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1. INTRODUCTION

Statistical confidentiality attempts to keep individual information anonymous when
releasing macrodata (contingency tables) and microdata (individual records). Such
data can be released by publishing printed reports or following a set of queries to
a statistical database. In the first case, off-line protection is enough, whereas in the
second case on-line protection is required. While off-line statistical confidentiality
techniques seem well developed, on-line techniques do not appear as very promising
(see [Adam (1989)] for a survey) even if they have been long studied: as queries
are done interactively, one can very often devise an adaptive query strategy to get a
particular information out of the database. Another taxonomy of disclosure control
methods [Schackis (1993)] is based on whether the data to be protected are macrodata
or microdata; for macrodata, available methods are cell suppression, change of the
classification scheme, rounding and random perturbation; for microdata, the choice
is between data reduction and data modification methods. Rather than following one
of the above mentioned references to extensively review all available methods, we
prefer to recall here three operating principles underlying, if not all methods, at least
a good deal of them:

@ Random perturbations. The basic idea is to distort microdata/macrodata by adding
a small (often zero-mean) perturbation. This technique suffices for anonymizing
off-line contingency tables, and can be improved by performing secondary com-
pensations in order to keep marginal sums unchanged [Appel (1992)], [Turmo
(1993)]. For databases which can be queried repeatedly, zero-mean random per-
turbations are far from secure: the true answer can be derived by computing the
average of a sufficiently large number of perturbed answers to the same query.
Error inoculation is a possible solution: the perturbation used for a value is not
computed each time the record is used for a computation, but is determined by a
fixed perturbation factor stored along with the value.

@ Data suppression or query set size control. Statistics affecting more than K indi-
vidual records o less than N — K are not supplied, where N is the total number of
records in the database. This strategy is useful for anonymizing off-line contin-
gency tables, where it amounts to eliminating cells with very low or high frequen-
cies (disclosure cells). In this case, secondary suppressions will probably have
to be performed; otherwise, marginal sums could be used to deteimine primary
suppressions. It is desirable to minimize the total value of suppressed cells, which
can be achieved through the use of linear programming [Cox (1992)]. For on-line
statistical databases, data suppression amounts to controlling the query set size
(queries having very small or very large query sets are not answered). Unfortu-
nately, this technique is rather ineffective for on-line protection: Schlorer showed
long ago that an individual record can be isolated by an iterative technique such
as the «tracker» [Schldrer (1979)], even for K near N/2.
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® Random samples. In this approach, statistics are not computed on the original
data, but on a random sample of them —a random query subset in a database—.
This is a rather secure technique, but can only provide estimates of marginal sums.
If samples are small, then there is a clear loss of quality. A related alternative
is using a re-sampling method, such as bootstrapping (see [Heer (1992)] and
subsection 4.3).

Disclosure control methods yield data only usable for consultation and approxima-
te computation at an unclassified level. In this paper, we will show a cryptographic
way for a classified level (statistical institute) to take advantage of unclassified (e.
g. subcontracted) computation on disclosure-protected data. The idea is to extract.
with little classified effort, exact statistics from approximate statistics computed on
disclosure-protected data at an unclassified level. Future research will be directed to
exporting our results to on-line scenarios. In section 2, we introduce privacy homo-
morphisms (PH), which are the basic tool used in this paper. In section 3, we present
a new PH which has better properties than the PHs known so far. In section 4, the
use of PHs for multilevel computation on microdata and macrodata is discussed; mo-
re specifically, we illustrate the combination of PHs with disclosure control methods
based on random perturbation, data suppression and resampling. Section 5 contains
some final remarks.

2. PRIVACY HOMOMORPHISMS

Privacy homomorphisms (PHs from now on) were formally introduced in [Rivest
(1978b)] as a tool for processing encrypted data. Basically, they are encryption
functions E; : T —> T’ which allow to perform a set F’ of operations on encrypted
data (in 7') without knowledge of the decryption function D;. Knowledge of Dy
allows to recover the same outcome that would be obtained if the corresponding set F
of operations had been used on clear data (in 7). The security gain is obvious because
classified data can be encrypted, processed by an unclassified computing facility, and
the result decrypted by the classified level. Next, we include some simple examples
of PHs

Example 1. An exponential cipher such as RSA [Rivest (1978a)] is a PH. Let m = pgq,
where p and ¢ are two large secret primes (about 100 decimal digits each). In this
case,

T=T =2/(m)
Ei(a) = a® mod m

Dy(a") = (a")* mod m
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where Z/(m) is the set of integers modulo m, d is secret and ed mod ¢(m) = 1, with
o(m) = (p—1)(¢ — 1) being Euler’s totient function. Clearly,

Di(Ex(a)) = a* mod m=a'*"*" modm=a

where Euler’s theorem is used in the last step. Now, let F = F' = {x}, where * denotes
the modular multiplication over Z/(m). The following homomorphic property holds

E(a) x Ex(b) = (¢° mod m)(b* mod m) mod m = (axbh)* mod m = Ey(axb)

This homomorphism allows only one operation, but appears to be very secure.
Finding Dy from Ey, i. e. finding d from e, seems to be equivalent to factoring a large
modulus m —no polynomial-time algorithm for factoring has been published up-to-
date—. An additional interesting property relates to the preservation of the equality
predicate, because it holds that

Ey(a) = E(b) if and only if a=b

O

Example 2. In [Rivest (1978b)], the following PH is given. Let p and g be two large
secret primes (100 decimal digits each). Consider the set of cleartext data T = Z/(m)
and the set of cleartext operations F = {+,,,—m, X,n} consisting, respectively, of
the addition, subtraction and multiplication modulo m, with m = pg. Define the
encryption key k = (p,q) and Ey(a) = [a mod p,a mod g]. Now, given k. and given
[b,c] € Z/(p) x Z/(q), computation of Di([b,c]) is as follows: decryption consists
of finding an x € Z/(m) such that

(hH b=xmod p and ¢=xmodg

To compute x, we have from the first equation 1 that
x=b+pt
for some ¢. Then, substitution in the second equation 1 yields
b+ptmodg=c 3

Now, if p~! is the multiplicative inverse of p modulo ¢ —Euclid’s extended

algorithm can be used to invert p over Z/(q)—, we have

t=p Yc—b)mod g=d+qr
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for some r. Finally

x=b+ pd+ (pg)r = b+ pd mod m

The Chinese remainder theorem guarantees the uniqueness of x.

Thus, the set of ciphertext data is 7' = Z/(p) x Z/(q), and the set F’ of ciphertext
operations consists of the componentwise modular addition, subtraction and muitipli-
cation. Since k = (p,q) is only known at a classified level. unclassified operations
on encrypted data are actually carried out over Z x Z (reduction over Z/(p) x 2/(q)
being restricted to the classified decryptor). This fact implies that, for a given num-
ber in Z/(m), there is an infinity of different enciphered versions; therefore, test
for equality is not possible at an unclassified level. Also, the authors of [Rivest
(1978b)] do not consider division as a valid operation. Whereas there is no problem
in including the componentwise modular division in F’, this operation cannot be for-
mally included in F, because Z/(m) is not a field. However, the only additional
requirement for division to be possible is that the divisor be relatively prime to m.
This is not a very restrictive condition for statistical data processing, because there
are ¢(m) = pg— p — g+ 1 numbers relatively prime to m in Z/(m); if p and g are
100-digit primes, then ¢(m) and m have about the same order of magnitude. The
probability of getting a divisor not relatively prime to m is

m—¢(m) _ptq-1 0(107190)
m Pq

So, dividing at the unclassified level involves finding the multiplicative inverse
of the divisor over Z/(m) x Z/(m) (almost always possible), and then multiplying.
The resulting quotient can be reduced by the classified level into Z/(p) x Z/(q), and
then decrypted to get a quotient in Z/(m). However, this quotient coincides with the
standard quotient over Z only if the division is exact (with remainder 0). Thus it is
better to leave divisions in rational form (as fractions).

While this homomorphism allows more operations than the one in example 1, it
is less secure. Brickell and Yacobi [Brickell (1988)] have shown that it can be broken
by a known cleartext attack. If the ciphertexts [b;, ¢;] corresponding to some cleartexts
aj, for 1 <i < r, are known (the ciphertexts being nontrivial, i. e. b; # a; or ¢; # a;),
then p and g can be found with a high probability, and any ciphertext decrypted. The
idea is that if p’ = gcd{a;—b;: 1 <i<r} and ¢' = ged{a; —c;i: 1 <i<r}, then p|p/
and g|q'. There is a high probability that p = p’ and g = ¢', even for small r; anyway,
as r increases, so does the probability of finding p and q. Still; this homomorphism
can safely be used as long as no corresponding nontrivial ciphertext and cleartext are
released.

O
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3. ANEW PRIVACY HOMOMORPHISM

We propose in this section a new privacy homomorphism which is similar to the
one of example 2 (it has the same sets T, T', F and F'), but entails two significant
improvements

e Small values are nontrivially encrypted.

e The new PH is able to withstand a general known-cleartext attack, and specifi-
cally the [Brickell (1988)] attack.

3.1. The basic idea

When p, g, m = pq are very large integers, a small value a is very likely to have
the same representation over Z/(m), Z/(p) and Z/(q), that is

amodm=amod p=amod g if a<min(p,q)

This is an undesirable feature, because the homomorphism of example 2 leaves the
cleartext unencrypted (trivial ciphertext). A possible solution is to multiply « by a
pair of secret constants r, and r, such that r, < p and r, < g (the encryption key is
now extended to k = (p,q,7,,7,)). A further improvement to deter ciphertext-only
attacks based on frequency analysis is to secretly and randomly splita intoa 1, -+ ,a,,,

such that a ; € Z/(m) and 3_, a j mod m = a. Thus the privacy homomorphism we
propose is

Public parameters n, m (actually m can be made secret, to increase security).

Secret key p, q large primes, such that pg = m. Also, r, € Z/(p), such that it
generates a large multiplicative subgroup in Z/(p) — {0}. Also. r, with similar
properties with respect to Z/(q).

Encryption Randomly split a € Z/(m) into secret a;,--- ,a, such that
n
a= Za,,' modm and a;€Z/(m).
J=1
Compute

Ei(a) = ([a.1rp mod p,a. r, mod q],[a,zrlz, mod p,a,zrz mod ¢],---
2) ,[a,,,r’,', mod p,a,,,fq’ mod ¢])

Decryption Compute the scalar product of the j-th [mod p, mod g] pair by [r;'i mod

p,rqy’ mod g] to retrieve the [a.; mod p,a ; mod g]. Add up to get [a mod p,a mod
g]. Use the Chinese remainder theorem to get a mod m.
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3.2. The operations on encrypted data

As operations on encrypted values are carried out over 2 x Z by the unclassified
level, the use of r, and r, requires that the terms of the encrypted value having
different r-degree be handled separately —the r-degree of a mod p, resp. mod ¢,
term is the exponent of the power of r,, resp. r,, contained in the term—. This is
necessary for the classified level to be able to multiply each term by r;' (inverse of
r, over Z/(p)) and r,;' (inverse of r, over Z/(q)) the right number of times. before
adding all terms up, reducing the final result into Z/(p) x Z/(q), and decrypting into
Z/(m).

The only operation altering the r-degree is multiplication. If cleartext data x and
y have been encrypted as Ex(x) and Ex(y), with r-degrees n| and ny, then the product
Ei(x)Ex(y) has r-degree n = ny + np. The result may have terms Ej ;(z) with degrees
ranging from j =1 to n and can be represented in vector notation as

(Ek,l (x)ka.Z (X), e 7Ek,n (X))
If we set r = [rp,ry] then Ei(x) can also be written as a polynomial of r
Ek(x)[r] :nr+---+t,,/’

Although the coefficients ¢; are in practice unknown to the unclassified level, the
polynomial notation is useful to understand how algebraic operations should be carried
out by this level using terms rather than coefficients

Addition and subtraction In vector notation, they are done componentwise over 2,
which in polynomial notation means adding terms with the same degree.

Multiplication It works like in the case of polynomials: all terms are cross-multiplied
in 2, with an j;-th degree term by a j,-th degree term yielding a j; + j>-th degree
term; finally, terms having the same degree are added up.

Division Cannot be carried out in general because the polynomials are a ring, but not
a field. A good solution is to leave divisions in rational format by considering the
field of rational functions, i. e. fractions whose numerator and denominator are

polynomials. In this way, if a and b are two integers, we encrypt a/b as gﬁg,’;;

Note. When addition or subtraction are performed on fracticns with different deno-
minators, numerators cannot be added or subtracted directly. The rules for ordinary
fractions should be followed

Ei(a) N E(c) _ Ex(@)Ey(d) + Ex(b)Ek(c)
Ei(b) ~ Ex(d) E (b)E(d)
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3.3. Security

We shall next quote two security results related to the proposed PH; for a de-
tailed security analysis of the new PH from the cryptographic point of view, refer
to [Domingo (1996)]. The first result is that our proposal appears to withstand any
known-cleartext attack. In other words, even if an enemy has access to some random
cleartexts and corresponding ciphertexts, she is not able to retrieve the secret key
k= (p,q,rp,r,) that would allow her to decipher arbitrary ciphertext data. A second
result relates to plaintext splitting, which turns out to be essential to the security of the
PH. This means that one should take n > 2. Without plaintext splitting (n = 1), the PH
is shown to be insecure and can be broken by a known-plaintext attack. specifically
an extended Brickell-Yacobi ged attack. .

4. MULTILEVEL COMPUTATION USING PRIVACY HOMOMORPHISMS

PHs enable multilevel processing of sensitive data. The idea is to have just a
«small core» of resources for classified tasks at a statistical office. PHs make possible
to subcontract external computing facilities without compromising statistical secrecy
—external service providers being special instances of unclassified levels.

Classified level

r T r T T T N .
; Disclosure
| iCiphered stats/, | 1 Clearstats/ |
— — = —s{ control
| Clear data PH jaggregates | PH | aggregates | | ohod
L - - - - = J L - - - = J Lo - - - = J
A - _k ________________ B R
Unclassified level| computation Consul-
tation
Figure 1.

Multilevel computation (scenario A).

At least twa. scenarios for using PHs are conceivable. In scenario A (see 1), sensi-
tive micro/macrodata can be encrypted under a PH at a classified level and then be
forwarded to an unclassified facility for computation of encrypted statistics or aggre-
gate data; such results can later be decrypted at the classified level. Scenario A is
quite straightforward and needs no further discussion. On the other hand, scenario B
makes use of PHs in more subtle ways (see figure 2). After using a disclosure con-
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trol method to protect clear exact micro/macrodata., some information generated by
the method can be encrypted and forwarded to the unclassified facility. This facility
takes such encrypted information and the disclosure-protected data as inputs to its
computation. The outputs are forwarded to the classified level: this level alone can
extract (with little effort) exact results from the outputs received from the unclassified
level. Scenario B is the most relevant to this paper and will be developed in the
following subsections for disclosure control methods based on random perturbation,
data suppression and resampling.

Classified level

[ | r T
| Disclosure control - Exact stats/ |
IC\ear (exact) datal method PH PH |aggregates |
Lo — — __I L — —J
P e e e e e — o — - — e 4
Unclassified level Computation and

consultation

Figure 2.

Multilevel computation (scenario B).

4.1. Multilevel processing of randomly perturbed data

Assume that, at a classified level. a statistical office uses a random perturbation

method on data x|,x;,--- ,x, (which may be microdata or frequencies in a contingency
table). This gives

xf:x,-+€i Vi=1,---,n

where ¢€; is a random value. Let E; be the encrypting transformation of a PH with a
set F of cleartext operations and a corresponding set of F' of ciphertext operztions.
"Now, the classified level releases the pairs (x7,Ex(—¢€;)) to the unclassified level for
further processing. This level is able to perform on the x; the operatibns in £ and

compute the encrypted perturbation of the result by using the operations in ' on the
Ei(—€i).

At any time, the classified level can take advantage of computations performed by
the unclassified level on perturbed data, since restoration of the exact result involves
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only decrypting the perturbation of the result. Remark that the unclassified level must
content itself with perturbed statistics (on perturbed data), unless the classified level
decides to reveal the clear perturbation corresponding to some perturbed statistic.

The homomorphism of section 3 can be used to have the unclassified level com-
pute the encrypted perturbations corresponding to any kind of perturbed statistics. It
is useful here to consider non-integer perturbations and non-integer data. Remark
that integer perturbations are often too coarse, since in most applications perturbed
statistics are required to reflect original statistics to some extent. So, if perturbations

have at most u decimal positions, we multiply them by 10“. In this case, a per-
E(gix10")

turbation &; is encrypted as 55— ; similarly, a perturbed value x; is represented
* % 10 . . .
as ﬁ—l%,—,g—. Remark that, being public, the denominator 10 need not be encrypted.

Combining cleartext values with encrypted values in computations poses no arithme-
tical problems, as will be shown below. In this way, without loss of generality, we
can assume in what follows that perturbations €; and perturbed values x; have been
converted to integers (the numerators of their corresponding fractions).

4.1.1. Encrypted perturbation algebra

Table 1 summarizes the computations on encrypted perturbations generated by
elementary operations. Given that x = x" —¢, and y = y* —¢,, deriving the clear
perturbations for addition, subtraction and multiplication is straightforward. Division
is not explicitly considered, because it follows from subsection 3.2 that it can be
avoided if rational numbers are represented and handled as fractions.

Table 1
Encrypted perturbations corresponding to elementary operations
Perturbed Clear Encrypted
operation perturbation perturbation
x4y — (& +&) . E(—&x) + Ex(—¢y)
X —y* —(ex—&y) E(—¢&) — Ex(—¢,)
xv* —X"& = Y'e + &8y || X Ex(—¢€,) + Y Er(—€x) + Ei(—€c) Ei(—¢y)

The new homomorphism has two remarkable properties which justify the formulae
for encrypted perturbations in table 1.

o The fact that it is based on finite fields greatly facilitates computation at the unclas-
sified level, which can operate over Z x Z. Then the classified level, which knows
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the underlying Z/(p) x Z/(q) vector space, is able to perform a suitable reduction
on the result received from the unclassified level.

e Thanks to the previous property and to cleartext addition and multiplication being
mapped to ciphertext addition and multiplication, respectively, the unclassified level
can compute Ey(—x"€, —y'ey) as x"Ey(—¢,) + Y Ex(—¢,) over Z. This greatly
facilitates unclassified computation of the encrypted perturbations.

4.1.2. Undoing the integer conversion

When the classified level receives the result of a computation from the unclassified
level, it retrieves the clear perturbation and adds it to the perturbed result to obtain the
exact result. If initial data and perturbations were converted to integers as discussed
above, every result received from the unclassified level is a fraction; the numerator
of the perturbation must be decrypted and thereafter divided over the real numbers
by the decrypted denominator (be it a power of 10 or not), in order to get the right
number of decimal positions.

4.1.3. Numerical examples

We next give two examples to illustrate computations with the proposed PH.

Example 3. (Multiplication) The following example is unrealistic because of the
small size of p and ¢, and also because the amount of computation at the unclassified
level is smaller than at the classified level, even if the latter could precompute the
encrypted perturbations. Actually, the overhead introduced to perform a single mul-
tiplication is rather comical. For brevity and clarity, take n = 2, that is, perturbations
are split into two parts during encryption.

Classified level

Let p=17,q=13, r, =2 and r, = 3 be the secret key. One wants to have x = —0.5
and vy = 0.6 multiplied by the unclassified level. Then random perturbations €, =
0.3 and &, = —0.1 are generated and the perturbed values x* = x+¢, = —0.2 and
y*=y+¢&, =0.5 are obtained. In order to suppress decimal positions, perturbed
data and perturbations are multiplied by 10, thus yielding the fractions

. (F -&\ (-2 -3
S 8")‘<1o’ 10)“(10’10)

(v, —e) = VooEY_ (5 1
Yor® =100 ) T 107 10

Numerators of perturbations are secretly and randomly split and then transformed
according to the proposed PH, thus obtaining first and second r-degree terms
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Ex(—&) = Ex(—3) = Ex(1,—-4) = ([2.3],[1,3])
E(—&) = Ex(1) = Ex(-1,2) = ([15,10],[8,5])

Next, these encrypted perturbation numerators and perturbed data numerators £*, 7
are forwarded to the unclassified level, with a denominator 10 in all cases. Remark
that encrypted perturbations could have been precomputed and/or reused from
previous data.

Unclassified level
Compute £*§* = —2 x 5 = —10 and the corresponding encrypted perturbation after
table 1
T Ex(—&y) + V" Ex( =€) + Ex(—E0) Ex(—&y)

= —2x([15,10],[8,5]) + 5 x ([2,3],[1,3]) + ([2,3],[1,3]) x ([15,10},[8,5])
=([-2x15+5%2,-2x 10+5 x 3],
[2x8+5x1,-2x5+5x%x3]+[2x15.3x10],
[2x8+1x153x5+3x10],[1 8,3 x5])
= ([-20,-5],[19,35],[31,45],[8, 15))

Notice that terms with different r-degree are dealt with as separate components.
Return to the classified level with a denominator 10 x 10 = 10°: i) the perturbed
product; ii) its encrypted perturbation.

Classified level
Retrieve the clear perturbation €,, of the product by computing

([-20x r;l mod p, -5 x rq_l mod g, [19 x r;2 mod p,35 x r,l_2 mod g,

[31x r;3 mod p,45 x rq_3 mod g],[8 x r;“ mod p, 15 x rf' mod q])
= ([-20x 9 mod 17,—5 x 9 mod 13],[19 x 9> mod 17,35 x 9> mod 13],
[31 x 9* mod 17,45 x 9% mod 13],[8 x 9* mod 17,15 x 9* mod 13])
= ([7,7),9,1],16,61.9,5]) = ((14,6])

where, in the last step, all terms have been added up over Z/(p) x Z/(q). Bearing
in mind that m = pg = 221, use the Chinese remainder theorem on the pair [14,6]
to recover the perturbation —€,, = 201 mod 221 = —20 corresponding to £¥". In
the last equivalence, it has been implicity assumed that the upper half of Z/(221)
represents negative integers: this assumption is valid if perturbations have an
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absolute value much smaller than pg, which always occurs in real cases because
pq is very large. Adding this perturbation to the perturbed product yields

Yy =8, =—10-20=—30

Finally, divide -30 by the denominator 10? returned by the unclassified level. Thus
the final result is xy = —0.3.

O

Example 4. (Average computation) This example is even more unrealistic as the
previous one, but it illustrates a basic statistical operation such as an average computa-
tion —averages are the building blocks of most statistics, such as variance, skewness,
kurtosis, etc. An average consists of an addition and a division. Again, take n =2
(perturbations are split into two parts).

Classified level

Let p=17, g =13, r, =2 and r, = 3 be the secret key. One wants to have the
average of the sample (x;,x2,x3) = (0.3,1.5,1.0) computed by the unclassified
level. Then three perturbations are generated to obtain the perturbed values (0.4.
-0.1) for xy, (1.2, 0.3) for xp and (0.9, 0.1) for x3. In order to suppress decimal
positions, these perturbed data are multiplied by 10, thus yielding the fractions

. _ 0 —£ _ 4 -1
(;xlv 8])_<107 lo>_<10~ ]O>
(X7, —€2) = H -8\ (12 3

P = 1010 ) ~ \10° 10

e (B BN _ (9 1
Q”S”_<m’m>"(mw0

Numerators of perturbations are secretly and randomly split and then transformed
according to the new PH, thus obtaining

Ex(—8)) = Ex(—1)=E(1,-2)= ([2,3],[9,8])
 El(—&) = Ex(3) = Ex(=1,4) = ([15,10],[16,10])
Ex(—8&3) = E(1) = Ex(-1,2) = ([15,10],[8,5])

Perturbed data and encrypted perturbation numerators are forwarded to the unclas-
sified level, along with their denominators (10 in all cases). Remark that encrypted
perturbations could have been precomputed or reused from a previous sample.
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Unclassified level

3 5
Compute the perturbed average ¥* = (Z’:‘;' /10 _ (4“';9)/10 = % The encrypted
perturbation of the numerator 25 of the average can be found by directly adding
the numerators of encrypted perturbations (see table 1), because the denominator

is 10 in all of them

3

> E(—&) = ([2.3],[9.8]) + ([15.10],[16.10]) + ([15.10],[8,5])

i=1
= (24154 15,3+ 10+ 10],[9+ 16+ 8,8 + 10+ 5]) = ([32.23],[33.23])

The denominator 30 of the average has perturbation 0, as it is the product of exact
values 10 and 3. Return to the classified level: 1) the perturbed average &* = %
ii) for the numerator 25, return the encrypted perturbation ([32,23],[33,23]); iii)
for the denominator 30, return perturbation 0. '

Classified level
Retrieve the clear perturbation for the numerator of the average by computing

([32 x r;l mod p.23 x r;' mod g],[33 x r;2 mod p.23 x rq"2 mod q])

= ([32 x9mod 17,23 x 9 mod 13],[33 x 9> mod 17,23 x 9> mod 13])
= ([16,12],[4,4])) = ([3,3])

where, in the last step, the first and the second r-degree terms have been added over
Z/(p) x Z/(g). Bearing in mind that m = pg = 221, use the Chinese remainder
theorem on the pair [3,3] to recover the clear perturbation 3. The perturbation is
taken as positive, because it belongs to the lower half of Z/(221). Adding the

perturbation 3 to the numerator of the perturbed average and the perturbation 0 to
its denominator yields

25+3 28 )
F= 220 %003
Y= 3070 30 )

Remark that, in this last step, the amount of computation is fixed and does not
depend on the sample size.

O

4.2. Multilevel processing with data suppression

The following disclosure-protected table is taken from [Cox (1992)]. Disclosure
—sensitive— cells have been suppressed (primary suppressions); other cells have

been secondarily suppressed to prevent inferences. A D-cell stands for a suppressed
cell.
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D 10 D D 20| 80
D 10 D 5 15| 60
40 10 D D 10| 90
5 5 D D 5| 40

75 35 65 45 50 270

Now, an alternative approach to cell suppression is to use a PH to encrypt the
D-cell values

E((10) 10 E(25) E(15) 20| 80
E«(20) 10 E(10) 5 15| 60
40 10 Ey(20) E(10) 10| 90
5 5 EJ(10) E(15) 5 | 40
75 35 65 45 50 | 270

The unclassified level views the encrypted cells as if they had been suppressed, but
it can perform on them the operations in F’. The classified level can take advantage of
this work by decrypting the result. When using a PH breakable by a known-cleartext
attack (such as the one in example 2), the unclassified level must separately operate
on encrypted cells (operations in F') and unencrypted cells (operations in F); merging
the results of both computational streams is up to the classified level. The use of a
PH resistant to a known-cleartext attack (such as the ones in example 1 and section
3) allows the classified level to distribute the encrypted version of the whole table,
along with the non-disclosure cells as cleartext for consultation purposes; thus the
unclassified level can operate on the whole encrypted table using the operations in
F', so that the only job left to the classified level is decryption of the final result.

4.3. Multilevel processing of resampled data

The basic resampling scheme dealt with in this subsection is from [Heer (1992)].
Assume that microdata z,---,z, are aggregated to elaborate macrodata in the form
of a contingency table x with / rows and J columns, which is produced according
to certain specifications. Let x;; be the original frequency in the i-th row and j-th
column. In order to produce an anonymized table x*, a bootstrap sample zj,--- ,z;, is
obtained by drawing from the original data zj,---,z,, n times and with replacement.
The bootstrap table x* thus obtained is an estimation of the original table x and does
not allow to get any precise information of x, due to its random error.
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The main features of a bootstrap table are
e The overall frequency is preserved, since Y xi; = 3.x; = n.

e Each individual bootstrap frequency xj; is a value drawn from a variable having a
binomial distribution with mean x;; and variance x;;(1 —x;;/n). Therefore, x” is an
unbiased estimation of x.

e An original frequency x;; = 0 is preserved, i. e. x;; =0 implies x;; = 0. If this
is undesirable, then a compensated perturbation method could be used on the ori-

ginal table before bootstrapping, in order to replace zero frequencies with small
frequencies.

It can be seen from the previous paragraphs that x™ is actually a perturbed image
of x, i. e
X=x+(x"—x)=x+¢

where € = (g;;) is a matrix of random zero-mean estimation errors. Therefore, privacy
homomorphisms can be used in a way analogous to the one described in subsection
4.1. The classified level computes the matrix € and releases the following pairs for
unclassified processing

(xi*j,Ek(—-e,«j)) Vi=1,---,1, Vj: 1 J

5. CONCLUSION

The use of privacy homomorphisms for multilevel processing of classified sta-
tistical data has been motivated. A new privacy homomorphism has been presented
which exhibits good cryptographic and algebraic properties for statistical computation.
It has been shown how to combine privacy homomorphisms and several well-known
techniques for statistical confidentiality, so that the classified level can recover exact
statistics from statistics obtained at an unclassified level on disclosure-protected da-
ta. Application of PHs for providing statistical confidentiality in on-line scenarios
is currently being investigated. The key issue is that PHs useful for statistical data
protection are not necessarily cryptographically tnbreakable PHs: they only need be
as strong as the statistical confidentiality techniques with which they are combined.
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