
7

wherew;; is the proportion of the circumference of the circle with ten; and radius
|| —x;|| which is contained withir. This is an adapted version of Ripley’s correction
(Ripley, 1977, 1988). The majority of available edge-cotigns correct the bias using
lengths or areas of parts of circles or discs, respectively.

In the simulation study, we also include results using thealted free boundary con-
ditions, in which no edge-correction at all is made.

3.2. Standard Errors

One possible way to obtain approximate standard errors issing Monte Carlo met-
hodology. For this approach, we simulateealisations with® = 6, the point estima-
te under the chosen method for the original data. We theruatealpoint estimates
8j.j =1,...,s from the simulated patterns and use the empirical disidhubf the

ﬁ,— as an approximation to the sampling distributior®on particular, the sample mean
and standard deviation of trﬁq give useful indications of the bias and efficiency of
estimation. This Monte Carlo approach is highly computéensive and it is usually
known as parametric bootstrap.

3.3. Simulation method

Thespatial birth-and-death procegsovides the framework under which Ripley (1977,
1979) proposes to simulate a Markov point process on thedemiBorel seA ¢ ¢
with n fixed. The method is related to Markov processes used irsttali mecha-
nics and surveyed by Hastings (1970). Consider a set oftpestinteracting according
to a certain potential function on a s&twith periodic boundary, i.eA is identified

13



with a torus. First, seleat events from a uniform distribution oA; call this initial
point patterng,(0). At step(t + 1), delete systematically in turn one of theavents of
Mh(t) = {X1,..., %}, say evenk;, and letgs(t) — {X } denote the point pattern formed
by removingx; from @, (t). Let

_In(@n(® — {x}.0)
In-1(an(®) — (%)

P(U; n(t) — {x})

denote the conditional intensity at A givengy(t) — {x }. Define

M = supp(u; @n(t) — {x}).

ueA

Select an event from a uniform distribution o\ and setp,(t + 1) = {@(t) — {x },u}
with probability p(u; @n(t) — {xi } ) /M; otherwise, selection is repeated until a qualifying
u is found. This method ensures that samples taken avestgps have no points in
common. Ultimately, convergence to a Markov point proceils likelihood I (.) will
occur.

Unfortunately, in the case of the Strauss modelgforuch larger than 1 the algorithmis
very slow and may result in simulation difficulties (see Fagilb and 1c wheb= 1,2
and 13).

3.4. Design of the Simulation Study

For the simulation study we selected eight parameter value®,1, 0,4 and Q8 corres-
ponding to regular pattern§;= 1 for the random pattern (Poisson process) éns
1,1,1,2 and 13 for clustered ones (strongly interactive patterns). Vée abnsidered
three different ranges of interaction:= 0,1,0,15 and Q2. For each combination of
parameter value and range of interaction we simulated 1&lza¢ions, each one with
n = 50 events orA the unit square. From the simulated realization we evatutte
estimate oB using the five methods of approximation described in Se@&iand incor-
porating the edge-correction described in Section 3.1.

Each combination of parameter value, interaction rangehodeof estimation and
edge-correction (no edge-correction, Ripley’s and tabigeriodic)) therefore yiel-
ded 100 estimate3;, j = 1,...,100, which are summarised by the box-plots shown in
Figures 2a, 2b and 2c.
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Table 1. Sample means and standard errors of parameter estimates when thaioneradius is = 0,10. Each entry is based on 100 replicate
simulations of n=50 events on the unit square. Lower case letters indieadbetindary condition: free, Ri=Ripley and toro=toroidal.

8T

r=0.10 O-T method Pent. method V-E method N-R method R-M method
free Ri toro | free Ri toro | free Ri toro | free Ri toro | free Ri toro
0 Sample Means
0.1 | 0.247 0.231 0.0914 0.193 0.176 0.087 0.112 0.125 0.122 0.095 0.097 0.098 0.093 0.091 0.096
0.4 | 0434 0.427 0.407 0.541 0.308 0.345 0.456 0.319 0.376 0.305 0.403 0.393 0.231 0.378 0.404
0.8 | 0.645 0.714 0.835 0.703 0.715 0.732 0.913 0.809 0.80§ 0.704 0.791 0.807 0.710 0.803 0.824
1.0 |0.831 0.873 1.041 0.810 0.912 1.013 0.919 0.920 0.946 0.910 0.935 0.931 0.847 1.079 0.979
1.1 0.914 0.979 1.093 0.973 1.007 1.081 1.013 1.315 1.2913 1.004 1.073 0.993 1.215 1.183 1.032
1.2 0.997 1.101 1.103 1.031 1.046 1.097 1.035 1.416 1.335 1.053 1.143 1.103 1.392 1.194 1.197
1.3 1.124 1445 1.213 1.093 1.106 1.148 1.056 1.496 1.531 1.197 1.292 1.197 1.431 1.393 1.245
0 Standard Errors
0.1 0.215 0.210 0.091 0.141 0.115 0.091 0.090 0.091 0.037 0.093 0.051 0.047 0.061 0.057 0.053
04 | 0171 0.135 0.131 0.205 0.217 0.215 0.099 0.101 0.048 0.039 0.032 0.031 0.043 0.038 0.029
0.8 | 0.176 0.156 0.132 0.115 0.043 0.039 0.105 0.101 0.066 0.127 0.125 0.112 0.128 0.118 0.105
1.0 |0.125 0.112 0.111 0.127 0.115 0.113 0.107 0.096 0.080 0.098 0.083 0.081 0.103 0.097 0.065
1.1 0.215 0.203 0.193 0.235 0.215 0.195 0.135 0.137 0.122 0.121 0.115 0.107 0.120 0.119 0.117
1.2 0.323 0.213 0.211 0.341 0.312 0.247 0.156 0.165 0.144 0.143 0.135 0.127 0.142 0.138 0.129
1.3 0.351 0.225 0.2127 0.451 0.410 0.393 0.170 0.171 0.157 0.161 0.149 0.143 0.160 0.153 0.141
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Table 2. Sample means and standard errors of parameter estimates when thationeradius is = 0,15.

r=0.15 O-T method Pent. method V-E method N-R method R-M method
free Ri toro | free Ri toro | free Ri toro | free Ri toro | free Ri toro

0 Sample Means

0.1 | 0.197 0.215 0.142 0.198 0.186 0.082 0.197 0.183 0.172 0.094 0.096 0.096 0.092 0.092 0.093
0.4 0.431 0416 0417 0.515 0.412 0.319 0.511 0.392 0.431 0.304 0.393 0.409 0.214 0.341 0.431
0.8 0.613 0.705 0.841 0.609 0.674 0.705 0.819 0.812 0.811 0.703 0.793 0.805 0.695 0.849 0.907
1.0 0.813 0.912 1.01Q 0.805 0.845 0.906 0.905 0.896 0.915 0.921 0.935 0.963 0.896 0.945 1.031
1.1 0.887 0.946 1.035 0.874 0.885 0.948 1.193 1.203 1.195 0.973 0.987 0.995 0.994 0.998 1.051
1.2 0.944 0.997 1.1027 1.005 1.045 1.103 1.298 1.305 1.399 1.047 1.031 1.034 1.314 1.293 1.227
1.3 1.034 1.125 1.204 1.091 1.112 1.131 1.423 1.397 1.43Q0 1.092 1.141 1.195 1.443 1.348 1.33§
0 Standard Errors

0.1 | 0.212 0.205 0.146 0.150 0.141 0.11§5 0.102 0.052 0.036 0.091 0.050 0.045 0.061 0.060 0.055
04 | 0.202 0.165 0.108 0.210 0.231 0.217 0.103 0.096 0.047 0.039 0.037 0.031] 0.048 0.035 0.028
0.8 0.176 0.135 0.126 0.212 0.195 0.118 0.105 0.037 0.071 0.131 0.129 0.125 0.127 0.121 0.113
1.0 | 0.146 0.131 0.127 0.210 0.196 0.121 0.104 0.096 0.091 0.103 0.095 0.091 0.113 0.093 0.091
1.1 0.215 0.201 0.153 0.235 0.221 0.19§ 0.135 0.131 0.118 0.125 0.121 0.119 0.125 0.122 0.119
1.2 | 0.345 0.303 0.246 0.319 0.312 0.251 0.158 0.162 0.135 0.148 0.137 0.132 0.157 0.138 0.118
1.3 0.431 0.397 0.353 0.425 0.418 0.401 0.177 0.182 0.1532 0.159 0.152 0.151 0.191 0.153 0.139
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Table 3. Sample means and standard errors of parameter estimates when thaioneradius is = 0,20.

r=0.20 O-T method Pent. method V-E method N-R method R-M method
free Ri toro | free Ri toro | free Ri toro | free Ri toro | free Ri toro

0 Sample Means

0.1 | 0.240 0.273 0.184 0.210 0.221 0.082 0.253 0.231 0.165 0.092 0.093 0.093 0.090 0.091 0.093
04 | 0450 0.443 0.415 0539 0.495 0.324 0.551 0.453 0.397 0.241 0.295 0.335 0.221 0.298 0.321
0.8 0.595 0.593 0.625 0.605 0.614 0.693 0.719 0.771 0.789 0.615 0.693 0.705 0.630 0.710 0.747
1.0 0.841 0.855 0.931 0.741 0.793 0.845 0.810 0.839 0.921 0.710 0.845 0.947 0.708 0.793 0.810
1.1 0.872 0.879 0.947 0.793 0.815 0.897 0.915 0.986 1.023 0.941 0.943 0.998 0.983 0.995 1.108
1.2 0.936 0.979 0.998 0.847 0.895 0.913 1.005 1.039 1.103 1.009 1.015 1.074 1.334 1.321 1.253
1.3 1.013 1.115 1.197 0.915 0.945 1.041 1.027 1.093 1.154 1.051 1.123 1.147 1.451 1.382 1.324
0 Standard Errors

0.1 | 0.230 0.211 0.135 0.151 0.134 0.127 0.105 0.104 0.098 0.091 0.085 0.073 0.065 0.058 0.047
04 | 0.215 0.197 0.109 0.198 0.197 0.201 0.107 0.107 0.098 0.102 0.098 0.085 0.058 0.032 0.019
0.8 0.178 0.167 0.132 0.201 0.195 0.119 0.103 0.102 0.101 0.131 0.130 0.123 0.115 0.103 0.102
1.0 | 0.153 0.136 0.131 0.203 0.201 0.20Z 0.104 0.095 0.092 0.134 0.128 0.11Z 0.121 0.098 0.095
1.1 0.198 0.185 0.174 0.218 0.212 0.205 0.142 0.139 0.126 0.141 0.139 0.129 0.128 0.125 0.123
1.2 | 0351 0.298 0.255 0.325 0.301 0.247 0.181 0.173 0.148 0.158 0.138 0.132 0.199 0.143 0.128
1.3 0.398 0.299 0.301 0.441 0.412 0.395 0.183 0.179 0.165 0.171 0.163 0.159 0.183 0.161 0.146




3.5. Results and discussion

Tables 1, 2 and 3 give the results of the simulation studyresged in terms of the
sample mean$® andstandard errorssy. These two statistics characterize the sampling
distribution of the parameter estimates as noted in se8t®above as neither the theo-
retical nor asymptotic approximations of the parametdrifiigtion are not known. The
bias and efficiency of the estimation can only be assessedelapsof a Monte Carlo
approach. However, Bayesian procedures could also be aisgghtoach the theoretical
parameter distribution as in Mateu and Montes (1995).

The table values indicate that both stochastic approxenatiethods, Newton-Raphson
(N-R) and Robbins-Monro (R-M), exhibited better resultsteérms of bias and standard
errors, than Ogata-Tanemura (O-T) and Penttinen (P) metloodases of strong regu-
larity (8 < 0,4) and clusteringd > 1,1). The approximate maximum likelihood method
based on virial expansions (V-E) exhibited substantiad Jparticularly whem is large;
however, this is qualitatively predictable on theoretigadunds, since the adequacy of
the approximation to the likelihood deterioratesaacreases. Implementation of this
approximation for any potential is straightforward if oribw-order virial coefficients
are required. This method is not suited for estimation iresad strong interaction.

The O-T and P approximate maximum likelihood methods pedislibstantial negati-
ve bias for medium-to-large values &fgiving relatively large standard deviations for
these values. These two approximations are based on theegpas assumption and are
not reliable methods for clustered patterns for which higireer interactions become
important.

Inspecting the standard errors in conjunction with the eaoff, we observe that ap-
proximate maximum likelihood using O-T and P methods, piedarge standard de-
viations for small @ < 0,4) and large § > 1,1) values of parametéand, in any case,
they are much larger than those obtained with the other thethods.

For different values 06, the choice of boundary condition becomes important. Gene-
rally, for any method and parameter values, the periodimtary condition produced
better results than Ripley’s, and in turn they are betten tth@se obtained with the
free boundary condition. The N-R and R-M approximate maximtikelihood methods
provided unbiased and efficient estimates for all rangesidmpeter values, under pe-
riodic and Ripley’s boundary condition. However, they pdad biased estimates under
the free boundary condition.

Comparing the behaviour of the bias and the standard erfagstionates among the
three interaction radii, we observe that, under the samaenpeter value, method of es-
timation and boundary condition, biases and standardseimoreased with r providing
worse estimates far= 0,2 compared withi = 0,1. For example, for = 0,2 and using
the R-M procedure with Ripley’s correction, we get significhias compared with the
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unbiased and efficient estimates obtained under the sandiioos but withr = 0,1.
Apart from this, all properties analysed above are alsoftuéifferent interaction radii.

The Strauss process with> 1 is not a good model for applications. It may result in
simulation difficulties such as sensitivity to edge-coindis, poor mixing, etc (Gates
and Westcott, 1986). Moreover, the spatial birth-and{degaproach might not be the
optimal choice. For the well-defined caBe< 1, exact simulation of the Strauss pro-
cess is possible using the Propp-Wilson algorithm (Moll&98; Kendall and Moller,
1999). Concerning edge-corrections, another possilislity apply conditional simula-
tion: simulate a point pattern into some guard area usingrbeel conditional on the
observed point pattern and then apply the guard area eveessimation.

4. CONCLUSIONS

The conclusions, taking into account the results of our &tan study, are the follo-
wing:

1. Stochastic approximations generally provide bettartgsarticularly for medium-
to-large parameter values, than those based on the spssssssimption which are
not suited for estimation in cases of strong interaction.dfoall parameter values
and small interaction radius & 0,1), the Ogata-Tanemura approximation exhibits
very good results.

2. For small interaction radius and using stochastic apprattons, Ripley’s and pe-
riodic boundary condition provide unbiased and efficietingstes. This is not true
whenr increases.

3. Generally, periodic and Ripley’s boundary conditionibktbetter results than free
boundary condition.

4. Whenr increases the biases and the standard errors increaseyforedinod, parti-
cularly for the approximate maximum likelihood methods.

5. Finally, in cases of clustered processes we recommergktetachastic approxima-
tions with Ripley’s or toroidal boundary condition. In cas#f strong regularity, we
could also use approximations based on the sparsenessEsum
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