QUESTIIO, Vol 20, 3 pp. 409-425, 1996

FACTOR ANALYSIS AND INFORMATION
CRITERIA*

MICHELE COSTA®

University of Bologna

In this paper the research of the true number of latent factors in exploratory
factor analysis model is studied through a comparison between the log
likelihood ratio test statistics, the information criteria of Akaike, Schwarz
and Hannan-Quinn and a procedure of cross-validation. In a simulation
study the a priori knowledge of the exact factor structure is used to evaluate
the goodness of the different methods.

Keywords: Factor analysis, number of factors, financial market, simula-
tion.

* Support for this research was provided by MURST grant 40% «Scelte discrete, variabili latenti € modelli
economici stocastici».

I'm grateful to Sandra Marciatori for computing assistance.
* Michele Costa. Department of Statistics. University of Bologna. Via Belle Arti, 41. 40126 Bologna.
—Article rebut el setembre de 1995.
—Acceptat I’abril de 1996.

409



1. INTRODUCTION

Factor analysis is closely related to unobservability problems, and especially to
the problem of variables that «do not correspond directly to anything that is likely
to be measured» (Griliches, 1977). Indeed the factor analysis model specifies a set
of linear relations in which p observable variables are determined by k unobservable
factors and p error terms.

The determination of the «true» number of factors is the first problem to be solved
in the selection of the «true» factor model

X=fA+U

where Xyx, is the matrix of the observable data, Uy is the matrix of the errors,
Agxp 1s the matrix of the factor loadings, fyxi is the matrix (with k < p) of the
factors and N is the number of observations of the series used.

The identification of a stable factor structure is traditionally done by means of the
likelihood ratio test statistics and, more recently, through other methods, as informa-
tion criteria and cross-validation.

The purpose of this paper is to study using Monte Carlo methods the contribution
of all these methods to the determination of the «true» number of factors.

2. THE SELECTION OF THE MODEL

2.1. The likelihood ratio test statistics

The possibility to test the number of factors is one of the main reasons for the
success of the procedure of maximum likelihood (Lawley and Maxwell, 1971; Kim
and Mueller, 1983).

The usual statistics (Anderson, 1984; Kendall and Stuart, 1973, vol. II, chapter
24) used to test the number of factors is the log likelihood ratio test statistics

LR = N*(log|AN'A +¥| - log|Z|)
where X is the sample covariance matrix, ¥ is the diagonal covariance matrix of
the error U and the number of observations is corrected by Bartlett’s formula N* =

N—(2p+4k+11)/6.

Conway and Reinganum (1988) indicate cross-validation as an alternative solution
for the determination of the number of factors. Cross-validation can be considered
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as a two stage procedure. In the first stage maximum likelihood estimates of the
parameters are calculated in a sample of p variables X. In the second stage the
estimates obtained are not compared with the respective sample variance matrix Z,
but with a X* of another sample of the same variables X, in order to isolate the stable
factor structure from the random components.

The log likelihood ratio test statistics
LR = N*(log|A'A+ Y| — log|Z|)
is therefore (Conway and Reinganum, 1988) modified into

CV =N*(log|A'A+¥| —log|Z"|) + N*(tr((NA+¥)"'Z") — p)

2.2. Information criteria

Akaike’s information criterion (Akaike 1979 and 1987) is probably the most re-
levant and famous as for the comparison and selection between different models and
is constructed on log likelihood

AIC = -2 logmax L+ 2h

where L denotes the likelihood function of the factor model and h is the number of
the model’s free parameters.

The first term can be interpreted as a goodness-of-fit measure, while the second
gives a growing penalty to increasing numbers of parameters, according to the parsi-
mony principle.

In the choice of the model a minimisation rule is used to select the model with
the minimum Akaike information criterion value.

Following the modification of FPE (Final Prediction Error) proposed by Bhansali
and Downham (1977), Smith and Spiegelhalter (1980) suggested to modify the AIC
by transforming the second term into a generic o A:

AICy, = —2 logmaxL+ah

Still in the context of likelihood based procedures, Schwarz (1978) proposed the
alternative information criterion

1
SCH = —logmaxL+ Eh logN

that, unlike AIC, considers the number N of the observations and is therefore less
favourable to factors inclusion.
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Hannan and Quinn (1979) suggested another information criterion, based, as usual,
on the minimisation of —logmax L + hC

HQ = -2 logmaxL+2 hc loglogN c>1

3. A SIMULATION

The purpose of this paper is to illustrate some results obtained on simulated data.
for which the factor structure is perfectly known. The different methods, illustrated
in the previous paragraphs, are applied to the simulated data and the indications of
the number of factors are compared with the true value k, which is a priori known.

The following model is used to obtain the simulated matrices X *

X*=f*A*+U*

( f* is the N x k matrix of the factors, obtained by random extractions
from a multivariate normal distribution with covariance matrix
the identity matrix

U™ is the N x p matrix of error terms, randomly extracted from a mul-
tivariate normal distribution with covariance matrix the identity

where .
< matrix too

A" is the k x p matrix of factor loadings, obtained from a factor
analysis of a sample of p assets returns randomly extracted from
a set of 100 assets returns daily quoted at Milan stock exchange
from 1986 to 1989.

\

The various methods illustrated above are thus applied to samples of simulated
matrices X* (with dimension p =20, p = 30 and p = 40) to analyze the influence of
variations in the number of the original variables.

For each value of p different numbers N of the observations analyzed were con-
sidered, in order to study how variations of N can influence the number of factors
“detected. Specifically the cases N = 100, N = 200, N = 1000, N = 5000 were consi-
dered.

Finally, in the simulations three different factor structures were analyzed in order

to evaluate the chosen criteria for different values of k, specifically the cases k =1,
k=35, k=10.
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In order to generate the k independent factors f* a matrix of dimension 5000 x
10, corresponding to the maximum value of N and k, was randomly extracted from
a multivariate normal distribution with covariance matrix the identity matrix. For
other values of N and k appropriate submatrices were extracted from this matrix: for
example, for the case of k =1 and N = 200 the relative submatrix f3,,,, contains the
first 200 rows of the first column of the f5y,0,o-

To obtain the factor loadings A* three samples of 20 assets returns. three samples
of 30 and three of 40 were randomly and independently extracted from a set of 100.
Then a factor analysis was performed with k =1 to obtain A5, |, A3y, Ajgx . With
k=15 to obtain A3, 5, A3g.s, Algys. With k=10 to obtain A3y 5, A3y o and Aly, o-

The factor loadings A* and the factors f* are assumed as fixed. Having thus ob-
tained the term f* A", the simulated matrices X* are obtained by p random extractions
of the error terms vector U™.

The factor structure is so a priori known as k are the columns of A", and the
variability of the X™ is entirely attributable to the different determinations of the
vector U™: it’s also possible to compare the indications given by the different criteria
with the true and known k.

Summarizing, for kK = 1 three matrix A* were randomly and independently calcu-
lated, one of dimension 1 x 20 from a sample of 20 assets for the case p = 20, one
of dimension 1 x 30 from a sample of 30 assets for the case p = 30 and the last of
dimension | x 40 from a sample of 40 assets for the case p = 40.

The ensuing three models are the following:

p=20 Xux20 = faxi Aix20 T Unxoo
p=30 X/t/x30 = f}t’xl ATX30+U}:’X3O
p=40 X;/x40 = fltlxl ATX4O+U]:}X4O

For each model 100 extractions of U* are considered, thus obtaining by 100
replications as many simulated matrices X* for each value of N.

Therefore for k =1, p =20 and N =200, 100 samples of 20 variables X" are
considered and so for each combinations of k,p and N. The same as for k =1 is

repeated for k =5 and for k£ = 10.

To summarize the results and to compare the different methods two quantities
were calculated: the root mean square error and the bias.
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The root mean square error (RMSE) is

1

| o , :
S=(m2<ki~k)>

i=1

k* is the number of factors indicated by the generic method, k is the true number of
factors underlying the simulated matrices X™ and / indicates the generic i—th sample.

Obviously S is calculated for each method and in general method A is better than
method B if Spo < Sg, as S measures the distance between the true k and the empirical
k* and so the smaller S the better approximation of k one obtains through £".

The bias

100
>k
D=2k
100

indicates the direction of the RMSE and is negative when the method underestimates
the true number of factors and positive when & is overestimated.

The bias is calculated in order to complete the informations about the distribution
of the k™ around k. indeed the RMSE indicates only the distance between k" and k;
information on the sign of this deviations is shown in the bias.

In what follows the results related to the simulation are illustrated. In order to
make the exposition easier the different methods are assembled by «family»: first the
Akaike’s information criterion and his variants, second the information criterion of
Hannan and Quinn in four different forms. Finally a conclusive table contains the
best of AIC’s, the best of HQ’s and the other methods.

Starting with the formulations of Smith and Spiegelhalter, the results obtained by
transforming the AIC in:

AIC3 = —2 logmaxL+3h
and
AIC4 = -2 logmaxL+4h

are not particularly good, because AIC3 and AIC4 generally converge to the true value
k more slowly than AIC.

The following tables show Sajc, Saici, Saica, Daic, Dajcs and Dajcs for the
different cases considered.
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In this and the next tables the values below 0,05 are set to O.

When k = 1, AIC3 and AIC4 are slightly better than AIC, even if AIC doesn’t
strongly depart from the true k. Beside, the dimension p of the simulated matrices
doesn’t seem to influence the results.

Table 1
Values of S (RMSE) and D (Bias) for AIC, AIC3 and AIC4 when k=1
k=1 AlIC AIC3 AlC4
N p=20p=30p=40|p=20||p=30|p=40||p=20|p=30|p=40
1001 S| 03 0,3 0,3 0 0 0 0 0 0
D| 01 0,1 0,1 0 0 0 0 0 0
20008 04 0,3 0,2 0 0 0 0 0 0
D| 0,1 0,1 0 0 0 0 0 0 0
1000 S| 05 0,5 0,5 0 0 0 0 0 0
D| 02 0,2 0,2 0 0 0 0 0 0
50001S, 04 0,5 0,5 0 0 0 0 0 0
D| 0,1 0,2 0,2 0 0 0 0 0 0
Table 2
Values of S (RMSE) and D (Bias) for AIC, AIC3 and AIC4 when k=5
k=1 AlIC AlIC3 AIC4
p=20p=30|p=40|p=20|p=30|p=40|ip=20|p=30|p=40
100/S| 10 | 04 | 1,0 | 26 | 1,6 | 29 | 33 | 28 | 40
D| -0, 0 -0,5 -25 -13 -2.8 -33 -28 | —4,0
2000S| 05 0,6 04 1,1 0,1 0,2 1.9 0,8 0,5
D| -0,1 0,2 0,1 -0,9 0 0 —V1,8 -0,5 | 0,3
1000 S| 04 0,3 0,3 0 0 0 0 0 0
D| 02 0,1 0,1 0 0 0 0 0 0
5000 S| 06 0,4 04 0 0 0 0 0 0
D| 0,2 0,1 0,1 0 0 0 0 0 0
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When k=5, AIC3 and AIC4 are initially much worse than AIC but, by increasing
N,AIC shows a tendency to overestimate the number of factors and, on the contrary.
AIC3 and AIC4 converge to the true value k = 5. Furthermore, getting from 20 to 40
variables, the true value of k is more easily detected.
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Figure 1. Number of samples (p = 30) in which AIC, AIC3 and AIC4 indicate

k* =5 when k=5.
Table 3
Values of S (RMSE) and D (Bias) for AIC, AIC3 and AIC4 when k=10
k=10 AlIC AlIC3 AIC4
N p=20p=30||p=40|lp=20|p=30|p=40|p=20||p=30|p=40
100 § 2.8 2,6 1.8 5.8 6,3 5.5 7,8 8.1 7.2
D| -25 -23 -14 -5,7 -6,2 -54 -7,8 -8.1 7.2
2001 S 1.1 0,7 0.4 2,3 2.1 1.7 3,9 4.0 39
D| -0.8 -0.2 0 =221 —-19 -1,5 =37 -39 | =37
1000{S|{ 03 0,3 0,4 0,1 0 0 0,1 0 0
D| 0,1 0,1 0,2 0 0 -0 0 0 0
5000( 8| 03 0.5 04 0 0,2 0 0 0 0
D| 0,1 0,2 0,2 0 0 0 0 0 0

When k = 10 the situation of k =5 is repeated and AIC seems to be generally better
than AIC3 and AIC4 which strongly underestimate the number of factors.
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As for variations of o in AIC, variations of ¢ in Hannan-Quinn criterion bring to
different methods

HQ!l = -2logmaxL+2h loglogN

HQ2 = -—2logmaxL+2h?2loglogN
HQ3 = -2logmaxL+2h3 loglogN
HQ4 = -—2logmaxL+2h4 loglogN

and the relative results are illustrated in the following tables.

Table 4 )
Values of S (RMSE) and D (Bias) for HQ1, HQ2, HQ3 and HQ4 when k=1
k=1 HQl HQ2 HQ3 HQ4
N /;:20!/):30![7:40 p=20lp=30|p=40 p=20|p=30|p=40 p=20|p=30|p=40

100§ 1.8 22 2.7 0 0 0 0 0 0 0 0

D 1.3 1.6 2.1 0 0 0 0 0 0 0 0

2001 S 1.2 0.9 1.1 0 0 0 0 0 0 0 0 0

D| 08 0.6 0.7 0 0 0 0 0 0 0 0 0

1000 S| 0.5 0.6 0.6 0 0 0 0 0 0 0 0 0

D{ 02 0.3 0.3 0 0 0 0 0 0 0 0 0

5000| 8| 03 0.3 0.2 0 0 0 0 0 0 0 0 0

D| 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0

When £ = | only HQ! shows difficulties in detecting the only factor and HQ2. HQ3
and HQ4, even with only 100 observations, perform adequately.

_ Table 5§
Values of S (RMSE) and D (Bias) for HQ1, HQ2, HQ3 and HQ4 when k=5
k=5 HOQI HQO2 HQ3 HO4
N ])=ZO]]J=3O p=40|p=20|p=30| p=40 p:20lp=30[p=40 p=20]p=30]p=40
100§ 1.3 2.8 5.7 2.6 1.7 23 36 3.0 4.0 39 33 4.0
D| 07 1,6 5.7 -2,5 -1.4 -22 -3,6 -3.0 -40.] -39 -33 | -40
2001S| 07 1.4 1.3 1,3 0.3 03 2,6 23 1,1 33 3.0 1.9
D| 03 09 1.0 -1,2 -0,1 -0.1 -2.5 -2,1 -1.0 -33 -30 | -19
1000 | S 0.5 0.4 0.5 0 0 0 0 0 0 0.2 0 0
D| 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0
5000 | S 0.4 0.2 0.2 0 0 0 0 0 0 0 0 0
D| 0.1 0,1 0 0 0 0 0 0 0 0 0 0

417




Figure 2.
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cate k* =5 when k=5. '

When k =5 the indications of HQ2,HQ3 and HQ4 are more differentiate and HQ2
seems to converge to the true value £ more quickly than the other types of Hannan-
Quinn criterion. When a larger number of factor is present in the model, HQO1’s
goodness improves sensibly.

Table 6
Values of S (RMSE) and D (Bias) for HQI, HQ2, HQ3 and HQ4 when k=10
k=10 HQI HO2 HO3 HO4
N p=20|]1=30|p=40 p=20|p=30|p=40 p=20|p=30‘p=40 ]7:20‘17:30'11:40
1001S| 16 0.9 09 6.1 6.4 5.6 8.4 8,7 79 9.0 9.0 8.8
D| 1.1 0.2 0.7 =59 | =64 | =56 | -84 | =87 | =79 | =90 | 9.0 | -87
2000S] 09 0.7 0.7 2.7 2.5 24 6.1 5.9 5.7 7.9 8.6 7.3
D| -04 0,4 0.5 =26 | -24 | =23 | 60 | =59 | =57 | =79 | -85 | -1.2
1000|S| 0.3 0.4 0.4 0 0 0 0.3 0 0 0.9 0.3 0
D} 0,1 0.1 0,2 0 0 . 0 -0.1 ‘ 0 0 -0.7 | —0.1 0
5000|S| 0.2 0.4 0.2 0 0 0 0 0 0 0 0 0
D| 0.l 0,2 0.1 0 0 0 0 0 0 0 0 0

When k = 10 the situation of k =5 is confirmed for HQ2,HQ3 and HQ4; yet HQO1
seems to be better than HQ2.
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The results related to Akaike’s, Hannan-Quinn’s (¢ = 2), Schwarz’s information

criteria, cross-validation and log likelihood ratio test are reported in the following
tables.

Table 7
Values of S (RMSE) and D (Bias) for AIC, HQ2, SCH, CROSS and LR when k=1
k=1 AIC HQO2 SCH CROSS IR
N p=20 I p =30 l p=401l p=20 l p =30 | p=40ll p=20{ p=30}{ p=40} p=20 I p =30 | p=40| p=201} p=30 i p =40

100] S 03 03 03 0 ] 0 0 1] 0 ] 0 0 0.4 03 08
D 0.1 n1 0.1 0 0 0 0 0 0 0 4] 0 0.1 0.1 03
2001 S 04 0.3 0.2 0 - 0 0 0 0 ] (A1 0 0 04 0.3 04
D 0,1 0,1 0 ] 0 0 0 0 0 0 0 ] ol 01 0.1
10001 S 0.5 0.5 0.5 0 4] 0 0 0 0 0 0 0 04 03 0.3
D 0.2 0.2 0,2 0 0 0 0 0 0 0 0 0 0.1 ol 0.1
S000 | S 04 0.5 05 0 0 0 0 ) 0 0 0 4] 0.3 0.2 0.1
D 01 02 0.2 0 0 0 ] 0 0 0 0 0 0,1 0 [

It’s interesting to note how with k = 1 Schwarz’s information criterion, cross-validation
and log likelihood ratio test statistics, as AIC and HQ2, can detect the presence of
the only factor with a satisfactory performance.

Table 8
Values of S (RMSE) and D (Bias) for AIC, HQ2, SCH, CROSS and LR when k=5
k=S5 AIC HQ2 SCH CROSS IR
N p=20 I p=30{l p=40| p=20 | p=30 I p=40 | p=20 [ p=30 | =40l p=20]l p=30{f p=40{[ p=20][ p=30 i p=40

wo|s| 10 04 10 26 17 23 36 30 40 18 06 12 Lo Il 23
D| -07 0 05 | -25 | —14 | —22 | -a6 | -30 | —a0 | -4 | 02 | o8 | -14 | —08 | 07
w0(s| os 0.6 04 13 03 03 28 26 13 07 0 0.1 10 0.7 05
D| 01 | 02 0.1 —12 | -1 | 01 | -28 | -26 | <12 | 04 0 0 —0.6 0 0
o0 | s | 04 03 03 0 0 0 o1 0 0 0.1 0 0 04 03 03
D 0.2 0.1 0.1 0 0 0 V 0 0 0 0 0 ] 0.1 0.1 0.1
so00 | s | o6 04 04 0 0 0 0 0.1 0 0 0.1 0 12 02 03
D| 02 0.1 0.1 0 0 0 0 0 0 0 0 0 04 0 0.1

When k =5, AIC and cross-validation seem to be the best methods and they converge
to the true value more quickly than the other ones.

Schwarz’s criterion shows an evident tendency to underestimate the true number
of factors.

419



Table 9
Values of S (RMSE) and D (Bias) for AIC, HQ2, SCH, CROSS and LR when k=10

k=10 AIC HQ? SCH CROSS LR
N p=20 | p=30 l p=40{ p=20|f p=130 I p=401 p=20 l p=30 l p=40]p=20]Jp=30]{p=40][ p=20 l p=304 p=40
s 28 26 1.8 6.1 6.4 5.6 85 87 79 36 4.1 35 32 3 2,6
D] -5 =23 ~14 =59 —6.4 —5.6 -84 -87 | =79 -3.0 —3.7 =31 -3.0 A
200(S 11 07 04 27 25 24 6.7 6.5 5.9 i 11 0.6 [ 1 11
D| -08 -0.2 0 =26 -24 -2.3 —6.6 -64 =59 -0.7 ~-0.6 -0.2 =11 -0.9 -0.9
1000 | S 03 03 04 0 0 0 0.7 0 0 03 o1 0 0.5 0.2 0.2
D 0.1 0.1 0,2 0 0 0 -0,4 0 0 0.1 0 0 0.2 0 0.1
50001 S 0.3 0.5 0.4 0 0 0 0 0 0 0, 04 [} .o 0.2 0.2
D 0.1 0.2 02 0 0 0 0 0 0 0.1 0,1 0 1.0 0 0

When k = 10 the situation for k =5 is repeated again and A/C and cross—validation
are the best methods.

4. THE NUMBER OF FACTORS IN THE FINANCIAL MARKET

The choice of the number of factors represents a crucial point in the theory of
financial markets and especially in two of the most important assets returns models.

On one side the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and
Lintner (1965) assumes that only one factor can explain the assets returns; on the

other the Arbitrage Pricing Theory (APT) of Ross (1976) states that k factors underlie
the market.

Following the CAPM the return of the i—th asset is characterized by

E(r))=ro+ (E(rm) —ro) Bi

ro is the risk free rate;
where ry 1 the return of the market portfolio;
Bi = cov (ri,rm)/var(r;).

The resulting market model is

rie = O+ Bi rme + €t

where { a; = (1= Bi)ro:

€; 1S an error term.
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The APT assumes that the generating model of the i—th asset is

k
E(r)=ro+ Y, Aijy;
J=1
where y; is the premium for risk associated with the factor j and the coefficients A;;
are estimated from the model

k
rip = E(r,~) + Z A,’_,’ f_,', + U
=1

{ fjr 1s the value at time ¢ of the latent factor j;
where o
u;; is an error term.

In order to discriminate between CAPM and APT it is necessary to determinate
the number of factors; and this is the aim of this paper.

5. CONCLUSIONS

In this paper a simulation study is performed to compare different methods for
choosing the number k of factors in a factor model. The definitions of considered
methods are given in the next table 10, in which the last column contains the average
percentage of successful indications, while in the second the average RMSE is reported

i

o 36 | 100 2
S=— — ¥ (k; —k)?
100;(, )

36k,N,p
with k = 1,5,10; N = 100,200, 1000,5000; p = 20,30, 40.

Cross-validation indicates the true value in 76,9% of cases and. with the AIC
(70,5%), it seems to be the most accurate method. Cross-validation and AIC have
also the minimum S value. On the contrary, modifications of AIC don’t improve the
results (Saic < Saics, (Sarc < Sarcs) and the percentage of success gets from 70.5 of
AIC to 69,3 of AIC3 and to 66,3 of AIC4. In a similar way, modifications of HQ don’t
seem to produce better indications (Syg2 < Swor, SHo2 < SHo3, SHp2 < SHys)
and the percentage of success gets from 67,3 of HQ2 to 63,9 of HQ3 and to 61,5 of
HQI and HQ4. Values of 3 or 4 for o in AIC and for ¢ in HQ bring to a strong
underestimate of the true value of k. Schwarz’s information criterion, with a 62,7% of
successful indications, also underestimates sensibly the number of factors, particularly
when the number N of the observations is very large. When N increases, Schwarz’s
criterion do not overestimate the number of factors, as other criteria do. The usual
test for the number of factors, the log likelihood ratio test gives 66,8% correct results.
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Table 10

Methods for the determination of k and values of the medium RMSE

Method S | % of success

CV = N*(log |A'A+W| —log |Z|) + N* (tr((A'A+¥)~ ') — p) | 0,55 76. 9
AIC = -2 logmax L +2h 0.63 70.5
AIC3 = -2 logmax L+ 3h 0,90 69.3
HQ2 = -2 logmax L+ 2h2 loglog N 0,95 67,3
LR = N*(log|A'A+ | —log |Z]) 0.81 66,8
AIC4 = -2 logmax L+ 4h 1,34 66.3
HQ3 = -2 logmax L+ 2h3 loglogN 1,64 63,9
SCH = —logmaxL +0,5h logN 1.73 62,7
HQ1 = -2 logmax L+ 2h logiogN 0.98 61,5
HQ4 = -2 logmax L+ 2h 4 loglogN 1,98 61,5
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Figure 3. Number of samples in which AIC indicates k* = I when k=1.
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A further consideration is that the goodness of the different methods is a function
of the number k of «true» factors underlying the simulated matrices.

Indeed in the case of k£ = | all methods analyzed indicate the right value k = |
with the exceptions of AIC, HQ1 and LR. However for AIC and LR the distances
from the exact value are quite small. In the previous picture the results related to
AIC are illustrated: as N increases AIC gets a little worse.

With k = 1, even though the number of observations is only 100, there are already
generally good indications and the dimension p seems to be not particularly relevant.
This result shows how, when the true model contains only one factor, information
criteria and cross validation can detect it with a good precision.

In the case k = 5 the situation is more complex and the number N of the obser-
vations is particularly relevant: asymptotically, indeed, all methods converge to the
true value k = 5. However, it is important to emphasize that AIC and cross-validation
converge more quickly.

The situation for k = 10 is similar to the one for k = 5: AIC and cross-validation
show the best performance.

From the sign of the bias, reported in the next table 11, one can observe how
the minus prevails thus meaning a stronger tendency to underestimate rather than to
overestimate the true number of factors.

Table 11
Percentage of cases in which bias is negative, null or positive

- 0 +
AIC 22 8 70
AIC3 28 72 -
AIC4 33 67 -
HQI 6 - 94
HQ?2 33 67 -
HQ3 36 64 -
HQ4 39 61 —
SCH 36 64 -
cv 28 64 8
LR 25 22 53
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Concluding one can affirm that when only one factor constitutes the factor model
a small number of observations is sufficient to detect it. When, on the contrary, more
factors underlie the observed variables, cross-validation and AIC seem to be the more
appropriate indicators.
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