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1. INTRODUCTION AND MOTIVATION

Consider the linearly and nonlinearly constrained problem

(1)

(2)

(3)

(4)

minimize f(x)

subject to: Ax = b

c(x) = 0

l 6 x 6 u,

(EP)

where

(1) f : R
n

R. f(x) is nonlinear and twice continuously differentiable on the fea-
sible set defined by constraints (2–4).

(2) A is anm × n matrix andb anm-vector.

(3) c : R
n

R
r, is such thatc = [c1, · · · , cr]

t, ci(x) being linear or nonlinear and
twice continuously differentiable on the feasible set defined by constraints (2) and
(4) ∀i = 1, · · · , r.

(4) n ≫ m + r.

To solve this problem one could use, among others, partial augmented Lagrangian te-
chniques [1, 2, 3] as in [9, 11, 6], where only the general constraints (3) are included in
the Lagrangian. In the application of these techniques there are two fundamental steps.
The first solving

(5)

(6)

(7)

minimize
x

Lρ(x, µ)

subject to:Ax = b

l 6 x 6 u,

(ES)

whereρ > 0 andµ are fixed,

Lρ(x, µ) = f(x) + µtc(x) +
1

2
ρc(x)tc(x).

Should the solutioñx obtained be infeasible with respect to (3), the second step,which
is the updating of the estimateµ of the Lagrange multipliers of constraints (3), is carried
out, also updating, if necessary, the penalty coefficientρ, then going back to the first
step. Should̃x be feasible (or the violation of constraints (3) be sufficiently small)
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the procedure ends. It is of paramount importance that the multipliers estimateµ be
as accurate as possible, otherwise the convergence of the algorithm can be severely
handicapped, as shown in [1, 2, 3].

In practice there are two first-order procedures to estimateµ. On the one hand the
method put forward by Hestenes [8] and Powell [15]

µ̃ = µ + ρc(x̃),

and on the other handµL obtained through the classical solution to the system of Kuhn-
Tucker necessary conditions

(8) ∇f(x̃) + ∇c(x̃)µ + Atπ + λ = 0

by least squares, as suggested in [7]. However, whereas the first procedure can be always
used for anỹx, without hampering the convergence [2, 3], this is not the case with the
second procedure, as system (8) is only known to be compatible at the optimizerx∗,
not being necessarily so atx̃, thus possibly giving rise to bad estimatesµL, shown up
by large residuals for system (8).

Section 2 of this work presents a study of the viability of using this multiplier estimation
technique within the minimization of a Partial Augmented Lagrangian subject to linear
constraints and bounds by the Murtagh and Saunders procedure [13] for problemEP.
(An alternative development of the contents of Section 2 canbe found in [10].)

Sections 3 and 4 consider two ways of extending these resultsto problem

(9)

(10)

(11)

(12)

minimize f(x)

subject to:Ax = b

c ≤ c(x) ≤ c

l 6 x 6 u,

(IP)

wherecj < cj , for j = 1, . . . , r. In Section 3, a vector of slacks«y» is used to convert
constraints (11) into equalities, and, in Section 4, slacks«y» and artificial variables«w»

are used with the same aim. Section 5 contains the conclusions.

2. ANALYSIS OF COMPATIBILITY

The compatibility of the multiplier estimate obtained through the classical solution to
the system of Kuhn-Tucker necessary conditions with the variable reduction techniques
and its relationship with that of Hestenes and Powell are analyzed along this section.
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Let us consider the first-order conditions associated with alocal optimizerx∗ of the
problemEP, which are

∇f(x∗) + ∇c(x∗)µ∗ + Atπ∗ + λ∗ = 0

Ax∗ = b

c(x∗) = 0

λ∗
i ≤ 0, if x∗

i = li

λ∗
i ≥ 0, if x∗

i = ui

λ∗
i = 0, otherwise

so that unique vectorsµ∗, π∗ andλ∗ exist, such that the first equation holds. These
vectors are denotedLagrange multipliers; being∇c(x) = [∇c1(x), · · · ,∇cr(x)]. (The
gradient is considered to be a column vector).

Throughout this work we assume

AS1. x∗ is a regular point— i.e., the Jacobian of the active constraints atx∗ has full
rank.

Solving problemEP through a partial augmented Lagrangian techniques consists basi-
cally of the following algorithm, where for givenρ > 0 andµ the subproblemES (5–7)
is successively solved.

Algorithm 2.1.

1. For an initial pointx0 (not necessarily feasible with respect toc(x) = 0), a given
scalarρ > 0 and vectorµ, solve subproblemES and obtain its optimizer̃x =
x(µ, ρ).

2. Should this̃x makec(x̃) to be zero or nearly so for a prespecified tolerance,x∗ = x̃
and the problem is solved, otherwise,

3. µ is updated by estimatingµ∗, for which two possibilities are considered:

– UKT . Solving system

(13) ∇f(x̃) + ∇c(x̃)µ + Atπ + λ = 0,

(which could be solved through least squares using QR factorization as justified
in [7], obtainingµ̃, and alsõπ).
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– UHP . Setting

(14) µ̃ = µ + ρc(x̃),

as established in [2, 3].

4. Should the solution ofES not reduce‖c(x)‖ sufficiently,ρ would be updated as
ρ = νρ, whereν > 1.

5. Makeµ = µ̃ andx0 = x̃, and return to 1.

The issue is now the compatibility of system (13) atx̃, and in this event the relationship
between the proceduresUKT andUHP to estimate vectorµ∗ at that point.

Each time subproblemES is solved exactly by Murtagh and Saunders’s active set
method [13], we obtain an optimizer̃x and an associated partition of matrixA =
[BA | SA | NA], and, thus, the variable reduction matrixZA shown below:

(15) ZA =



−B−1

A SA

1l

00


 , which satisfies AZA = 0.

Sincex̃ is an optimizer of problemES the necessary first-order optimality conditions
must hold; i.e., there exist unique vectorsπ̃ andλ̃ such that:

∇xLρ(x̃, µ) + Atπ̃ + λ̃ = 0(16)

Ax̃ = b,(17)

x̃i = li, i = t + 1, · · · , t(18)

x̃i = ui, i = t + 1, · · · , n(19)

wheret is the number of basic and superbasic variables, and

λ̃i ≤ 0, if x̃i = li

λ̃i ≥ 0, if x̃i = ui

λ̃i = 0, otherwise.

Expression (16) is equivalent to

(20) Atπ̃ + ∇c(x̃)[µ + ρc(x̃)] + λ̃ = −∇f(x̃),
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which in matrix form yields



Bt
A ∇BA

c(x̃) 00

St
A ∇SA

c(x̃) 00

N t
A ∇NA

c(x̃) 1l







π̃

µ + ρc(x̃)

λ̃


 = −



∇BA

f(x̃)

∇SA
f(x̃)

∇NA
f(x̃)


 ,

where∇BA
c(x̃) stands for the rows of∇c(x̃) associated with the rows ofBt

A. Similarly
∇SA

c(x̃) and∇NA
c(x̃), and also the partition of∇f(x̃), are defined.

Let us assume that matrix

A(x̃) =

m︷ ︸︸ ︷ s︷ ︸︸ ︷
BA SA NA }m

∇BA
c(x̃)t ∇SA

c(x̃)t ∇NA
c(x̃)t }r

︸ ︷︷ ︸
n

has full row rank. It is now possible to get fromA(x̃) a full rank basic matrixB such
that it contains matrixBA, which was obtained at the end of the first step of Algorithm
2.1. Once the basic matrixB has been defined, matrixS can be established such that
[B | S] containsBA andSA as submatrices, thus:
(21)

B =

m + r︷ ︸︸ ︷
BA S′

A ÑA }m

∇BA
c(x̃)t ∇S′

A
c(x̃)t ∇

ÑA
c(x̃)t }r

︸ ︷︷ ︸
m

︸ ︷︷ ︸
s′

︸ ︷︷ ︸
m1

and S =

s − s′︷ ︸︸ ︷
S′′

A

∇S′′

A
c(x̃)t

︸ ︷︷ ︸
s′′

,

with SA = [S′
A | S′′

A]. The rest of columns fromA(x̃) makes up submatrixN . Let
∇Bv(x) denote the gradient with respect to the variables associated with B of any
differentiable functionv(x). Similarly ∇Sv(x) and∇N v(x). See [10] for an efficient
procedure to build upB from data available at̃x when subproblemES has been solved.

From this partition[B S N ] of A(x̃) we have the variable reduction matrix

Z(x̃) =



−B−1S

1l

00


 , which satisfies A(x̃)Z(x̃) = 0.

Premultiplying byZ(x̃) both sides of (20) we get the equivalent expression

(22) Z(x̃)tAtπ̃ + Z(x̃)t∇c(x̃)[µ + ρc(x̃)] + Z(x̃)tλ̃ = −Z(x̃)t∇f(x̃).
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According to the definition ofZ(x̃) the following must hold:

(23) Z(x̃)t∇c(x̃) = 0 and Z(x̃)tAt = 0.

Furthermore,

(24) Z(x̃)tλ̃ =
[
−(B−1S)t 1l 00

]



λ̃B

λ̃S

λ̃N


 = −(B−1S)tλ̃B + λ̃S .

As we can see,Z(x̃)t∇f(x̃) will vanish only if the following condition holds

(25) λ̃S = (B−1S)tλ̃B,

which in general is not satisfied, as can be easily proved; see[11].

Let σk = [σ1k, · · · , σmk]t (with m = m + r) be the column ofB−1S associated with
the superbasic variablexk; then (25) can be recast as

λ̃S
k =

m∑

j=1

σjkλ̃B
j , k ∈ S,

S being the set of indices associated with the columns ofS.

The basic equivalent pathβk of superbasic variablexk is defined as the set of basic
variablesxl that have a nonzero entryσlk in the column ofB−1S corresponding to
variablexk.

Taking into account the expressions (22)-(24) we get

(26) Z(x̃)t∇f(x̃) = α,

whereα is a vector (whose dimension is the number of columns ofS) such that

(27) αk =
∑

i∈βk∩Ñ

σikλ̃B
i − λ̃S

k ,

Ñ being the index set of the columns of matrix

(28)
ÑA

∇
Ñ

c(x̃)t

selected to make up the basis matrix ofA(x̃) (see expression (21)) andσik, as pre-
viously defined, entry(i, k) of matrix B−1S. Furthermore, since by construction the

67



set of indices associated with the columns ofS is a subset of the set of indices associated
with the columns ofSA, λ̃k = 0 holds for allk corresponding to a column ofS, hence
(27) becomes

(29) αk =
∑

i∈βk∩Ñ

σikλ̃B
i .

It must be pointed out that vectorα turns out to be the nonzero part of the residual
vector corresponding to system (13), when, once the partition of matrixA(x̃) is fixed,
it is solved calculating first(π, µ) through the solution of the compatible system

Bt

[
π

µ

]
= −∇Bf(x̃),

and then computing:

λN = −N t

[
π

µ

]
−∇N f(x̃),

as, by definition ofZ(x̃) and in view of (13) we are led to

(30)

Z(x̃)t∇f(x̃) = −(B−1S)t∇Bf(x̃) + ∇Sf(x̃)

= St[−(Bt)−1∇Bf(x̃)] + ∇Sf(x̃)

= St

[
π

µ

]
+ ∇Sf(x̃).

Here a series of propositions are presented to be used later.

Let us consider now, for anyx, a full-row-rank matrix

A(x) =

[
A

∇c(x)t

]

partitioned asA(x) = [B S N ], whereB is a nonsingular matrix, andS andN
have at least one column. Let

(31) Â(x) =

[
B S N

00 00 1l

]
,

and

Z(x) =



−B−1S

1l

00


 , which satisfies Â(x)Z(x) = 0.
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Let x = x be a vector such that system

(32) Atπ + ∇c(x)µ + λ + ∇f(x) = 0

is compatible. Suppose thatλi = 0 for all i associated with a column of eitherB or S.
Then, premultiplying this system byZ(x)t we have

Z(x)tAtπ + Z(x)t∇c(x)µ + Z(x̃)tλ + Z(x)t∇f(x) = 0,

which, sinceÂ(x)Z(x) = 0, impliesZ(x)t∇f(x) = 0.

Proposition 2.1. System (32) is compatible if and only if

(33) Z(x)t∇f(x) = 0

is verified.

Proof: The previous result to this proposition proves its first part.

To prove the second part we consider the nonsingular(n × n)-matrix

W =




1l 00 00

−(B−1S)t 1l 00

00 00 1l


 ,

where00 stands for a zero matrix of suitable dimensions, and such that the unit matrix
at the bottom is(n − t) × (n − t), (n − t) being the number of columns ofN .

Let us consider now that system (32) is not compatible. Hence, the matrix
[Â(x)t ∇f(x)] of this system has full column rank and we have

W [Â(x)t ∇f(x)] = W




Bt 00 ∇Bf(x)

St 00 ∇Sf(x)

N t 1l ∇N f(x)


 =




Bt 00 ∇Bf(x)

00 00 Z(x)t∇f(x)

N t 1l ∇N f(x)


 ,

where∇Mf(x) is the gradient off(x) atx = x with respect to the subset of variables
associated withM , for all submatrixM formed by columns inA(x).

Since the product of a nonsingular matrix of ordern × n multiplied by a matrix with
full column rank of ordern × (m + r + (n − t) + 1) gives rise to a matrix with these
same characteristics, it is shown that the productZ(x)t∇f(x) cannot be the null vector.

Therefore, if (33) holds, system (32) is compatible.
¥
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Let BA be a nonsingular square submatrix ofB made up by columns ofA and letSA

be the submatrix formed by the columns common to[B S] andA once removed the
columns ofBA. Moreover,NA is a submatrix constituted by the rest of columns ofA,
thus their associated variables are the same as those associated with the columns ofN .

Let

(34) BS =

[
BA SA

∇BA
c(x)t ∇SA

c(x)t

]

andZA a matrix defined by expression (15) (although using the current BA andSA).

Proposition 2.2. Matrix BS has full row rank if and only if∇c(x)tZA has also full row
rank.

Proof: It is sufficient to take into account the matrix product
[

BA SA

∇BA
c(x)t ∇SA

c(x)t

][
1l −B−1

A SA

00 1l

]
=

[
BA 00

∇BA
c(x)t ∇c(x)tZA

]
,

where the first matrix isBS, see (34), andZA is defined by (15).
¥

Premultiplying equation (32) by matrixZt
A and movingZt

A∇f(x) to the right hand
side we obtain

(35) Zt
A∇c(x)µ = −Zt

A∇f(x).

Proposition 2.3. Let BS be a full-row-rank matrix. System (32) is compatible if and
only if system (35) is compatible

Proof: To prove the«only if» part it is enough to premultiply the system (32) byZA.

Now, to show that the«if» part holds, let us consider the matrix

WA =




1l 00 00

−(B−1

A SA)t 1l 00

00 00 1l


 .
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Suppose that (32) is not compatible, then, sinceBS has full row rank, matrix
[Â(x)t ∇f(x)] has full column rank. Therefore, to prove this part it is sufficient to
operate as in proposition 2.1, but now replacing the matrixW with the matrixWA,
thus

WA[Â(x)t ∇f(x)] = WA




Bt
A ∇BA

c(x) 00 ∇BA
f(x)

St
A ∇SA

c(x) 00 ∇SA
f(x)

N t
A ∇NA

c(x) 1l ∇NA
f(x)




=




Bt
A ∇BA

c(x) 00 ∇BA
f(x)

00 Zt
A∇c(x) 00 Zt

A∇f(x)

N t
A ∇NA

c(x) 1l ∇NA
f(x)


 .

Note that if matrix[Â(x)t ∇f(x)] has full column rank,[Zt
A∇c(x) Zt

A∇f(x)] has
also full column rank.

¥

Corollary 2.1. Under the same conditions of the previous propositions, system (35) is
compatible if and only if (33) holds.

Proof: It is a direct result of the propositions 2.1 and 2.3.
¥

Now we considerx = x̃ = x(µ, ρ) (i.e. the optimizer ofES considered at the beginning
of this section).

As a result of these propositions and corollary, we have the following consequences:

• If α 6= 0 (see expression (26)), system (13) is not compatible, and neither is system

(36) Zt
A∇c(x̃)µ = −Zt

A∇f(x̃).

Therefore, in this case the estimate ofµ∗ by theUKT procedure is not reliable, be-
cause system (13) is not compatible.

• If when building up the basic matrixB of A(x̃) it is not necessary to take columns
of A(x̃) that contain columns ofNA, we have

(37) Z(x̃)t∇f(x̃) = 0,
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and the associated systems (13) and (36) are compatible. Moreover, theµ obtained
by solving both (13) and (36) will be the same, see proposition 2.2 and corollary 2.1.
Therefore, it is enough to solve (36) to calculateµ in procedureUKT .

• If problemEP has not simple bounds, i.e., if it is only defined by (1-3), then it auto-
matically holdsα = 0 for all x̃ = x(µ, ρ) optimizing

minimize
x

Lρ(x, µ)

subject to: Ax = b,

whereLρ(x, µ) = f(x)+µtc(x)+ ρ
2
‖c(x)‖2

2
is the augmented Lagrangian function.

Therefore, for all vector̃x obtained in this way, it is enough to solve (36) — with
x = x̃ — to calculateµ in procedureUKT .

• It is clear from the above results that in order to build up matrix B it is preferable to
use only columns ofBS. Should this submatrix ofA(x̃) not have full row rank, one
must initially search for suitable columns among thel columns associated withNA

such that̃λl = 0, for l ∈ Ñ , if any, see (29).

Next, by means of a proposition we analyze the general case considered at the beginning
of this section.

Proposition 2.4. If α = 0 and ES (5–7) is solvedwith exact minimization, theUKT

procedure is valid for estimatingµ∗. Furthermore, whenB is built up following the rule
given at the last item, the results obtained coincide with those found by means of the
UHP procedure. Otherwise, even ifα = 0, the estimates ofµ∗ obtained throughUKT

andUHP are not the same.

Proof: As shown above,α = 0 implies the validity of procedureUKT for estimating
µ∗, because of (26) and Proposition 2.1.

The second part of this proposition is proved next.

The solution ofES by means of exact minimization implies thatZt
A∇xLρ(x̃, µ) = 0.

This is equivalent to

(38) Zt
A∇c(x̃)(µ + ρc(x̃)) = −Zt

A∇f(x̃).

If the setBS of indices associated with[B S] coincides with the setBSA of the
indices associated with[BA SA], α = 0 and the conditions of Propositions 2.1, 2.2
and 2.3 are fulfilled directly, and therefore the system

(39) Zt
A∇c(x̃)µ = −Zt

A∇f(x̃)
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is compatible and has a single solutionµ, which compared with (38) implies that

µ = µ + ρc(x̃),

whose second member corresponds to the estimate ofµ∗ by means of theUHP proce-
dure.

Due to the length of the part of the proof corresponding to thecase in whichBS contains
strictly BSA, it is divided into several sections.

(i) Definition of matrixÑA to fill up the row rank of[B S].

Let us consider again the submatrix given in (28)

ÑA

∇
Ñ

c(x̃)t
,

whose columns are selected among the columns ofA(x̃) associated with nonbasic va-
riables (with regard to subproblemES) so that the matrixB of expression (21) is non-
singular. LetÑ be, as above, the set of indices associated with the columns of ÑA.
HenceBSA ∪ Ñ = BS. From now on, we consider that the columns of this submatrix
appear arranged inA immediately after those ofSA, without loss of generality.

(ii) Definition of matrixZA.

A new reduction matrixZA is also defined for matrixA such that

(40) ZA = [ZA Z
Ñ

] =




−B−1

A SA −B−1

A ÑA

1l 00

00 1l

00 00


 .

The matrices1l, from left to right, have their dimensions fixed, respectively, by the
number of columns inSA and the number of columns iñNA. The matrixZA has full
column rank.

(iii) Compatibility of systemZ
t

A∇c(x̃)µ = −Z
t

A∇f(x̃).

Sinceα = 0, system

Atπ + ∇c(x̃)µ + λ = −∇f(x̃),
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has one only solution(π, µ, λ) (see Proposition 2.1). Moreover, by Proposition 2.3, the
following system is compatible:

(41) Z
t

A∇c(x̃)µ = −Z
t

A∇f(x̃).

The solution of this isµ, which is unique due to matrixZ
t

A∇c(x̃) having full column
rank. To prove this last, it is sufficient to take into accountthat

(42) [B S] =

[
BA SA ÑA

∇Bc(x̃)t ∇Sc(x̃)t ∇
Ñ

c(x̃)t

]
,

is of full rank (m + r) and to construct a suitable matrixW . Let W be

W =




1l −B−1

A SA −B−1

A ÑA

00 1l 00

00 00 1l


 .

This matrix is nonsingular and of order(m + s + m1) × (m + s + m1), beingm1 the
number of columns iñNA and such thats + m1 ≥ r, by construction of[B S] (42).

Multiplying and taking into account (40)

[B S]W =

[
BA 00 00

∇Bc(x̃)t ∇c(x̃)tZA ∇c(x̃)tZ
Ñ

]
=

[
BA 00

∇Bc(x̃)t ∇c(x̃)tZA

]
,

then because of the features of the factor matrices with respect to the rank, the product
is a(m+r)×(m+s+m1)-matrix that has full row rank, and sinceBA is a nonsingular
matrix with rankm, the submatrix∇c(x̃)tZA has rankr, or in other words, it has full
row rank.

(iv) Calculation ofZ
t

A∇xLρ(x̃, µ).

Let us return to the subproblemES and perform the productZ
t

A∇xLρ(x̃, µ), the result
is

Z
t

A∇xLρ(x̃, µ) =

[
Zt

A

Zt

Ñ

]
∇xLρ(x̃, µ) =

[
Zt

A∇xLρ(x̃, µ)

Zt

Ñ
∇xLρ(x̃, µ)

]
.

Zt
A∇xLρ(x̃, µ) is null becauseES is solved by means of exact minimization. Besides,

Zt

Ñ
∇xLρ(x̃, µ) + Zt

Ñ
Atπ̃ + Zt

Ñ
λ̃ = 0.
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Let us also observe that the second term on the left is zero, asZ
Ñ

expands a null
subspace ofA and

Zt

Ñ
λ̃ = (−B−1

A ÑA)tλ̃B + λ̃Ñ = λ̃Ñ ,

sinceλ̃B = 0 — which is associated withBA. Thus,

Z
t

A∇xLρ(x̃, µ) =

[
00

−λ̃Ñ

]
,

which, by developing∇xLρ(x̃, µ), is equivalent to

(43) Z
t

A∇c(x̃)(µ + ρc(x̃)) = −Z
t

A∇f(x̃) +

[
00

−λ̃Ñ

]
.

If λ̃Ñ is null — i.e., if following the rule put forward in the item previous to this propo-
sition we are able to make up a basis matrixB —, then we have

(44) Z
t

A∇c(x̃)(µ + ρc(x̃)) = −Z
t

A∇f(x̃).

(v) Comparison of expressions (41) and (44).

Finally, if we compare expressions (41) and (44), taking into account the compatibility
of system (41) and the uniqueness of its solution, the conclusion reached is thatµ =

µ + ρc(x̃) is fulfilled if λ̃Ñ is null. In this case the proceduresUKT andUHP produce
the same estimate ofµ∗.

Note that if λ̃Ñ is not null andα = 0 with exact minimization, theUKT procedure
is reliable (in the sense of that the residuals of both systems (13) and (41) are null),
although the estimate ofµ that it provides is different from that given byUHP , see (43).

¥

In reference [10] there is also an efficient procedure for computingα, and practicalities
related to the implementation of Algorithm 2.1 with the problem considered here (code
PFNRN [12]) and computational results.

3. EXTENSION BY USING VECTOR yyy

In this section the above results are extended to the case of problems with general
inequality contraints (problemIP (9–12)) by using a vectory, taking into account the
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technique put forward by Connet al in [5], which is also employed by Murtagh and
Saunders in [14].

Through this section and the following we add to assumptionAS1, given in§2, the new
one:

AS2. µ∗ satisfies the strict complementarity condition

if cj(x
∗) = cj ⇒ µ∗

j < 0,

if cj(x
∗) = cj ⇒ µ∗

j > 0,

otherwiseµ∗
j = 0.

Solving problemIP is equivalent to solving:

(45)

(46)

(47)

(48)

(49)

minimize f(x)

subject to:Ax = b

c(x) − y = 0

l ≤ x ≤ u

c ≤ y ≤ c,

(EPy)

wherey represents the slacks vector that turns the inequalities (11) into equalities.

As regards problemEP (1–4), the difference between this and problemEPy is that in
the latter there are constraints (47) and (49) instead of constraints (3). Therefore we
must analyze the effect of replacing (3) with (47) and (49) inthe results of the former
Section to see whether they can still be applied to the current problem.

First, it can be observed that the Kuhn-Tucker conditions ofan optimal solution(x∗, y∗)
to problemEPy are

∇f(x∗) + ∇c(x∗)µ + Atπ + λ = 0(50)

−µ + γ = 0(51)

Ax∗ = b(52)

c(x∗) − y∗ = 0,(53)

such that unique vectorsµ∗, π∗, λ∗ andγ∗ exist that satisfy equations (50) and (51),
and withγ∗ also satisfying

(54)

γ∗
i ≤ 0 if y∗

i = ci

γ∗
i ≥ 0 if y∗

i = ci

γ∗
i = 0 otherwise,
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andλ∗

(55)

λ∗
i ≤ 0 if x∗

i = li

λ∗
i ≥ 0 if x∗

i = ui

λ∗
i = 0 otherwise.

Note that the only consequence on the multipliers of the introduction of the slacksy
are expressions (51) and (54), the first being used to determine γ∗ once the rest of
the variables have been found through (50). Therefore, in order to obtain a first-order
estimate of all multipliers at point(x, y) it suffices, as pointed out in [7], to solve

(56) ∇f(x) + ∇c(x)µ + Atπ + λ = 0,

just as in the case of problemEP, obtainingγ afterwards through (51). Furthermore,
expression (13) does not change — let us compare it with (56).

Here the associated subproblem is defined as

(57)

(58)

(59)

(60)

minimize
x,y

Lρ(x, y, µ)

subject to:Ax = b

l ≤ x ≤ u

c ≤ y ≤ c

(ESy)

where

(61) Lρ(x, y, µ) = f(x) + µt[c(x) − y] +
1

2
ρ‖c(x) − y‖2

2

is the augmented Lagrangian function. Furthermore, in Algorithm 2.1, subproblemES
(5–7) is replaced by subproblemESy and c(x) with c(x) − y, hence theUHP type
estimate at the optimizer(x̃, ỹ), obtained from the solution ofESy, can be written as:

(62) µ̃ = µ + ρ[c(x̃) − ỹ],

and theUKT type estimate is obtained solving

∇f(x̃) + ∇c(x̃)µ + Atπ + λ = 0,

as in§2 with (13). Thus, as before in§2, we can now define matricesA(x̃), Z(x̃) and
ZA, arriving at the results analogous to those obtained in§2, by propositions 2.1-2.3
and corollary 2.1.
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Other modifications of the algorithm are associated with thesubstitution ofx with x, y.
From the Kuhn-Tucker conditions for this subproblem we obtain

∇f(x̃) + ∇c(x̃){µ + ρ[c(x̃) − ỹ]} + Atπ + λ = 0(63)

−{µ + ρ[c(x̃) − ỹ]} + γ = 0(64)

such that vectorsπ = π̃ andλ = λ̃ exist satisfying the first equation and a vectorγ̃ can
be obtained through the second one. As in§2 for expresion (20), here (63) is the key
expression for studying the compatibility of estimateUKT when using the active set
techniques of Murtagh and Saunders [13] to solveESy, obtaining the results equivalent
to those of the proposition 2.4.

In conclusion, all the analysis after expression (20) in§2 is also applicable to this case,
with the only exception that expressionµ+ ρc(x̃) must be replaced byµ+ ρ[c(x̃)− ỹ].

4. EXTENSION BY USING VECTORS yyy AND www

Here the results of§2 are extended to the case of problems with general inequality
contraints by using vectorsy andw.

This section describes an alternative way of dealing with problemIP (9–12). Solving
problemIP, as put forward in [9] (using slack variables raised to the square, as done by
Rockafellar in [16]), is equivalent to solving problem:

(65)

(66)

(67)

(68)

(69)

minimize f(x)

subject to:Ax = b

(c(x) − c) − y2 = 0

l ≤ x ≤ u

y2 + w2 = c − c,

(EPyw)

wherey, w ∈ R
r are auxiliary vectors of free variables — whithout bounds — that

through vectors

y2 =




y2

1

...

y2

r


 and w2 =




w2

1

...

w2

r




allow the transformation of inequality (11) into an equality.
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As regards the reference problemEP (1–4), the difference with problemEPyw (65–
69) is that in the latter instead of constraint (3) there are constraints (67) and (69),
but contrary to what happens in Section 2, the number of bounds does not increase.
Therefore, we must examine the effect of replacing (3) with (67) and (69) in the main
calculation steps involved in the results of Section 2 and extend them to the type of
problem now considered.

It must be noticed first that the Kuhn-Tucker conditions to besatisfied by an optimizer
(x∗, y∗, w∗) of problemEPyw are

∇f(x∗) + ∇c(x∗)µ + Atπ + λ = 0(70)

(−µ + γ)ty∗ = 0(71)

γtw∗ = 0(72)

Ax∗ = b(73)

(c(x∗) − c) − (y∗)2 = 0,(74)

(y∗)2 + (w∗)2 = c − c,(75)

such that unique vectorsµ∗, π∗, λ andγ∗ exist that satisfy equations (70), (71) and
(72), andλ∗ such that

λ∗
i ≤ 0 if x∗

i = li

λ∗
i ≥ 0 if x∗

i = ui

λ∗
i = 0 otherwise.

Note that the only consequence of the introduction of slacksy (apart from the cons-
traints where they appear) are expressions (71) and (72), and γ∗ can be obtained from
these once the remainig multipliers have been computed from(70), given that in case
y∗ 6= 0, γ∗ = µ∗ (due to (71)), otherwise,w∗ 6= 0 yieldsγ∗ = 0 (due to (72)). There-
fore, to obtain a first-order estimate of theUKT type at point(x, y, w) of all multipliers
it suffices to solve

(76) ∇f(x) + ∇c(x)µ + Atπ + λ = 0,

as in problemEP (1–4) and then computeγ through (71) and (72). Furthermore, ex-
pression (13), which coincides with (76), does not change.

Here the associated subproblem would be

minimize
x,y

Lρ(x, y, µ)

subject to:Ax = b

l ≤ x ≤ u

y2 + w2 = c − c,

(ESyw)
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where

(77) Lρ(x, y, µ) = f(x) + µt[(c(x) − c) − y2] +
ρ

2
‖(c(x) − c) − y2‖2

2

is the augmented Lagrangian function. Furthermore, see [9], the constraints where va-
riables(y, w) appear can be eliminated by replacing the above augmented Lagrangian
by

(78) Lρ(x, µ) = f(x) +

r∑

j=1

{
µjϕj [cj(x), µj , ρ] +

1

2
ρ|ϕj [cj(x), µ, ρ]|2

}
,

where

ϕj [cj(x), µj , ρ] =





cj(x) − cj if µj + ρ[cj(x) − cj ] > 0

cj(x) − cj if µj + ρ[cj(x) − cj ] < 0

−µj/ρ otherwise,

the expression in braces that appears in (78) being continuously differentiable with
respect tox, for f andc defined as in§1, and (bearing in mind the strict complementarity
assumptionAS2 in §2) twice continuously differentiable with respect tox if x ∈ X ,
where

X =
{
x | µj + ρ[cj(x) − cj ] 6= 0, µj + ρ[cj(x) − cj ] 6= 0,∀j = 1, · · · , r

}
.

Therefore, according to [9], solving problemESyw is equivalent to solving problem

minimize
x

Lρ(x, µ)

subject to:Ax = b

l ≤ x ≤ u.

(ESx)

Moreover, in Algorithm 2.1, replacing subproblemES (5–7) withESx andcj(x) with
ϕj [cj(x), µj , ρ], for j = 1, · · · , r, we have that theUHP type estimate at the optimizer
x̃, obtained through the solution ofESx, can be expressed by (see [2, 9])

(79) µ̃ = µ + ρϕ[c(x̃), µ, ρ],

such thatϕ ≡ [ϕ1, · · · , ϕr]
t, and theUKT type estimate is obtained solving

∇f(x̃) + ∇c(x̃)µ + Atπ + λ = 0,

as in§2 with (13). Thus, as before in§2, we can now define matricesA(x̃), Z(x̃) and
ZA, arriving at results analogous to those obtained in§2, by propositions 2.1-2.3 and
corollary 2.1.
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In addition, from the Kuhn-Tucker conditions associated with subproblemESx we ob-
tain:

(80) ∇f(x̃) + ∇c(x̃) {µ + ρϕ[c(x̃), µ, ρ]} + Atπ + λ = 0,

where vectorsπ = π̃ andλ = λ̃ exist satisfying this equation.

Hence, from (80), by an analogous process to that followed from expression (20), we
are led to the same results as are obtained in§2 when using the active set techniques
of Murtagh and Saunders [13] to solveESx, obtaining the equivalent results to those of
the proposition 2.4.

In conclusion, all the analysis after expression (20) in§2 is also applicable to this case,
with the only exception that expressionµ+ρc(x̃) must be replaced byµ+ρϕ[c(x̃), µ, ρ].

5. CONCLUSIONS

This work shows when one may compute under certain guarantees the firts-order mul-
tiplier estimate based on the Khun-Tucker conditions. In addition, it proves the equi-
valence between this type of first-order estimate and that obtained through the original
multiplier method (Hestenes and Powell’s method) when the exact minimization is used
to solve the subproblem and it is not necessary to use columnsof the constraint matrix
that correspond to strongly active variables (with respectto the subproblem) to obtain
a submatrix of the Jacobian (not including the simple bounds) having full row rank.
Nevertheless, in practice not even in the latter case both procedures give the same es-
timate, as usually an inexact minimization of the subproblem is carried out. This work
puts forward also a procedure to compute the multiplier estimates by solving a reduced
system (41), instead of having to solve the large system (13), if the conditions so permit
(see first lines of this paragraph).

In the previous two sections specific procedures for transforming problems of typeIP
(9–12) into problems of typeEP (1–4) have been considered.

The procedure described in Section 4 as compared with that described in section 3 has
the advantage that it does not increase subproblem size withrespect to the original pro-
blemIP. Results of numerical tests comparing both procedures havenot been included
yet as, in our view, the construction of appropiate softwareto exploit the technique put
forward by Connet al in [5] −once fitted to the structure of problemEPy (45-49)− is
by no means trivial and its coding is still underway.

Using these procedures, inequalities in general constraints are eliminated. The validity
for these problems of results and procedures put forward in [10] for typeEP problems
only has also been proved.
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[11] Mijangos, E. (1996).«Optimizacíon de flujos no lineales en redes con restriccio-
nes laterales mediante técnicas de multiplicadores». Ph.D. Thesis, Statistics and
Operations Research Dept.. Universitat Polit̀ecnica de Catalunya, 08028 Barcelo-
na, Spain.

[12] Mijangos, E. (1997).«PFNRN03 user’s guide». Technical Report 97/05, Dept. of
Statistics and Operations Research. Universitat Politècnica de Catalunya, 08028
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