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A REVIEW OF THE RESULTS ON THE STEIN
APPROACH FOR ESTIMATORS IMPROVEMENT

V.G. VOINOV* and M.S. NIKULIN'

Since 1956, a large number of papers have been devoted to Stein’s tech-
nique of obtaining improved estimators of parameters, for several statisti-
cal models. We give a brief review of these papers, emphasizing those as-
pects which are interesting from the point of view of the theory of unbiased
estimation.
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1. INTRODUCTION

Let we need not an unbiased estimator but an estimator with the smallest risk
_for a prescribed loss function. Much help in the situation gives the well known Stein
phenomenon discovered by Charles Stein (1956). He was the first showed that the
best unbiased estimator for the mean of a multivariate normal distribution can be
improved upon by so-called shrinkage estimators. Since that time, a large number of
papers have been published, proposing classes of improved estimators for different
probability models (see e.g. a monograph by Hoffmann (1992)). We shall give a
brief account of these works emphasizing those questions which are related to the
unbiased estimation point of view.
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2. ESTIMATING THE MEAN VECTOR

Let us start with the problem of estimating the mean vector u = (W, ,Wp)" of
a p-dimensional normal distribution with known covariance matrix equal to identity,
I, under the loss function

0] L{w,0) = (A - W) A(A-p),

where A is a positive-semidefinite matrix, from a single observation X = (X,
X27”' 7X]7)T'

It is known that the observation X itself is a maximum likelihood, minimum
variance unbiased, invariant for a wide class of loss functions and minimax estimator
for p. Nevertheless, this estimator is inadmissible in the sense that there exist other
estimators whose risks are everywhere smaller than the risk of X. To consider such
estimators [1(X) let us follow for a while the Stein’s lectures (1977, 1986). Without
loss of generality the matrix A may be considered to be a diagonal matrix A =
diag (oy,---,0,), where

o 202> 20,20
Estimators {i(X) may be constructed with the help of the following identity
< 2 3 2
() Ey Y oulXi+gi(X) —w]* = E Y ou[1 + g4(X) +2ga(X)],
i=1 i=1

where g = (g1,-+,8p)" is a function from R” to R,

a n
gi(X) = E)—X—,-gi(x)’ gi:R'—=R

and
Eygi(X)| <o, Eugf(X) < co.

A remarkable feature of equality (2) is that the expectand on the right hand side of it
does not involve the unknown parameter L.

The proof of identity (2) is based on

Lemmal

Let Y be a standard normally distributed random variable and g : R — R be an
absolutely continuous on R function such that E|g/(Y)| < . Then

3) Eg'(Y) = EYg(Y).
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Proof

Eg'(Y) = \/——— gye” Tdy~

= { gy)dy/ xe"Tdx - /gy)dy/ erx}
= { e'fdx/g(ydy / e“fdx/g(ydy}

= \/EE{/O (g(x)—g(o))xe_—%dﬁ/_ow(g(x))-g(O))xe—%dx} _

= \/%/_:xg(x)e_%dx:EYg(Y).

ﬁi

To prove (2) we have to prove that
Ey[X; +1(X) —]* = 1+ Ey[gf(X) +2gn(X))-
Assuming the function g; : R* — R to be absolutely continuous by x; and

Eylgn(X) | < e,
then by Lemma 1 .
Eug11(X) = Eu(X; —11)g1(X)
and
(4) Ey[X; +g1(X) —]* = 1+ Ey[g1(X) +2¢11(X)).

It follows from (2) that if

) 3 o4{g2(X) + 2g4(X)] < 0,
=1

then

p p p
Ep Y 04X+ gi(X) — ] < Yoy <EL Y ou(X; — ).
i=1 i=1 i=1
Since inequality (5) does not depend on the unknown parameter |, the estimator

A=X+g(X)
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is everywhere in the parameter space better (in the sence of the smaller risk) than the
usual estimator

0 =Xx.

Thus, the problem reduces to the appropriate choice of the function g satisfying
differential inequality (5).

The first result in this direction has been obtained by James and Stein (1960).
Denoting

P
Xy =Y xvi, Ix|> = x"x
o

(2 .. i)r
V= ox;’  ox,

for the special case A =1 we may rewrite identity (2) as follows

and

(6) Eu[X +g(X) - ul* = p+Eu[|g(X)| +2v"g(X)],
where b 5
v -y B,

i=1
Consider the case when [i is equivariant with respect to the group of orthogonal
transformations of R, i.e. there exists a function 4 : R* — R such that

g(X) = h(IX)X.

In this case (6) gives

7 E X +gX)-p* = p+Eu (X)X +

+ 2ph(X[%) +4X 2K (1X1).
Let c

h(t) = —-

(n=-%,
where ¢ > 0, then for p > 3
¢ c2=2(p=2)c
8 - —ulr=

The right hand side of (8) is minimized by

c=p-—2
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and the minimum value is

— E X =p—(p—2) 2By

This will be less than the constant risk p of the estimator X provided that p > 2. Thus
the James and Stein estimator reads

©) a:(l-%‘;)x.

James and Stein showed that the risk of {1 at (i = 0 under the loss function
L(R,p) = |p-pf

is equal to 2. For p > 2 this is a substantial improvement over the constant risk p
of the estimator (1°. Even for |u|?/p = 2 the estimator (9) gives the risk about 25
per cent lower than that of i° = X at u = 0. Nevertheless, statisticians and users do
not “rush to embrace this considerable improvement ... ” as Efron (1975) said. He
considered several reasons for this fact. The most interesting reason in our opinion is
the following one. “If the different p; refer to obviously disjoint problems (e.g., {1 is
the speed of light, W, is the price of tea in China, i3 is the efficacy of new treatment
for psoriasis, etc.) combining the data can produce a definitely uncomfortable feeling
in the statistician”. The situation seems to be paradoxical, but “if we really aren’t
interested in [y, M3, -+ ,lp, just Wy, then ’

Li(,p) = (1 —m)?
seems to be a more reasonable loss function than |l — p|. It is not true that
Eu(f — ) < Eu(X; —py)?
for all g. As a matter of fact
Eyu (i — w1)*/Bu(X) — )

can be as large as about /p for certain configurations of 3,3, - ,lL, (namely
W = /P,My = --- =, = 0)”. The paradox seems to be disappeared. Since it is
not obvious that the loss function (M, — ;)? is the best one for the situation, the
“uncomfortable feeling” remains. That is why many attempts to resolve the paradox
and to reduce the maximum component risk

R* () = maxEy (fl; — )’

have been undertaken.
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3. THE BAYESIAN APPROACH

The best heuristic explanation of the paradox contains a Bayesian argument. If
the ; are a priori independent N(0,7%), then (9) can be considered as an empirical
Bayes estimator (Efron and Morris (1973)). More details about the relation of the
Stein’s effect to the empirical Bayes approach and related problems readers may find
in Efron and Morris (1976b), Berger and Srinivasan (1977), Haff (1980), Berger
(1982a), Chen (1988) and others. Another explanation interpretes (9) as a smoothed
version of a weighted mean of 0 and 1, i.e. one uses i =0 or fi; = X; depending on
the outcome of the test verifying the null hypothesis that i = 0 (Lehmann (1983)).
An interesting approach to the problem gave Stigler (1990) who had considered Stein
estimation as a regression problem. A simple geometrical argument of the possibility
to improve upon the best invariant estimator via shrinkage estimation have been given
by Brandwein and Strawderman (1990). It is worth to note the work of Beran (1992)
who showed that under quadratic loss the Stein and the positive-part Stein estimators

of u are both approximately admissible and approximately minimax on large compact
balls about the shrinkage point as p — oo,

4. MINIMIZING THE RISK

To this end we would also like to say that actually one should choose such an
estimator which corresponds a goal he pursues. This depends also on what one intends
to do with an estimator. If he needs an unique point estimator it is preferable to use
one which minimizes the risk. If on the contrary he will perform averaging of many
estimators the unbiased one might be the best (see §1, Ch.3 in Voinov and Nikulin
(1993)).

Let X ~ N(f,6°I), 6 known. In this case

-, _(p=2)0*
(10) o= (1 X7 >x.

If 6% is unknown and one possesses an estimator S, of G2 independent of X and
distributed like 622, then (James & Stein (1960))

P (p_z)sn
an h= (“mrx—v)"

In the most realistic situation X ~ N(u,X), X being unknown. Let there is an inde-
pendent estimator S for X, which is distributed as W,_;(s;X), a Wishart distribution.
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James & Stein proposed the estimator

- (. (P-2)
(12) ”“(1 (n—p+3)st-lx)X‘

An explicit formula for the risk of the James and Stein estimator is available in
Egerton and Laycock (1982).
Baranchik (1964, 1970) showed that for X ~ N(u,I) the estimator

2

under. the loss function
L(fi,p) = |i—pl?
dominates fi° if
0<r(IX]*) <2(p-2)

and r(.) is a nondecreasing function.

A more general minimax condition for r(.) has been given by Efron & Morris
(1976a). Let X have a p-variate normal distribution N(it,D), where p is unknown
and D is a known nonsingular covariance matrix. Let d; be the largest eigenvalue of
D. Bock (1975) has shown that for p > 2

. cr(X'D'X)
(14) 0= (1— e )X

is a minimax spherically symmetric estimator for g if 0 < ¢ < 2((trD)dZ! —2) and
r(.) is a monotone non-decreasing function. Some generalizations of the James and
Stein estimator (9) have been summarized by Akai (1988). Considering estimators

b
1 i=(1-—5]X
1) = (1-p)x
where 0 < b < 2(p —2), Akai (1988) showed that the estimator
. b g(X]
1 =|1-=5 X
(16) o= (1~ + S

has under the same loss function as above the smaller risk than that of (15), if r is an
integer such that

r>1land p>2(2r—=1)>b

and g(s) satisfies either condition (i) or (ii):
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(i) g(s)s~'/* is nonincreasing for o > 0, and g(s) is nondecreasing and satisfies
0<g(s) <2 (b= (p—2r+2/a)I(E—n/r(E—2r+1)

foraa>0and b>p-2r+2/a,

(ii) g(s) is nonincreasing and satisfies
0>g(s) >2/(b— (p-2)F(E=n/r(E —2r+1)

forb< p—2r.

Let, for example, g(s) = d, where d is a constant, and b = p— 2. Then the risk of
the estimator )

. p—2 d
an 1= (1- 55 ) %
for
L(A,p) = 3 —p?
is uniformly smaller than that of i° if
I<r<(p+2)/4

and
0<d<2t(r— 1)r(’—2’ - r)/l"(% —2r+1).

Consider the special form

b

)X, a>0, 0<b<2(p-2),

of Baranchik’s estimator (13). Let p > 6 and b = p — 2, then (Akai (1988)) the risk
of (18) under the squared error loss function is uniformly smaller than that of {i° if

O0<a<4(p—-6)/(p-2).
Akai also showed that for p > 6 the risk of

b c
19 i=(1—-—M+ —|X
1 | : ( a+|X|2+|X|4)
for
L(fi,p) = |p—pf?

1s uniformly smaller than that of (18) if the constants a and ¢ satisfy the conditions:
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(1) for b > p—4,
0<a< [b—(p-4)](p-6)
p—4

and .
0cecalt= (=P =62-alp-4)(p-6)
- a+p

(ii) forb< p—4

4> 0amd 0> cs L (P=NP=6—ap=4)(p=6)
a+p

Suppose now that p > 6. Then the risk of

) b h(X]) )
20 ={1-
0 h ( ar X2 @)X

for
L(f,p) = [a—pl”

is uniformly smaller than that of (18) if (s), a and d, satisfy either condition (i) or

(i1):

(i) h(s)(d; +s)~"/* is nonincreasing for o.> 0 and d; > 0 and h(s) is nondecreasing
and satisfies

0<h(s)<2{(b—(p—4+2/a))(p—6)—dp} foro>0,
b>p—4+2/a and a<d <(b—(p—4+2/0))(p—6)/p,
(i1) A(s) is nonincreasing and satisfies

0>h(s)>2{(b—(p—4))(p—6)—dip} fora>d; >0 andb<p—4.

The estimator (9). modifies the usual estimator i° by “shrinking” it towards the
origin, the more so the closer X is itself to the origin. For [X|? < (p—2) the estimator
fl is actually passed the origin in the direction opposite X. If such a behaviour is
undesirable one may introduce the positive-part James & Stein estimator

. X P—2)
21 =(1-222) x,
@b . ( X7 ),

where a; = max(a,0). Baranchik (1964) showed that the estimator (21) dominates
{i, defined by (9). The same is true for the estimator (see (11))

N (P—Z)Sn
@2 b= (1 - (T+‘2W)+X'
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Both estimators are not admissible, but no estimators uniformly better than (21) and

(22) are known. An explicit formula for the risk of the estimator (22) is available in
Robert (1988).

Remark 1. Since all James-Stein like estimators are all inadmissible, there are diffe-
rent approaches for their improvement. The last example of such an improvement has
been given e.g. by Berry (1994), who used for this the improved variance estimator
of variance estimator. The estimator constructed is

where )
=g F2,
r(F) = '
-2
;5;;5(1 +F), F<;k5
and F =| X | /S,.

This estimator dominate the traditional James-Stein estimator (22), but the domi-
nation does not hold for the positive part version of these estimators.

5. OTHER ASPECTS ON THE IMPROVEMENT OF THE RISK

The improvement in the risk obtained by Stein estimators is significant only if p;
are close to the point towards which these estimators shrink. For a heavy-tailed prior
distribution the Stein estimators may give little improvement over {i°. Stein (1981),
Dey & Berger (1983) and Alam and Mitra (1986) gave some modifications of (10)
which help to overcome the difficulty. For example, Alam and Mitra (1986) instead
of (9) proposed the estimator which is given component-wise by

-2
(23) niX) = (1 - (—IL—)) Xi,
T;
where
Ti=(o—1)X +[X|>, a<p/2.

This estimator is minimax and reduces to (9) for o= 1. Due to the term (o — 1)X?
the estimator naturally reduces the maximum component risk

R (W) = max E, (n;(X) — W)
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Alam and Mitra (1986) have shown that the positive part estimator
-2
(24) nf(X) = (1 ——(”T )> X;
i +
dominates M;(X), component-wise.

When 62 is not known and there is an estimator S, of 6% independent of X and
distributed as o?y? the estimator

nx) = (1- L2y

is again minimax for a < p/2. Alam and Mitra (1986) have given explicit expressions
for component risks of (23) and (24).

Let X{,X,, --,X, be i.i.d. N(i,0%V) random vectors, where 1 and 6% are un-

known and V is a p X p known positive definite matrix. Suppose the loss function to
be

(25) L(fin, 1) = (n — 1) Q(fin — 1),

where Q is a known positive definite matrix and i, = 1,(Xy,---,X,) is an estimator
for u. Hudson (1974) and Berger (1976) introduced the following class of James-Stein
estimators

(26) i, = A+ (1—%@Q-1v—‘> (X, —17),

n
~ where A € R” is a preassigned constant to which [i, shrinks the estimator X,
F, = nX,-A)'VI!'Q 'V (X,-1)/S%,

n

;o= [(n—-Dp+2 'YX -X)' V(X -X,), n>2
j=1

Nickerson (1989) has shown that if r(.) is absolutely continuous,
0<r(Fy)<2(p-2)
and
Wn(F) = KR [(20p = 2) = rE) ', ba= (p=2)/((n—1)p+2),

is nondecreasing in F,, then (26) dominates X,, under the loss (25). For every abso-
lutely continuous 7(.) he introduced the positive-part estimator

@7 ot = At (I—’(i)o:‘v*‘> (X =),
F, N
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where

(-52) )]

P is a nonsigular matrix such that PQ~!P" =1 and PVP" =D = diag (d,,--- ydp).
The estimator (27) dominates X,, under the loss function (25).

One may substitute A in (26) and (27) by another estimator 1, of W, then estima-
tors (26) and (27) will shrink X,, towards this arbitrary estimators. The problem of

selecting the [i, has been considered among others by George (1986) and Sengupta
(1991).

Let X ~ N(W,X), where N(W,X) is a p-variate normal distribution with unknown
K and unknown positive-definite covariance matrix . Let there is an independent
estimator S for X, which is distributed as W,_(s;X). Using the loss function

L{E,p) = (A-w)' QA —w),
where Q is a given positive definite matrix, Alam(1977) considered a class of esti-
mators i of U of the form
f=dX'S X)X
for a certain class of functions ®. In particular he has shown that an estimator fi
given by
v RV LB+ E+ 1B+

’1+x)
= X, 0<v<«l,
P PV, 3+ 5+ 18 )

where x = X’S™!X, is minimax if

n— 2 -
2(20(!01)-:):—27”—-2) =55 > %4"123’
with
1rz!/2Qxl/?
pmax (o,...,0p)’
where o.,... ,0,, denote the characteristic roots of the matrix £!/2Qx!/2, -

Berger & Haff (1983) for the loss function

L, ) = (A - )" Q(A — p) /1r(QS)

have considered a class of minimax estimators of L

28) o= (1 - ca(Q'/ZSQ‘/z)h(X’S“X)Q"S") X,
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where o and & are positive real valued functions and ¢ > 0. Berger & Haff (1983)

have given conditions on c¢,0 and 4 under which estimators (28) are minimax and
hence

R(A,1) < R(A%, ).

Simple cases of the above problem under the same loss function have been con-
sidered by Menjoge & Rao (1985).

We see that the class of estimators better than (1% is very large, so it is difficult
to choose the needed one. Berger (1980a) has shown that each estimator better than
09 is significantly better only for W in a small region of the parameter space. Berger
(1982b) proposed a rather simple minimax estimator which allows the user to select
the region where significant improvement over i° is achieved. He described the
region of preferency by an ellipse

{u:(u=1)"A" (-2 < p},

where A is the center of the region and A determines axes and an orientation of the
ellipse.

Let X = (Xj,---,X,)" be distributed as N(u,X), Z being known. It is desired to
estimate W under the loss function

L(,p) =@ - Q(A—mu),

where Q is a known positive-definite matrix. Assume for simplisity that Q,% and
A are diagonal with elements qi,c% and A; respectively. The proposed minimax

estimator is given, coordinate-wise, by
e 2(=2)y
—q; 1, ————= 1,
(q] q_H-l)mjln{ HXJ‘-‘MHZ
where
S J
g = 46}/ (07 +Ap), [IX = M| = ¥ (xi = 1)*/ (07 + A)), gps = O
i=1
and X; are indexed so that g] > g5 > -+ > g,

Naturally, the point A may be thought to be a prior for L and A to be a prior
covariance matrix for X. ‘

Problems of estimating matrices of normal mean where the Stein’s method may
be applied have been considered by Zheng (1986) and Konno (1991).
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It is worth to note that the minimax property of Stein’s rule is preserved not

only with respect to the quadratic loss function but with respect to a generalised loss
function

L(fi,p) = [a—pf*"
too (Alam and Hawkes (1979)).

The Stein effect of improving upon usual estimators of mean of a multivariate
normal distribution is also valid under the classical Pitman closeness criterion. Let
X be N(u,0°V) random vector, where V is a known positive definite matrix while )
and o are both unknown. For a given positive-definite matrix Q define the norm

lx=yllo=(x-y)Qx—y).

One may say that an estimator fi; is closer to | than (i, is in the Pitman sense (in the
norm ||.||q) if

R . 1
(29) PR —mlle < 112 —ullo} = 5
for all g and G2
Consider shrikage estimators of the form

O(X,5n)SaQIVIX

30) H=X-"vTovx

where @ is a nonegative function bounded from above by

(p=1)(Bp+1)/(2p)

for every (X,S) and a statistic S, is independent of X and distributed like m~'c2y2,.
Sen, Kubokawa and Saleh (1989) have shown that the estimator (30) is closer to n
than X in the Pitman sense (29) (see also Keating and Mason (1988) and Strivastava
(1993)). James and Stein (1992) have formuated the general problem of admissi-
ble estimation with quadratic loss and considered some problems of admissibility of
Pitman’s estimators. They have formulated also some unsolved problems.

The Stein approach is useful not only for estimating the unknown vector of means
W if X ~ N(i,Z) but for estimating the unknown covariance matrix ¥ as well. The
usual best invariant unbiased and minimax estimator of £ is £, =S/(n—1). It is
known that the sample eigenvalues of S tend to be more spread out than the population
eigenvalues of Z. This fact suggests to search estimators of £ whose risks are smaller
than that of 5. Dey and Srinivasan (1985, 1986) (see also reeferences there in)
obtained some improved estimators of £ under the Stein loss function

(31 L(E,Z) = tr(ET7") — logdet(£x~) — p.
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They considered the class of orthogonally invariant estimators
32) £=Ro(L)R,

where S = RLR” with R the matrix of normalized eigenvectors (RR" = R'R =),
-L = diag (/;,h,---,l,) is the diagonal matrix of corresponding eigenvalues with

ll Z 12 Z Z lP and (P(L) = dlag ((PI(L),(P2(L)’ a(pp(L))

For an estimator 3 of the form (32) the loss function (31) reduces to

(33) LE,Z) =tr(EZx7") - i log@;(L) + logdet(Z) — p.

i=1

Since the last two terms in (33) are constant it is sufficient to consider the risk as
follows

14
(34) R*(%,Z) =Eg {tr(iz—‘) - Zlog(pi(L)} .
i=1

Having obtained the unbiased estimator of R*(£,X) and its upper bound, Dey and
Srinivasan (1985) have shown that the estimator (32) for p > 3 and

(Lilogl;)t(u)

li
(p,(L)—;— b+u

b i:1727"'?p7
where

)4
u=Y log*l, b>144(p—2)*/25k%,
i=1

and t(u) is a function satisfying:
(i) 0<t(u) <2(p-2)/k*, k* = 5K*/6;

T is monotone nondecreasing in u and E[t'(u)] < o, dominates 3, for the loss
function (33). Dey and Srinivasan (1985) gave another estimators of T whose
risks are smaller than that of the considered one. For orthogonally invariant
estimators (32) the order relation of components of L and @(L) is important. If
their components follow the same order relation the estimator (32) will domi-
nate an estimator which does not preserve this ordering (Sheena and Takemura
(1992)). Perron (1992) proposed a minimax orthogonally equivariant estimator
£ of T which satisfies the ordering and the shrinkage properties. The two sam-

ple analogue of the above problem has been considered by Loh (1991b) (see
Remark 1).

Kubokawa (1989) gave an improved estimator of X under the quadratic loss
function
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(35) LE,Z) =tr(EZ-1)%

He has shown that

T : TQ—1 _
(36) i={b(S+XX) if X'S™'X < (ag—b)/b,

apS otherwise ,

where
(n+2)ap/(n+3)<b<ay, ap=1/(n+p+1),

dominates 3 under the loss function (35). Dey, Ghosh and Srinivasan (1990) have
considered the problem under a loss introduced by Efron and Morris (1976b).

In the multiple linear regression model containing more than two explanatory
variables with normally distributed disturbances, the least squares estimator for the
coefficient vector is inadmissible under a quadratic loss function.

Srivastava & Srivastava (1993) using the Stein-rule proposed the estimator which
dominates the least squares estimator under a general convex loss function.

The Stein’s effect is useful not only when estimating parameters of a multivariate
normal distribution but for estimating parameters of some univariate and many other
multivariate distributions including their mixtures too.

Bravo and MacGibbon (1988a) proposed James-Stein estimators for the parameters
of an inverse Gaussian distribution. Bravo and MacGibbon (1988b) and Srivastava
and Bilodeau (1989) constructed minimax Stein’s like estimators for the mean vector
W under loss functions of the type (1) if an observation X is distributéd as a scale
mixture of normal distributions. The spherically symmetric case has been considered

by Brandwein and Strawderman (1990), Ralescu, Brandwein and Strawderman (1992)
and Cellier and Fourdrinier (1992).

Consider the problem of estimation of a common location of several exponential
distributions with unknown scale parameters. Let {X;,}, j=1,2,...,n;,i=1,2,...,p,
be a sample where

1 Xij—H -
37 Xij ~ aexp [_—’JES,—] »o X2 W, Vi

The problem of estimating the common location p of the model (37) arises, e.g.,
in life testing, survival analysis, etc. It is known that the set of complete sufficient
statistics for W,01,0,...,6, is Z,T},Ts,... ,Tp, where
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zZ = mi X = in X:
1< ilns p Y l?ilgp iy

1<j<n

ni

Y (Xi;-2), i=12...,p.
j=1

T;

The MLE [i and the MVUE [i are given by (Ghosh and Razmpour (1984), see
also, B_ordes, Nikulin, Voinov (1994))

-1
38) p=z, a=Z—(2M> .

Introducing instead of 7; the statistics

i

T}*SZ(XU—X,'“)), i=1,2,...,p,

j=1

assuming that the sample sizes ny,... ,n, are all equal n > 2 and denoting

Ak

a

M-~

=nc
i

(1/T7)

1

Pal and Sinha (1990) proved that the estimator
(39) fir=z-@)™"
dominates the MLE i = Z for every ¢ > n/2 under the squared loss
L(R, ) = (B¢ —w)?.
It dominates [I whenever
p>4andn>5S,orp=3andn>4, or p=2and n>3.

The same is true for the Pitman’s criterion of nearness. All the same hold in the case
of unequal sample sizes (Pal and Sinha (1990)).

Berger (1980b) developed a technique for improving upon inadmissible estimators
of parameters for a class of continuous exponential distributions.
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Let X = {Xj,...,X,} be a sample, where X ~ f(x;6) and the loss function in
estimating g(0) by 8(X) is L(8(X),g(0)). Following Stein Berger used for the risk

R(3(X),8(6)) = EoL(3(X),g(6))

the representation

(40) R(6,6) = /L(S(x),g(@))f(x;e)dx = /Q)(S(x))f(x;e)dx
where a function D(8(x)) involves 8(x) and its derivatives but not 8. Comparing an
estimator 8*(X) with the usual one 8°(X) one should solve the inequality
R(5",8) — R(8,0) = E¢[D(8" (X)) — D(8°(X))] < 0
for all 8. The problem thus reduces to solving the differential inequality
(41) D(8*(x)) — D(&°(x)) < 0.

Let X;, i =1,2,...,p, be independent random Gamma variables with probability
density function

(42) F(x:;6;) = 8%V e~5% IT(0r), ;> 0,0<6; < oo,

and we want to estimate the vector

(67,67 ",...,8,")" by 8(X) = (8,(X),82(X), .. ,8,(X))’

with the loss function

(43) L(3,0) = Ze'" -8i(X)8)%, mez, 8§=(6y,...,6,)".

Solving inequality (41) for m = —2,—1,0 and 1, Berger (1980b) obtained estima-
tors 8'(X), which for p > 2 or 3 under the loss function (42) are uniformly better
than the standard estimator X

(X)) =
o;+1
of G,." for the loss

67(1-86)% i=12,...,p.

In the case m = —2 e.g., which corresponds to the usual sum of squares error loss
the estimator .6*(X) is given component-wise by
(44)

. X (o —1)(oy + 1)2/X? 2c(0y+1)8/x?
o (X) = ,+1<1+[b+2 a,+14/X2]+[b+2§’=1(aj+1)4/xj2]2>
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0<c<d4(p-1), p>2,b>(c*/4)(1+ 1/minc;).

The Berger’s estimators 8*(X) for different values of m are completely different
in their functional form. Das Gupta (1986) and Bilodeau (1988) obtained a new class

of estimators for (91“l .65 b 8, 1T under the more general weighted loss function

0) = 3wl (1-8(x)8)%  (w > 0,m; #0).
i=1

All these estimators possess the same functional form. Bilodeau (1988) showed that
for p > 2 the estimator

5) BX) = X (1 ax),

where

14

. : -m;/2

(%) = ~k(signa) X" [T X, ™"
j:

and A _
'_I“((x,-+2+'"3k—2m[§ _l"(a,»+1+—i 5"&)
l (0i+ DT (0y) (o)
uniformly dominates
M (X) = —— fi k < 2MDp/KB
i (X) P or0<k< p/KB,
where m
(o - 37 wi | A | T(ay)

_ 2 o
v=T1 (o) b mim(ai_'_])r(ai_%),

P w,»I“oc»+2+m,~—ﬂ 4 I‘a,»—ﬂ
k=Y o ,,,.”)andB=H~(——”).
- (0‘:‘+1)2r(0‘i—;‘) i1 (o)

Dey, Ghosh and Srinivasan (1987) using the Berger (1980b) technique obtained
for the probability model (42) different classes of shrinkage estimators dominating
for p > 3 the UMVUE

8O(X) = (Xl/al,XZ/an "'7XP/(XP)T

which is usual for the loss function

N

L(8,8) = Y (5; —log(8;(X)6;) — 1)

i=1
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being taken by Dey et al.

A remarkable Stein’s approach for estimators improvement proves to be useful
for simultaneous estimation of location parameters of distributions with finite support
too. Akai (1986) considered probability density functions which are positive on a
finite interval, symmetric about 6; and have the same variance. He obtained a class of
shrinkage estimators of the location vector 6 = (6, ...,OP)T under the squared error
loss function. In particular, explicit dominating estimators where the distributions of
X;’s are mixture of two uniform distributions were given.

A large amount of work is devoted to the application of Stein’s ideas for shrinkage
parameters estimation in multivariate discrete distributions. Ghosh, Hwang and Tsui
(1983) constructed estimators which dominate the UMVUE under a weighted squared
error loss function shrinking the UMVUE towards a prescribed nonzero point or a
data-based point. Let, for example, X;, i = 1,2, ..., p, be independent negative binomial
random variables and

ri+x—1
r,~—l

P(Xi=xi;9i)=< )Gf'(l—ei)’i, xi=0,1,...

The UMVUE &°(X) = (8)(X), .., 8%(X))" of vector 8 = (8y,...,8,)7 is (see §A25 in
Voinov and Nikulin (1993)) the vector with components

(X) =Xi/(Xi+ri=1).
Denoting N(X) = #{i: X; > A;}, where A= (A,...,A,)T is above mentioned prescribed
point, Ghosh, Hwang and Tsui (1983) showed that estimators
(46) 8i(X) = 8 (X) — c[N(X) — 2] Hi(X;) /D,
where
Xi

) .
D = ;dj(xj)’ hi(X) =Y (i+ji—1)/j, Hi(X:) = hi(X;)—h(N),
J=1

Jj=1
di(X;) = H2(X) + bH(X:) if X >\,
ST L H(X) +a it X <A
a, = r,-{3h,~(7»,~)/2— 1}+ and bi = (ri+}"i+ 1)/(x,+2),
for 0 < ¢ <2 and p > 2 dominate the UMVUE &°(X) under
)4
L(8,8(X)) = X (6: — &i(X))>.
i=1

Many results conserning the improvement upon MVUEs for discrete probability distri-
butions parameters and functions of them including densities with dependent marginals
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may be found in Tsui (1986), Kant and Sharma (1986), Chou (1991) and Dey and
Chung (1991).

In order to finish this review, we would like to add two more remarks concerning
this topic.

Remark 2. The main feature of Stein’s technique for estimators improvement con-
sists of a representing a risk function as an expectation of a function which does
not involve unknown parameters. There exists another approach to the problem with
the same idea to work with expressions independent on parameters. If there exists a
sufficient statistic for unknown parameters we may construct, if exists, the unbiased
estimator for a risk function and then to use it for estimators improvement. This
technique has been used among others by Haff (1980) and Loh (1991a). Loh (1991b)
considered the following problem.

Let S and S, be two independent p x p Wishart matrices where Sy ~ W, _(s1;Z;)
and Sy ~ W,,,_;(s2;%2). The problem is to estimate (£;,%;) under the loss function

2
47 L(21,2:51,%) = Y {rr(Z7'E:) — logdet (27 '%:) — p}).
i=1

Loh (1991b) considered estimators invariant under the group of transformations
(48) i+ ALAT, S, 5 ASAT, VAeGL(p,R), i=1,2,

‘where GL(p,R) denotes the set of all p x p nonsingular matrices. He proved that the
estimator (X},X) is an equivariant under transformations (48) estimator of (£;,%;)

- 1iff

£1(51,82) =B '¥(I-F)BN ',
49) £,(51,8;) = B~ 'o(F)BT)™,
B(S;+S,)B" =1, BS,B” =F,

where ¥ and @ are diagonal matrices, F = diag(fi,..., fp) with f; > ... > f,. Denote
VO = (V) ,up 1<jk<p, i=12,

where . 3
0 _ , _J L j=k 5. — (g0
V""‘E(HS"‘)aST’ 5,‘1:—{07 £k, Si = (Si)s
Jjk

55.2, 1 < j, k < p, being elements of §;, i =1,2. If matrices

¥ = diag(yy, ..., ¥p) and ® = diag(¢y,...,0p)
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satisfy the Wishart identity in the sense that
(50) Eu ('8 =Eu2VOE) +(m—-p-1S7'8), i=1,2,

then the risk of (£,,%,) with respect to the loss (47) is given by

o e Lon—p-—1 d
RE) 220, %) = BIX [ —wi- 2w Y Loy 2ig s
i=1 !

I;é/f' f] )
yi m-p-l 1-j oi
! i+ 20, 420+ 2(1 - f) 52~ log
gyt 0t ,;;f, 0i +2( f)af, g
(51 108Xz, —i+1 — 108Xn,—i+1 — 2]} = ER(E1, 25,21, 5y).

The estimator R(£,,%,;%,%,) being dependent on complete suff}cieﬂnt for parameters
%,,%, statistic (S1,S,) (see (49)) is the UMVUE of the risk R(X},2,;X,%,).

To construct the Stein-type estimator for (X£,%;) one should now to minimize the
UMVUE R(%,%,;%,%;) to obtain elements WT,...,\V; and 07,...,¢;, of matrices ¥

and @ respectively which give minimum to R(.). By ignoring the derivative terms in
R(.) and solving equations

oR(.) -0 oR(.)
; T 00
Loh (1991) obtained approximate values of y7,¢;, i=1,2,...p, as follows

=0, Vi,

vi o= (1—ﬁ)/[nl—p+1—2sz(1 f')}

i#j fi fl
. fill=f;) .
o = ﬁ/[n— —1+2 ,} i=1,..p,
i 275,

where 0 <y < ... <V, ¢ > ... > ¢p > 0. Substituting y; and ¢, i =1,...,p,
into (49) we obtain a Stein-type estimator (£;(S;,S,),2,(S1,S,)) for (£;,Z,). Loh
(1991a) have also shown that natural ordering of ¢,...,¢, may be altered by Stein’s
isotonic regression technique.

Remark 3. The uniformly minimum variance unbiased estimation technique is use-
ful not only for a total risk estimating to improve estimators, but for estimating the
mean-squared-error matrix as well, since the last estimator is helpful in identifying
the components of [I which contribute most to the total risk.
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Let X ~ N(1,X), i and X being unknown. Let S be an estimator of X independent
of X and S ~ W,_;(s;X). Considering the class of estimators

N k 2(p—2)
““”(1 sz-lx)X’ O T &

Bilodeau and Srivastava (1988) have shown that the MVUE of the mean-squared
matrix

M) = (s — ) (s — )7
1s given by

. 2k S 4(n+1) xx7
M) =|1- = ) = k 5
(1) (1 sz—lX> n +k( +n(n—p+3)) (XTS-1X)?

It is this estimator which allows to determine “risky” components of {i;.
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