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1. INTRODUCTION AND MOTIVATION

Consider the linearly and nonlinearly constrained problem

Q) minimize f(x)

(2) subjectto: Ax = b

©)) c(z) =0 (EP)
(4) I <z <u,

where

(1) f:R*— R. f(x) is nonlinear and twice continuously differentiable on taa-f
sible set defined by constraints (2—4).

(2) Alisanm x n matrix andb anm-vector.

(3) ¢: R — R",is such that = [c1,--- ,¢.]%, ¢;(z) being linear or nonlinear and
twice continuously differentiable on the feasible set dediby constraints (2) and
AVi=1,---,r.

@) n>m+r.

To solve this problem one could use, among others, part@haated Lagrangian te-
chniques [1, 2, 3] as in [9, 11, 6], where only the general trairgs (3) are included in
the Lagrangian. In the application of these technique®ther two fundamental steps.
The first solving

(5) minimize L,(x, 1)
(6) subject to: Az = b (ES)
(7) I <z < u,

wherep > 0 andy are fixed,

1
Ly(w, 1) = [ (@) + p'e(z) + 5pe(x) e(@).
Should the solutiorr obtained be infeasible with respect to (3), the second stkijch
is the updating of the estimateof the Lagrange multipliers of constraints (3), is carried
out, also updating, if necessary, the penalty coefficigrihen going back to the first
step. Shouldr be feasible (or the violation of constraints (3) be suffidiesmall)
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the procedure ends. It is of paramount importance that thiéipiiers estimateu be
as accurate as possible, otherwise the convergence ofdhgtlm can be severely
handicapped, as shown in [1, 2, 3].

In practice there are two first-order procedures to estimat®n the one hand the
method put forward by Hestenes [8] and Powell [15]

= p+ pc(T),

and on the other hand;, obtained through the classical solution to the system offKuh
Tucker necessary conditions

8) V(@) + Ve(@)p+ Alr + X =0

by least squares, as suggested in [7]. However, whereasdtgréicedure can be always
used for anyr, without hampering the convergence [2, 3], this is not theeaaith the
second procedure, as system (8) is only known to be comeatitthe optimizer*,
not being necessarily so at thus possibly giving rise to bad estimajes, shown up
by large residuals for system (8).

Section 2 of this work presents a study of the viability ofwgsihis multiplier estimation
technigue within the minimization of a Partial Augmentedjtangian subject to linear
constraints and bounds by the Murtagh and Saunders pracgRjrfor problemEP.
(An alternative development of the contents of Section 2mafound in [10].)

Sections 3 and 4 consider two ways of extending these rasyft®blem

9 minimize f(x)
(20) subjectto:Ax = b (IP)
(11) c<clr) <@
(12) <z <u,
wherec; < ¢;, forj =1,...,r. In Section 3, a vector of slackg» is used to convert

constraints (11) into equalities, and, in Section 4, slagksand artificial variablegw»
are used with the same aim. Section 5 contains the conchision

2. ANALYSISOF COMPATIBILITY

The compatibility of the multiplier estimate obtained thgh the classical solution to
the system of Kuhn-Tucker necessary conditions with thialgée reduction techniques
and its relationship with that of Hestenes and Powell aréyaad along this section.
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Let us consider the first-order conditions associated wihcal optimizerz* of the
problemEP, which are

Vf(z*) + Ve(a*)u* + Alr* + X =0
Az* = b
clx*) =0

A<, ifaf=1

AP >0, ifazf=u

Af =0, otherwise

so that unique vectorg*, 7* and A* exist, such that the first equation holds. These
vectors are denotddagrange multipliersbeingVe(x) = [Vei (), - -+, Ve (z)]. (The
gradient is considered to be a column vector).

Throughout this work we assume

ASL. z* is aregular point— i.e., the Jacobian of the active constraintsahas full
rank.

Solving problenEP through a partial augmented Lagrangian techniques cerisst-
cally of the following algorithm, where for givem > 0 andy the subproblenkS (5-7)
is successively solved.

Algorithm 2.1.

1. For an initial pointzy (not necessarily feasible with respectda:) = 0), a given
scalarp > 0 and vectoru, solve subproblenES and obtain its optimizer: =

z(p, p)-

2. Should thist makec() to be zero or nearly so for a prespecified tolerantes =
and the problem is solved, otherwise,

3. pis updated by estimating*, for which two possibilities are considered:

— Ugr. Solving system

(13) V(@) + Ve@)p+ Alr+ X =0,

(which could be solved through least squares using QR faetoon as justified
in [7], obtainingy:, and alsar).
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— Upyp. Setting

(14) = p+ pc(@),

as established in [2, 3].

4. Should the solution oES not reducel|c(z)|| sufficiently, p would be updated as
p = vp, wherev > 1.

5. Makeyu = ppandxy = 2, and return to 1.

The issue is now the compatibility of system (13)aand in this event the relationship
between the procedurég¢; andUy p to estimate vectog™ at that point.

Each time subproblenkS is solved exactly by Murtagh and Saunders’s active set
method [13], we obtain an optimizer and an associated partition of matrik =
[Ba | Sa | N4, and, thus, the variable reduction matéf) shown below:

—B[ZlSA
(15) Za= 1 ,  Which satisfies AZ4 = 0.
0

Sincez is an optimizer of problenS the necessary first-order optimality conditions
must hold; i.e., there exist unique vectarand A such that:

(16) VoL, (T, pn) + AT+ A =0
(17) AT = b,
(18) Ti=1l, i=t+1,---,1
(19) Ti=u;, t=t+1,---,n

wheret is the number of basic and superbasic variables, and

X >0, if 7 =u

Xi =0, otherwise.
Expression (16) is equivalent to
(20) AT+ V(@) [+ pe(E)]) + A= =V (),
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which in matrix form yields

B, Vp,c(Z) 0 T Vi, f()
St Vs,c(@) 0 ptpe(@) | == | Vs, f(2) |
Ni V(@) 1 A VN, [(@)

whereV s, ¢(Z) stands for the rows o ¢(z) associated with the rows @f',. Similarly
Vs,c(Z) andVy, ¢(Z), and also the partition o f(z), are defined.

Let us assume that matrix

m S
— —
~ Ba Sa Na m
A[@) = =\t S\t =\t
Vp,c(@)" | Vs, c(@) VNAC(',I:> }T
n

has full row rank. It is now possible to get from(z) a full rank basic matrix3 such
that it contains matriX3 4, which was obtained at the end of the first step of Algorithm
2.1. Once the basic matri® has been defined, matri can be established such that
[B | S] containsB,4 andS,4 as submatrices, thus:

(21)
m+r s—s

— ——

BA S’ NA m S

B= — e — s and S = s
V() | Vg, c(r)" | Vg, c(@)" | }r Vg c()!

~—— ~—— ~—— N——

m / mi "

S

S

with S4 =[S’ | S’4]. The rest of columns fromi(z) makes up submatri¥v. Let
Vgv(x) denote the gradient with respect to the variables assdciasith B of any
differentiable functiorv(z). Similarly Vsuv(x) andV yv(z). See [10] for an efficient
procedure to build u@ from data available at when subprobler&S has been solved.

From this partitionB S N] of A(Z) we have the variable reduction matrix

-B71S

Z(z) = 1 . which satisfies A(z)Z(z) = 0.

Premultiplying byZ (z) both sides of (20) we get the equivalent expression

(22)  Z(2)'A'T+ Z(2)'Ve(@) [+ pe(T)] + Z(2)'A = —Z(2)'V f ().
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According to the definition of (z) the following must hold:

(23) Z(7)'Ve(z) =0 and Z(z)'A"=0.
Furthermore,
\B
(24) Z@EN=[-(B71S)! 1 0] | A5 | = —(B7L9)\E + X%,
XN

As we can seeZ(7)'V f(z) will vanish only if the following condition holds

(25) 2 = (B719)AB,

which in general is not satisfied, as can be easily proved1d9ge

Letoy = [o1k, -+, omi]t (With @ = m + r) be the column of3~1S associated with
the superbasic variable,; then (25) can be recast as

XS:ZUijJB, kes,
j=1

S being the set of indices associated with the columnS. of

The basic equivalent patl¥;, of superbasic variable, is defined as the set of basic
variablesz; that have a nonzero enteyy, in the column of B—1S corresponding to
variablexy,.

Taking into account the expressions (22)-(24) we get
(26) 2(z)'Vf(@) = a,
whereq is a vector (whose dimension is the number of columnS)afuch that

(27) ar= Y oA =X,
i€BpNN

N being the index set of the columns of matrix

Na

(&) Vye(@)

selected to make up the basis matrixAfz) (see expression (21)) andy, as pre-
viously defined, entryi, k) of matrix B~1S. Furthermore, since by construction the
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set of indices associated with the columns$a$ a subset of the set of indices associated
with the columns of5 4, A\, = 0 holds for allk corresponding to a column &f, hence
(27) becomes

(29) Qf — Z aika.

i€BLNN

It must be pointed out that vecter turns out to be the nonzero part of the residual
vector corresponding to system (13), when, once the partdf matrix A(z) is fixed,
it is solved calculating firstr, 1) through the solution of the compatible system

B ™| = -Vsf@),

and then computing:

W= N l: — U (@),

as, by definition oZ (z) and in view of (13) we are led to

Z(@)'Vf(@) = —~(B71S)'Vpf(@) + Vs (@)
= S'[—(B")"'Vpf(@)] + Vs f(@)

(30)
=5t |7 | +Vst@).

7]
Here a series of propositions are presented to be used later.

Let us consider now, for any, a full-row-rank matrix

A

Al@) = Ve(z)t

partitioned asA(x) = [B S NJ, whereB is a nonsingular matrix, anf and N
have at least one column. Let

~ B S N
31 Alz) =
(31) @=10 o ]1],
and
—-B1§
Z(x) = 1 . which satisfies A(z)Z(z) = 0.
0
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Letz = 7 be a vector such that system
(32) At +Ve(@)u+ A+ V(@) =0

is compatible. Suppose that = 0 for all i associated with a column of eith&ror S.
Then, premultiplying this system b¥(z)! we have

Z@)'A'r + Z(@)'Ve@p+ Z(@)'N+ Z(Z)'V f(Z) =0,

which, sinceA(z)Z(z) = 0, implies Z(z)!V f(z) = 0.

Proposition 2.1. System (32) is compatible if and only if
(33) Z(@)'Vf(T) =0

is verified.

Proof: The previous result to this proposition proves its first part

To prove the second part we consider the nonsingular n)-matrix

1 00
W= |—(B1S¢ 1 0],
0 0 1

where0 stands for a zero matrix of suitable dimensions, and sudtthieaunit matrix
at the bottom ign — t) x (n —t), (n — t) being the number of columns &f.

Let us consider now that system (32) is not compatible. Herthe matrix
[A(Z)! Vf(z)] of this system has full column rank and we have

R B 0 Vgf(T) Bt 0 Vgsf(T)
WA@)! Vi@ =W |S 0 Vsf@) |=| 0 0 2@Vi@) |,
N' 1 Vnf(7) N1 Vnf(@)

whereV u f(7) is the gradient off () atz = T with respect to the subset of variables
associated with/, for all submatrix)/ formed by columns imA(Z).

Since the product of a nonsingular matrix of oradex n multiplied by a matrix with
full column rank of ordemn x (m +r + (n — t) + 1) gives rise to a matrix with these
same characteristics, it is shown that the prodi(at)!V f () cannot be the null vector.

Therefore, if (33) holds, system (32) is compatible.
|

69



Let B4 be a nonsingular square submatrix®fmade up by columns ol and letS 4
be the submatrix formed by the columns commonAo S| and A once removed the
columns ofB4. Moreover,N 4 is a submatrix constituted by the rest of columnsiof
thus their associated variables are the same as thoseassgowith the columns av.

Let

(34) BS = BA_ SA_
Vp,c(@) Vs, c(@)

andZ 4 a matrix defined by expression (15) (although using the atifiBe, and.S 4).

Proposition 2.2. Matrix BS has full row rank if and only iV ¢(Z)! Z 4 has also full row
rank.

Proof: Itis sufficient to take into account the matrix product

By 0
Ve, e(@)t Ve(@)tZa

Ba S 1 —B,'S,
VBAC(f)t VSAC(f)t 0 1

where the first matrix i€3.5, see (34), and 4 is defined by (15).
|

Premultiplying equation (32) by matriX’, and movingZ4,V f(z) to the right hand
side we obtain

(35) Z4Ve(@)p = —Z4V f(T).

Proposition 2.3. Let BS be a full-row-rank matrix. System (32) is compatible if and
only if system (35) is compatible

Proof: To prove the<only if» part it is enough to premultiply the system (32) By

Now, to show that theif » part holds, let us consider the matrix

1 0 0
Wa=|—(B;'Sa)t 1 0
0 0 1
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Suppose that (32) is not compatible, then, sifés has full row rank, matrix
[A(Z)! Vf(z)] has full column rank. Therefore, to prove this part it is st to
operate as in proposition 2.1, but now replacing the mdiriwith the matrix W4,

thus
B,t4 VBAC(E) vBAf(f)

WAlA@) V(@) =Wal| S, V@ 0 Vs, f(T)
Ny Vn,c(@) 1 Vn,f(T)

Bi& VBAC(E) 0 vBAf(

— | 0 zZ4Ve@) 0 Z4Vi(
N.»t4 VNAC(E) 1 vNAf(

(

~

Note that if matrix|A(z)* V f(z)] has full column rank|Z,Ve(z) Z4V f(7)] has

also full column rank.
[ |

Corollary 2.1. Under the same conditions of the previous propositiondeay$35) is
compatible if and only if (33) holds.

Proof: Itis a direct result of the propositions 2.1 and 2.3.
|

Now we considelr = = = z(u, p) (i.e. the optimizer oES considered at the beginning
of this section).

As a result of these propositions and corollary, we havedhewing consequences:

o If a # 0 (see expression (26)), system (13) is not compatible, aitlkenés system

(36) Z4Ne(@)pu = —Z4LV £(7).

Therefore, in this case the estimateidfby the Ui procedure is not reliable, be-
cause system (13) is not compatible.

e If when building up the basic matri® of A(z) it is not necessary to take columns
of A(7) that contain columns aW 4, we have

@37) Z(@)'Vf(@) =0,
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and the associated systems (13) and (36) are compatibledvien; theu obtained
by solving both (13) and (36) will be the same, see propasii@ and corollary 2.1.
Therefore, it is enough to solve (36) to calculatan procedurd/ k.

e If problemEP has not simple bounds, i.e., if it is only defined by (1-3) ntiteauto-
matically holdsae = 0 for all 7 = x(u, p) optimizing

minimize  L,(x, i)
x

subjectto: Az =b,

whereL,(z, 1) = f(z)+ p'e(z) + §lc(x)||3 is the augmented Lagrangian function.
Therefore, for all vectort obtained in this way, it is enough to solve (36) — with
T = x — to calculateu in procedurd/ k.

e Itis clear from the above results that in order to build upnraB it is preferable to
use only columns oBS. Should this submatrix ofl(z) not have full row rank, one
must initially search for suitable columns among tlmlumns associated with 4
such that\, = 0, for € N, if any, see (29).

Next, by means of a proposition we analyze the general casd=yed at the beginning
of this section.

Proposition 2.4. If a = 0 andES (5-7) is solvedvith exact minimization, the Uy
procedure is valid for estimating*. Furthermore, whetB is built up following the rule
given at the last item, the results obtained coincide wittséhfound by means of the
Uy p procedure. Otherwise, evendf= 0, the estimates qi* obtained throughU i1
andUy p are not the same.

Proof: As shown abovex = 0 implies the validity of procedur& - for estimating
1*, because of (26) and Proposition 2.1.
The second part of this proposition is proved next.

The solution ofES by means of exact minimization implies that, V., L, (Z, 1) = 0.
This is equivalent to

(38) Z4Ve(@) (1 + pel@) = ~Z4V (@),

If the set BS of indices associated withB S] coincides with the seBS 4 of the
indices associated witfB4  S4], « = 0 and the conditions of Propositions 2.1, 2.2
and 2.3 are fulfilled directly, and therefore the system

(39) 24V e(@)n = ~Z4V (@)
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is compatible and has a single solutiprwhich compared with (38) implies that

fi = p+ pe(T),

whose second member corresponds to the estimaté by means of thé/ i proce-
dure.

Due to the length of the part of the proof corresponding tetee in whichB S contains
strictly BS 4, itis divided into several sections.
(i) Definition of matrixV 4 to fill up the row rank of B 9].

Let us consider again the submatrix given in (28)

Na
Ve(@)!

whose columns are selected among the column$(@f associated with nonbasic va-
riables (with regard to subprobleBEf) so that the matrix3 of expression (21) is non-
singular. LetN be, as above, the set of indices associated with the columns,o
HenceBS 4 UN = BS. From now on, we consider that the columns of this submatrix
appear arranged id immediately after those & 4, without loss of generality.

(ii) Definition of matrixZ 4.
A new reduction matrixZ 4 is also defined for matrixl such that

—B3'S4 —B;'Na

_ 1 0

40 Za=\Z Z~| =
(40) A=1[2a Zg] 0 1
0 0

The matricesl, from left to right, have their dimensions fixed, respedyivey the
number of columns ir¥ 4 and the number of columns iN4. The matrixZ 4 has full
column rank.

(iiiy Compatibility of systen¥', Ve(3)p = —Z 4V (7).

Sincea = 0, system

Al +Ve@)p+ A= -V f(T),
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has one only solutiofi, 7i, \) (see Proposition 2.1). Moreover, by Proposition 2.3, the
following system is compatible:

(41) ZyNe(@)n = ~Z4Vf(@).

The solution of this igz, which is unique due to matri?i,Vc(%) having full column
rank. To prove this last, it is sufficient to take into accotlmat

Ba Sa N4

(42) B V@) Vee@' Vel

)

is of full rank (m + r) and to construct a suitable matfiX. Let W be

1 —B;'Sa —B;'Na
w=l0o 1 0
0 0 1

This matrix is nonsingular and of ordét + s + m1) x (m + s 4+ my), beingm; the
number of columns iV 4 and such that + m; > r, by construction of B S] (42).

Multiplying and taking into account (40)

By 0 0
Vpe(@)! Ve(@)'Za V(@) Zy

Ba 0

B S|W = Vpe(@)! V(@) Za |’

then because of the features of the factor matrices withertdp the rank, the product
isa(m+r) x (m+s-+m;y)-matrix that has full row rank, and sinde, is a nonsingular
matrix with rankm, the submatriXxVc(z)!Z 4 has rankr, or in other words, it has full
row rank.

. . —t ~
(iv) Calculation ofZ 4V, L, (T, jt).

!_et us return to the subprobleBS and perform the produ@i‘VzLP(E, 1), the result

is
t
Za

—t ~
ZAVwLp(mvﬂ) = +
Zy

vaP(‘%a N) =

Z4N o Lo(T, )

Z4V . L,(T, 1) is null becaus&Sis solved by means of exact minimization. Besides,

ZEN o Ly(T, 1) + ZEA'T + ZEX = 0.
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Let us also observe that the second term on the left is zerd,zagxpands a null
subspace ofi and

ZEX = (~B;'Na)XB 43N =3V,
since\B = 0 — which is associated with 4. Thus,
—t - 0
ZNVaLy(Z, p) = [XN} ’
which, by developing/, L, (z, 1), is equivalent to

(43) Z4Ve(@)(u + pe(@) = ~Z4V f(T) +

0
N |

If AV is null — i.e., if following the rule put forward in the item @vious to this propo-
sition we are able to make up a basis mafsix—, then we have

(44) ZuVe(@)(p+ pe(@)) = —~Z4 V(7).

(v) Comparison of expressions (41) and (44).

Finally, if we compare expressions (41) and (44), taking extcount the compatibility
of system (41) and the uniqueness of its solution, the ceimiureached is that =
i+ pe(z) is fulfilled if AN is null. In this case the procedur&%r andUgp produce
the same estimate of*.

Note that if A" is not null anda: = 0 with exact minimization, thé/xr procedure

is reliable (in the sense of that the residuals of both systéi8) and (41) are null),

although the estimate @fthat it provides is different from that given by p, see (43).
|

In reference [10] there is also an efficient procedure formating «, and practicalities
related to the implementation of Algorithm 2.1 with the pesh considered here (code
PFNRN [12]) and computational results.

3. EXTENSION BY USING VECTOR y

In this section the above results are extended to the caseobfems with general
inequality contraints (problerP (9—12)) by using a vectay, taking into account the
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technique put forward by Conet al in [5], which is also employed by Murtagh and
Saunders in [14].

Through this section and the following we add to assumpAii, given in§2, the new
one:

AS2. 1* satisfies the strict complementarity condition

ifcj(z*)=¢c; = <O,
if cj(z*)=¢; = uj>0,
otherwiseu; = 0.

Solving problem P is equivalent to solving:

(45) minimize f(z)

(46) subjectto: Az = b

(47) c(z) —y=0 (EPy)
(48) [ <x<u

(49) c<y<ec,

wherey represents the slacks vector that turns the inequalitiBsiiio equalities.

As regards problerkP (1-4), the difference between this and problERYy is that in
the latter there are constraints (47) and (49) instead otcaints (3). Therefore we
must analyze the effect of replacing (3) with (47) and (49 results of the former
Section to see whether they can still be applied to the cupreblem.

First, it can be observed that the Kuhn-Tucker conditiorenadptimal solutioriz*, y*)
to problemEPy are

(50) Vf(@*) + Ve(@)u+ At + A =0
(51) —u+v=0
(52) Ar =
(53) c(z*) —y* =0,

such that unique vectoys®, 7*, A* and~* exist that satisfy equations (50) and (51),
and withy* also satisfying

v <0if yf =g
(54) v 2 0if yi =5

vF =0 otherwise,
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and)\*

AP0 f 2r =1

(55) AP >0if 2 =y

A =0  otherwise.

Note that the only consequence on the multipliers of theothiction of the slackg
are expressions (51) and (54), the first being used to deteriii once the rest of
the variables have been found through (50). Therefore,deraio obtain a first-order
estimate of all multipliers at poiritr, y) it suffices, as pointed out in [7], to solve

(56) Vf(z)+ Ve(x)u+ Alr + A =0,

just as in the case of probleEP, obtainingy afterwards through (51). Furthermore,
expression (13) does not change — let us compare it with (56).

Here the associated subproblem is defined as

(57) minimize L,(x,y, j)
(58) subject to: Az = b (ESy)
(59) I<z<u
(60) c<y<e
where
1
(61) LA%%m=f@%Hﬂd@—M+§ﬂd@—mg

is the augmented Lagrangian function. Furthermore, in Allgm 2.1, subproblenES
(5-7) is replaced by subprobleESy and ¢(z) with ¢(z) — y, hence theJy p type
estimate at the optimizé€t, y), obtained from the solution &Sy, can be written as:

(62) = p+ ple(x) =y,
and thelU k- type estimate is obtained solving
V(@) + Ve(@)p+ Alm + X =0,

as in§2 with (13). Thus, as before i§2, we can now define matrice§(z), Z(z) and
Z 4, arriving at the results analogous to those obtainegRirby propositions 2.1-2.3
and corollary 2.1.
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Other modifications of the algorithm are associated wittsthigstitution ofr with x, y.
From the Kuhn-Tucker conditions for this subproblem we obta

(63) V@) + V@) {pu+ple(@) — g} + At + A1 =0
(64) —{w+ple(@) =yt +v=0

such that vectors = 7 and\ = A exist satisfying the first equation and a veciaran
be obtained through the second one. Ag§2nfor expresion (20), here (63) is the key
expression for studying the compatibility of estimétgr when using the active set
techniques of Murtagh and Saunders [13] to s@®y, obtaining the results equivalent
to those of the proposition 2.4.

In conclusion, all the analysis after expression (20)ris also applicable to this case,
with the only exception that expressipnt- pc(Z) must be replaced by + p[c(Z) — 7.

4. EXTENSION BY USING VECTORS y AND w

Here the results 0§2 are extended to the case of problems with general inegualit
contraints by using vectorsandw.

This section describes an alternative way of dealing withbfgmIP (9-12). Solving
probleml P, as put forward in [9] (using slack variables raised to theasg, as done by
Rockafellar in [16]), is equivalent to solving problem:

(65) minimize f(z)

(66) subjectto:Az = b

(67) (c(x) —c)—y* =0 (EPyw)
(68) [ <zx<u

(69) v+uw=t—c,

wherey,w € R" are auxiliary vectors of free variables — whithout bounds hatt
through vectors

2 2
LA wy
' = and w? =
2 2
Yr wy.

allow the transformation of inequality (11) into an equalit
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As regards the reference probldef (1-4), the difference with problefaPyw (65—
69) is that in the latter instead of constraint (3) there arestraints (67) and (69),
but contrary to what happens in Section 2, the number of b®ulogs not increase.
Therefore, we must examine the effect of replacing (3) wéth) @nd (69) in the main
calculation steps involved in the results of Section 2 arnterek them to the type of
problem now considered.

It must be noticed first that the Kuhn-Tucker conditions teshgsfied by an optimizer
(z*, y*, w*) of problemEPyw are

(70) Vf(z*)+ Vel@*)u+ Al + X =0
(72) (—p+7)y" =0
(72) Yw* =

(73) Ag* =

(74) (c(@™) —¢) = (y)* =0,
(75) ")+ W) =c—c

such that unique vectors*, 7*, A and~* exist that satisfy equations (70), (71) and
(72), and\* such that

AP <0if af =1

A >0if xf =,

A; =0 otherwise.
Note that the only consequence of the introduction of slackapart from the cons-
traints where they appear) are expressions (71) and (7@)y’anan be obtained from
these once the remainig multipliers have been computed (7@); given that in case
y* # 0, v* = p* (due to (71)), otherwisey* # 0 yields~* = 0 (due to (72)). There-
fore, to obtain a first-order estimate of thig. type at point(z, y, w) of all multipliers
it suffices to solve

(76) Vf(x) + Ve(x)p+ Al + X =0,

as in problemEP (1-4) and then compute through (71) and (72). Furthermore, ex-
pression (13), which coincides with (76), does not change.

Here the associated subproblem would be

mugrymze Ly(x,y, 1)
,

subjectto:Az = b
[<x<u

(ESyw)

y2+w226_27
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where
(77 Ly(z,y,p) = f(a) + p'l(e(z) — ) —y*] + gll(c(m) -0 -v’ll5

is the augmented Lagrangian function. Furthermore, seeat8]constraints where va-
riables(y, w) appear can be eliminated by replacing the above augmentgdrngian

by
T 1 5
8 Lo = 50+ 3 {uosles) s + ol o, enl?

where
cj(w) —¢; it pj+plej(r) —¢;] >0
ejlej (@), py, pl = § ¢j(x) —¢; i py+ plej(z) —¢;] <0
—u;/p  otherwise,
the expression in braces that appears in (78) being contshydifferentiable with
respect ta, for f andc defined as i1, and (bearing in mind the strict complementarity

assumptioPAS2 in §2) twice continuously differentiable with respect#df = € X,
where

X = {x | pj+plej(x) =) # 0,15 + plej(x) —¢;] #0,¥5 = 1,--- ,r}.

Therefore, according to [9], solving probleEByw is equivalent to solving problem

minimize L,(z, 1)
z ESx
subjectto:Ax = b (ES)

[ <zx<u.

Moreover, in Algorithm 2.1, replacing subprobleg$ (5—-7) withESx andc; (x) with
w;lej(x), 1j, pl, forj =1,--- ,r, we have that th&’y p type estimate at the optimizer
z, obtained through the solution BfSx, can be expressed by (see [2, 9])

(79) = p+ pele(@), 1, pl,
such thaty = [p1,- -+, ¢!, and thelU 1 type estimate is obtained solving
V(@) + Ve(@)p+ Alm + A =0,

as in§2 with (13). Thus, as before i§2, we can now define matrice§(z), Z(z) and
Z 4, arriving at results analogous to those obtainef2nby propositions 2.1-2.3 and
corollary 2.1.
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In addition, from the Kuhn-Tucker conditions associatethwubproblenESx we ob-
tain:

(80) V(@) + Ve(@) {p+ pple(@), p, p} + A'm + A =0,
where vectors: = 7 and\ = \ exist satisfying this equation.

Hence, from (80), by an analogous process to that followesh fexpression (20), we
are led to the same results as are obtainegRiwhen using the active set techniques
of Murtagh and Saunders [13] to solEgSx, obtaining the equivalent results to those of
the proposition 2.4.

In conclusion, all the analysis after expression (202ris also applicable to this case,
with the only exception that expressipr-pc(z) must be replaced y+pyp|c(Z), u, p].

5. CONCLUSIONS

This work shows when one may compute under certain guamattedirts-order mul-
tiplier estimate based on the Khun-Tucker conditions. Idit&sh, it proves the equi-
valence between this type of first-order estimate and thiatimdd through the original
multiplier method (Hestenes and Powell’s method) when xlagtaminimization is used
to solve the subproblem and it is not necessary to use colofrthe constraint matrix
that correspond to strongly active variables (with respethe subproblem) to obtain
a submatrix of the Jacobian (not including the simple bouhdsing full row rank.
Nevertheless, in practice not even in the latter case batbeplures give the same es-
timate, as usually an inexact minimization of the subpnabie carried out. This work
puts forward also a procedure to compute the multiplienestiés by solving a reduced
system (41), instead of having to solve the large system {fliBe conditions so permit
(see first lines of this paragraph).

In the previous two sections specific procedures for trangftg problems of typéP
(9-12) into problems of typEP (1-4) have been considered.

The procedure described in Section 4 as compared with tisatied in section 3 has
the advantage that it does not increase subproblem sizeasgitiect to the original pro-
blemIP. Results of numerical tests comparing both procedures maieeen included
yet as, in our view, the construction of appropiate softwarexploit the technique put
forward by Conret alin [5] —once fitted to the structure of probleaPy (45-49)- is
by no means trivial and its coding is still underway.

Using these procedures, inequalities in general constrane eliminated. The validity
for these problems of results and procedures put forwartiGhfpr typeEP problems
only has also been proved.
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