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FURTHER DISCUSSION ON
SECOND-ORDER EFFICIENCY FOR
ESTIMATION

S. EGUCHI*

This paper is concerned with parameter estimation in a curved ezpo-
nential family. A further discussion is given in the class of second-
order-efficient estimators for the third-order optimality. An adjus-
ted risk function equivalent to the information loss in the sense of
second-order is proposed, and the optimality structure of third-order
asymptotical behaviors in terms of this risk function is discussed.
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1. INTRODUCTION

Let g be a curved exponential family of dimension m, that is, g has an em-
bedded form {(u):u € U} by m—parameter u in the n—coordinate (canonical
parameters) § which expresses an exponential family with the density as

f(z,0) = exp{*z0 — ¥(9)}.
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In a problem of estimation for the parameteres u Fisher (1934) is the first that
challenged to proving the second-order efficiency of the maximum likelihood esti-
mator (MLE) in the sense that the MLE attains asymptotically the lower bound
of information loss in reducing from a sample to an estimator. This theorem has
been proceeded to the deep discussion by Rao (1961, 1962), Ghosh and Subra-
manyam (1974), Efron (1975), Amari (1982) and Eguchi (1983). In the story
Efron shed a geometric light onthe proof with the fairly complicated calculation.
Amari (1982) extended this methodology to a case of a multi-parameter family
with a standard terminology in differential geometry. He also originates a new
geometry beyond the Riemannian geometry in a wider framework with broad
applications to mathematical sciences including system theory, coding theory
and neural network theory. Barndorff-Nielsen (1984) presented the observed
geometry with a unified look at the likelihood and conditional principles and
has advocated the p* formula.

In this paper we consider a further discussion on second-order efficiency.
A construction of a wide class of second-order efficient estimators by minimum
contrast method was given in Eguchi (1983, 1985). In particular a one-parameter
family of second-order efficient estimators is proposed and compared with the
maximum likelihood estimator in the real data related with genetics. This fact
leads to an explicit motivation to investigation of third-order asymptotics in
the class of second-order efficient estimators. Thus we wish to present further
optimality in the class of second-order efficient estimators, proposing an adjusted
risk function equivalent to the information loss in the sense of second-order. As
a main result we show the structure of third-order asymptotical behaviors in
terms of this risk function.

2. MAIN RESULT

Let ;,...,x, be a sample from a distribution in a curved exponential fa-
mily as given in Introduction. We restrict an estimator @ of the parameter u

to a function of the canonical statistic T = 1 Zzi, say, u(Z), with Fisher-
n

consistency, or %(n(u)) = u(Vu € U), where n(u) = E [Z]. Then we define the

ancillary subfamily associated with @ as

A(u) = {f(-,0)30 = 0%¥(n), u(n) = u}.

Thus we can take a local coordinates (u, v) fo the enveloping exponential family
such that u designates the submodel g when v = 0 and that v does the ancillary
subfamily A(u) since A(u) is transverse to ¢ at the true density f(-,6(u)).
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Accordingly we can obtain the ancillary component % satisfying n(#,4) = &, or
equivalent to £ € A(4).

The information loss from the sample to the estimator @ is defined as
A, u) = nly — Iy with the information matrices nly and Iy with the sam-
ple and #, respectively. Assume that @ is first-order efficient, or equivalently
limp 0o A(tt,u) = 0. Let {e*:1 < a < m} and {e*:m +1 < A < n} be the
tangent bases of o and A(u) induced to the total space {e;:1 < i < n} with
ei = T — 7i(u). Then {e*} is also a basis of the normal space of g because of
the first-order efficiency, or equivalently the orthogonality of A(u) with g that

ea = Bi(u)e; and ey = Bj(u)e;,
where Bi(u) = 86*(u)/0u® and Bi(u) is an orthogonal matrix satisfying
B (u)g:;(8(u))Bi(u) =0 (a=1,...,m)

with respect to the information metric Gg) = [gi;(6(u))] with gi;(8(u)) =
8?W(6(u))/86°067. The exponential connection I'®) and mixture connection
I'™) have the natural parameter § and the expectation parameter 7, respec-
tively, as affine parameters in the exponential family with relation to the trans-
formation n = 0®(9)/09. Hence the embedding curvatures H(™) and H(® to
the model g with respect to I and I are written as componentwise

I?g';:\) = Bf\(u)abBa,-(u) and ﬁgzz\ = BAi(U)abe;(U)

where 0, = 0/0u® and By;(u) = 8,m;(u). Similarly the embedding curvatures
H™) and H(® to A(u) are

ﬁ§T3=BZ(u)6MBM(u) and A

Aua = Bai ()0, B} (u)

where 0y = 8/0v* and By;(u) = Bﬁ(u)gij(G(u)). A characterization of second-
order efficiency on the basis of the proposed risk function,

R(is,u) = E {'fé - n(@)Gy2 & — n()]}
is given in Eguchi (1984). The minimization of R(w,u) in an estimator @ is
shown to be equivalent to second-order efficiency. In a standard theory of li-
near regression R(u,u) is referred to as the residual sum of squares. Thus the

risk measures the fitness of @ into #. Note that the risk function R(#@,u) is
decomposed into

Rian(@t,u) = E {[2 — n(@)|P(w)[& — n(a)]}
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and

Rnor(,u) = E {![z — n(4)]Q(u)[z - n(a)]},
where P(u) and Q(u) denote the projection matrices onto the tangent space and
the normal space of the subspace g at 8(u), respectively. The characterization

result follows that a first-order efficient estimator u has the residual vectors
expanded as

ra = Bi(n(@) — () = eo + A = SHGIen
and
r = By(n() - n(u)); = e ~ g AGYe e,
This expression leads to

. 1 )4
Rtan(‘ll., u) = -]W I

1 . 2
- H(m)“
t e ”

and

1, - JRTINTE
_ (g™ __| (m)“ _
m) + 25 (A, T) + = |/

Rnor('& ) u) =

"

Hence the dependency of 4 in the risk R(, u) is confined only to || H(™)||2/(4N?)
since the terms expressed by H(¢) and H(™) depend only on the model ¢. Thus
the minimization of R(w,u) among first-order estimators is equivalent that the
embedding mixture tensor H(m) vanishes over ¢, which implies the equivalence
between the risk and the second-order efficiency. In the risk function the normal
part Rnor(%,u) measures the first-order efficiency with the lower band given as
the codimension of g with the order N~!, while the tangent Rian(%,u) does
second-order efficiency with the lower band H(¢) with the order N~2

On the other hand, Rao (1963) discussed the usual mean squared error
E ||&,u||? as optimality characterization of second-order efficiency. By bias cor-
rection of @ the second-order efficiency is interpreted as the minimization of

the mean squared error among first-efficient estimators. The relation of R(u,u)
with E ||@, u||? is given as

Bl = 5+ g [E7] 4 R

where 4" is a bias-corrected version of .. Consequently, we obtain the equiva-
lence of R(w, u)with the mean squared error after bias-reduction since Ryor(t,u)
is independent of u.
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We here return to an elementary case where the model g is itself of exponen-
tial-type, that is, the order of a minimal sufficient statistic is the same with the
dimension of the parameter in ¢, so that n — m = 0. Then we meet some
discordance of the risk function with the information loss A(#,u) as follows:

A, u)=0 but R(a,u)= Niz(ﬁ@"),:r) +4% “ﬁ(m)”2

since the exponential flatness of g does not imply necessarily the mixture flat-
ness.

For cancellation of this discordance we propose a new measures for risk
R*(@,u) = Rean(@, u) + Ryor(i, u)
by modifying Rnor(#,u) into
Rior(it, u) = E'[z — 9(a)]* Q(u)[2 — n(w)]",
where
[& = n(@)]" = & — n(u) - Gy, [6(a) - 6(w)].
Note that if the transformation of # into 7 is affine, e.g. in the case of normal

regression cases, then R*(w,u) is reduced to as the original version R(u,u).
Thus we have directly the following relation

Rienlit,w) = 3 (0= m) + (O, 1) + o | 8]

In accordance R*(u,u) = 0 if and only if A(@,u) = 0. We can rewrite the result
in Eguchi (1984) on the modified risk:

Theorem 1

A Fisher-consistent estimator % is second-order efficient if the risk function
R*(w,u) attains the lower bound

N

to the second-order of N~1.

1 1 -~ 5 - 2
—(n — _— (fge) - (e)
(n=m)+ 37 (HO,T) + 2 | &

We will investigate the higher-order expansion of estimator % via the cano-
nical statistic & in the following section, where a main theorem will be shown.
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Theorem 2

Let @ and ul be second-order efficient estimators. Then in the expansion to

the third-order of &,u — ul vanishes except for the diagonal part of et = (&),
that is,

Ly

oty = (2o 21) e
(a,u")? = ._')Mveee.
Further,

R (i, u) — R*(ul, ) = 7\,1-5 Hé-sﬂf + 7\,23(" _€é—eh

b

where

h=(h) = (H{ **Tly5%) and €= ()= (35«;065(6v£~,xm>) _

and the bracket ( ) means symmetrization with respect to the enclosed indices.

In terms of Theorem 2 the following classification for third-order optimality
of estimation in the sense of minimization for the risk R* holds:

Theorem 3

(i) In the case of codimension n — m = 1 a second-order efficient estimator
ul is best in the class of second-order efficient estimators if and only if ul
has the third-order term of e+ with coefficients satisfying =t =

(ii) In the case of codimension n — m > 2 there exists generally no best esti-
mator.

We can easily check that the third-order diagonal term of e+ for the MLE
vanishes, which directly yields the following theorem.

Theorem 4

The MLE is the best estimator if the skewness tensor 7" induced to the model
o is free.

Proof follows from h = £ = 0 by applying Theorem 2.
The condiction 7' = 0 for g0 may be fairly limited but it holds for any nonlinear

regression model with normal errors.
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3. THE N-3—-ORDER INVESTIGATIONS

First we give the following expression to a formal expansion of @ via @:

(3.1) (@, u)* =€ +4° + E° + &
to the fourth-order. In particular writing
;,:'a:E': edeced + =0, eteet + =0 “e’\eb+.'=.'§uve”e“e’\,
we get
Lemmal

In the third-order term =,

S = —5 '")“14"‘”+1H<e)“H§;")*-%B°iabach,»,
Sper = I‘(m)a%e)f HZEZ)GHET)”_%BaiabacB/\i,
E = —H£;>“H§§>° and

=, = —%Ba"aka,‘B,,i.

Further, only the coefficients (Z%,,) depend on the estimator .

Proof

A Taylor expansion with respect to (u,v) gives

(@ —n(u)i = [n(a, o) - n(u)l = BT + Bx®* +
+ % {0a By W® + 20, Bai W% + 0, Briv o#} +
+ labachiu—dwu—b + labacBm*ncﬁb +
+ —a,,a Bx® o T + a 8, BT THT".
Thus from the above relation to the second-order we have

ut=e"+A%=¢% - %~b':) ‘ecel + ff,fiae)‘eb
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and

5A=6A+A’\=e*-2H£;")’\""+H(e)’\'\0_11""‘“7 “

Next we proceed to the third-order as follows:

(3.2) e = w® 11*'"“‘“" 2 “utv +

+ é‘Bmabachiﬁdu 23‘“3156 B,\,v’\'l—l,'cﬁb +

1 . 1_ ..
+ §B“'6b6yB,\,~F’\F“‘1Ib + gBmava#B,\,'ixf)'u%_U =
1- Iy a
=u’+ 51{:) ¢ (e°eb +26°Ab> - HIE;") (ebe)‘ +etar 4+ Abe’\) +
1 at e b 1 ai Ac b
+ EB 0p0.Bg;ee’ + §B 0y0.Bie”e‘e’ +
4 1.
+ %B‘”@ba B,\ie)‘e"eb + EBa'aua,,B)‘;eAe“ v =
- 7 11-(m)“cb_ﬁ[§f\)aebe/\_

I e B s

+ (e) aI‘(m) efede? — I:I,Sf\) alflt(ify) Peveder 4
+ §H§§‘)GH§T)/\edeceb _H’Ei)al_}gz)/\eueceb + %gs)adv) ekeb 4
+ %B‘"@b@ch,edeceb + = B“iabBCBA,e’\e‘e" +
%B“’a,,a Byetetet + %B‘”@,,B#B,\;e)‘e“e" =
— w4 11—('")“ c b_ﬁéi)aebe,\_'_

ey CAD R 4 %Ba‘abachi> edecdt +
ﬁm)ang)f _ ﬁé;)aﬁii)# N lBaiabacB/\z) reced 4

yamee 1 1 ou
NIRRT (VS e -2-B°'a,,apBM> rered +

+
> '—'/"\/‘\/‘\

+ —BaiavaﬂB,\ie)‘e"e”.
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From the second order efficiency of %, or H(™ = 0 it follows that

0= 0, H'Y) = 8,Bi0s By + BidydrBus = HO 7 + Bi6,0, B,

or

B8y0xByi = —H), SR

or which substitution into the coefficients of e#e*e® in (3.2) yields
S = —HG HRC.
We show the last statement of Lemma 1. It is clear that the coefficients (Z¢, )

and (ZY},,) are independent of the choice of 4@, because they are expressed by
the geometric quantities only on the model . From two expressions

(33) GaH{Z) = —0a(Bi0eBx) = TS + AL A" + Bi6,0. By

and
(34) M = Ba(Bri0.BY) = ~Ty B~ AO A ¥ 1 B\6,0.B
we have
A" = ~T A~ 0.H(E) + Bridad. By
Bi0.0.Bxi = —20,H) + Bri0a0.B:.

This concludes that the coefficients (Z7,,) are written only in terms of .

We now prove Theorem 2 by the use of Lemma 1. It is a direct result that

(@ —u)* = (5 Z)3, evee.

By definition

R*(d,w) - R*(ul,u) = E'[r(a) — r(u)] P(u)[r () — r(ul)]
E'[r* (&) - r* (uN)]Q* (u)[r* (@) - r* (uh)] + 2E[e — r(@)]P(u)[r(a) — r(ul)+
+2 E'fe” — r*(@)]Q" (u)[r* (@) — r*r* (ul)].
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We expand P(u)r*(u) and Q(u)r*(w) by the formal expansion (3.1):

~a ai l-(m a—-c ai
% = B*(n(a) - n(uw)); I‘( ) T+ 6B 0y0. Bawtuw® +
+ -QL.B 6(,6 3dBf,uf d_c b
1 .
= (+A+E+6) rﬁ,c) (ece® + aca +2e4" + o) +
1. .
+ EB‘”abach; (ede"eb + 3edec Al ) + %B“’@bacadB,, efedecel
and
75 = Bu(f(w)—0(u)) = %H ) wu + B,\,a O Biwwtwwtw® +
1 .
+ 2 — B;0400. Bdud—c_b—a + I%B,\,a 6b608dB}ﬂfﬂdu—cibﬁ° =
= §Hf\?b (ePe” + 4"+ A7 422 4% 4 202" 4 260 +24°2%) +
1 .
+ EB,\iaaabe: (ecebe“ +3e°e’ A% 4 3’ = + 36°AbA“) +
+ —2-1:1-B>\i(9a6b3033 (edecebe“ + 4edecebA“) +
1
+ 1—2—03,\56035353431 fedecebea
Hence
F-7r)° = (E-=hHei(@-0el)y 4B %z =ty
(@ = = B (NE-2N+e@-0h) +aE- =he) +
1 .
+ 5B Biete (5 - =he,
(e=7)* = f[ii) debedr _ E° _ 1";,;") Yecet — %Bi@bach,-ecebe“
and
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By this relation we obtain
E'[r(@) — r(u)))]P(w)r(i) — r(u)!)] =

= 58 - EN8,(E - ZN s0a9 029,
E[r" (@) — r* (w)] Q" (w)[r* (@) — r(u)] =-O(N %),
E'le — r(@)]P(w)[r(@) — r(ul)] = E(e —r)?(¢* —rl*), =
=E((E-=h+(@-0hr+ I (5 - =hy).
. (—f{(e) Geber _ E% 1"m) fecet — -Bi c‘)bc')Bch,'ecebe“) =
=B {A e (E- "U“ (6 oy - QI w0
- & E-5N, -ecanE -5t - —B 00 Bayredecet (5 — =)o }
and
E'fe” — r*(@)]Q" (w)[r" (&) — v* (u)] = E(e — #)* (7" — )5 =
=E{f) ((E-5h +e0-07)) + A% (&= 5N+

1 ~ 1~ rrie
+ §Buete(E - Sy - LA A Ao - 2ty

Hence the sum of the cross terms is given as

2E'[e — r(@)]P(w)[r(@) — r(w)] + 2E'[e* — r*(@)]Q* (w)[r* (@) — * (ul)]
=2E { (%BAiacabB:; + gffﬁgiﬁj" ) eved(E - El)eer - B (& - s’f)a}
= —6AATE(E ~ Z1)5059%0™ 0% — 80Z 0y (5 = E1)3,59% 947

since it follows from Lemma 1, (3.3) and (3.4) that

1 e —_

§BAiac8sz H,(,d),\['g,m) - =a,bch

b,\,a 0B — Hf,‘;l e
= —Hiiszi,

rrle rrim 1 at
= By CHD Y 4 5B 9,0: By =

which concludes the second result of Theorem 2.
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