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LONGITUDINAL K-SETS ANALYSIS
USING LAGGED VARIABLES

CATRIEN C.J.H. BIILEVELD and EEKE VAN DER BURG

We present an application of nonlinear Generalised Canonical Analy-
sis (GCA) for analysing longitudinal data. The application uses lag-
ged versions of variables to accommodate the time-dependence in the
measurements. The usefulness of the proposed method is illustrated
in an ezample from developmental psychology, in which we explore
the relationship between mother and child dyadic interaction during
the first siz months after birth, demonstrating how child behaviour
can elicit mother behaviour. We discuss the relationship between
our proposed method and the most closely resembling SERIALS (Van
Buuren, 1990) method for nonlinear time series analysis.

Key words: Generalised canonical analysis, optimal scaling, lag-
ged variables, developmental research.

INTRODUCTION

Generalised Canonical Analysis or K —sets canonical analysis relates several
sets of variables, searching for what is common between the sets (Carroll, 1968).
Van der Burg, de Leeuw and Verdegaal (1988) presented an extension of this
technique, in which categorical variables can be rescaled by optimal scaling; this
technique was implemented in the computer program OVERALS (SPSS, 1990).
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(Non)linear GCA or OVERALS has not been applied often in longitudinal
research, although it offers several opportunities for doing so. The most obvious
possibility is to treat the variables at each new time point as a new set of
variables; a disadvantage of this setup is that the technique then seeks for what
is common between the sets (in this case, the time points), while one is usually
interested rather in what changes from time point to time point. A second
method for analysing longitudinal data by nonlinear GCA, using a dummy time
variable, was demonstrated in Van der Burg and Bijleveld (1993). In the present
paper we will illustrate a different method, working with time-lagged versions of
variables. This also enables us to model the time-dependence and to explore the
causal mechanisms in the phenomena under investigation. We will not elaborate
on (nonlinear) generalised canonical analysis, but refer to Van der Burg, de
Leeuw and Verdegaal (1988), Gifi (1990), as well as to Van der Burg and Bijleveld
(1993) for details.

FLATTENING THE DATA BOX AND MODELLING TIME WITH
LAGGED VARIABLES

The use of lagged variables is probably best introduced through an example.
Suppose we have obtained daily recordings of the severity of a subject’s head-
aches. We name the headache variable y, and the measurements at the respective
days are indicated as y;, with ¢t = 1,...,T. Suppose furthermore that we are
interested in the effect of alcohol consumption on headache complaints, and that
we have also recorded the subject’s daily alcohol intake, and that we name the
daily alcohol measurements z;, with t = 1,...,T. The measurements z; and y;
are stacked vertically in vectors, of size T', that thus contain =1 to zr and y; to
yr respectively. A research hypothesis could be ‘liberal intake of alcohol on day
t leads to headache on day t + 1°.

We can investigate this hypothesis by analysing lagged versions of the varia-
bles. If the hypothesis were true, this would mean that we would find a high
positive correlation between the scores on the alcohol variable at days ¢, and the
scores on the headache variable on days t + 1. What we now propose to do, is
to alter the two variables, in the sense that we eliminate the last measurement
of the alcohol variable, and we eliminate the first measurement of the alcohol
variable; next, we ‘shift’ the two vectors (that have now both size (T'—1)) so that
they match again. Thus, using these variables, we correlate z,(t = 1,...,7 — 1)
to ye(t = 2,...,T). In the literature, this lagged version of the z—variable is
often referred to as ‘the lagl version of variable z’; the lagged version of y is
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often referred to as ‘the lag0 version of y’. An example of such a situation for
six time points is presented in Figure 1.
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Figure 1.
Example of a Lagl Variable Relating to a Lag0 Variable.

A high correlation between the lagl version of z, and the lag0 version of y is
usually interpreted as an indication that lagl—z causes lag0—y, that is, alcohol
intake at day ¢ causes headaches on day t+ 1. Theoretically, the high correlation
could also mean that headaches at day t + 1 cause alcohol intake on day ¢, but
as causes are supposed to occur before or at most simultaneously with effects,
this alternative explanation need not be considered. The time order does not
exclude spurious causal effects via a third variable.

Other phenomena may be modelled using lagged variables. For instance,
one might be interested to know to what extent certain behaviour types, or
physiological indicators depend on, or can be predicted from their past values.
In that case, one would want to model the influence of a past version of a
variable, on its present version. Suppose for instance that such a variable is
blood pressure, and that measurements have again been obtained at T time
points, that have again been combined in a vector z of size T'. In order to assess
to what extent blood pressure measurements can be predicted from their prior
values, we would then have to ‘copy’ the z variable, so that we have it two
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times, eliminate from one the first measurement, and eliminate from the other
the last measurement, and shift them, so that they match again. As an example,
the squared correlation between lagl—z and lag0—z equals the percentage of
the variance of blood pressure that we can predict from its prior versions. An
illustration of such a situation with six time points is in Figure 2.
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Figure 2.
Example of a Lagl Variable Relating to its Lag0 Version.

Other variations on the theme are possible. For instance, higher-order lags
may be specified, relating for instance in a multiple regression type of model,
lag2 or lag3 versions of variables to lag0 versions of other variables (or of the
same variables). One then approaches the ARMA-type models (that we will
not discuss here) that were proposed by Box and Jenkins (1976). Conceptually
attractive are lagged versions of variables that can model seasonal effects, such as
weekly cycles, monthly (28 days for instance in menstruation research) or yearly
cycles. An example is a situation with daily measurements, where we predict one
set of lag0-variables from a (different) set of lagl-variables, that thus captures
the immediate past, as well as from an additional set of lag7-variables, that thus
models the dependence on the measurements at the same day last week. In that
case, the lag0 set would thus contain the measurements from ¢t = 8 until t = T,
the lagl set those from ¢t = 7 tot = T — 1, and the lag7 set fromt = 1 to
t =T — 7. See Figure 3.
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Figure 3.
Schematic Representation of Analysis Relating Lag0, Lag7 and Lagl Versions
of Variables.

In principle, lagged versions of variables can be used in any type of analysis.
Lagl relationships approximate the so-called Markov-type dependencies.

Solutions from an analysis that uses lagged variables should be interpreted
Just as solutions with only lag0-versions of variables, that is, by using for instance
component loadings or category quantifications. Normally, if two variables have
similar (or opposite) high component loadings, we say that these variables have
a lot in common. In the case with lagged variables, if for instance the component
loadings of a lag0 and lagl variable are similar and high, one might conclude that
the lagl variable has an impact on the lag0 variable. Below, we will illustrate
the use of lagged versions of variables in generalised canonical analysis. The

implications can easily be generalised to other types of exploratory categorical
data analysis.
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Technically speaking, one ‘loses’ more time points the higher the order of the
lags. Which means that higher-order lags can become unattractive, or impossible
to model when there are not too many time points. Analyses with lagged versions
are usually harder to interpret than ordinary types of analysis.

A LONGITUDINAL EXAMPLE: DEVELOPMENT OF ATTACH-
MENT IN YOUNG CHILDREN

For the example, we will analyse data collected by Van den Boom (1988).
Mothers and children had been investigated at 6 time points (in six consecutive
months after birth); the frequencies of occurrence of 8 types of mother behaviour
formed 8 variables in the mother set, the frequencies of occurrence of 6 types of
child behaviour constituted 6 variables in the child set. The behaviour variables

are in Table 1. Van der Burg and Bijleveld (1993) analysed the same data in a
different fashion.

Table 1
Mother and Child Behaviour Variables

child variables mother variables

positive sociable behaviour observing baby

observing persons and objects effective stimulation
vocalising vocalising/offering objects
whining/crying physical contact
exploration comforting

sucking uninvolved

responsiveness to crying
responsiveness to positive behaviour

After one year, the children had been classified into three attachment groups,
namely secure, avoidant and resistant. One child had gone to hospital during the
last two months of the study, which, with lots of crying, caused rather deviant
scores, so for this child we deleted the last two months from the data set. To
investigate the influence of prior mother behaviour on the present behaviour of
their children, and vice versa, we constructed data sets with lagged variables. In
the first set, we stacked all mother measurements from time point 1 until time
point 5, this is the so-called mother lagl set. In the second set we stacked all
children measurements from time point 2 until time point 6, this is the so-called
child lag0 set. (If these latter two sets are analysed together, we model the
influence of mother’s behaviour in the prior month on children’s behaviour in
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the present month.) Next, we constructed a third and a fourth set with lagged
variables: in the third set, we stacked all child measurements from time point
1 until time point 5, the child lagl set; in the fourth set we stacked all mother
measurements from time point 2 until time point 6, the mother lag0 set. (If these
two sets are analysed together, we model the influence of children’s behaviour
in the prior month on mother’s behaviour in the present month.)

mother- lag1 child- lag0

1 M 2 M .

. . relations modelled
T-1 T A. mother -> child

1 M 2 M B. child -> mother

. A : C. & D. mother <-> child
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F. child -> self
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T-1 T
Q D
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T-1 T
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T-1 | T

B

1 M 2 M

T-1 T

Figure 4.
Schematic Representation of Lagged Analysis.
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Instead of doing separate analyses of the influence of children upon mothers
and vice versa, we analysed the four sets together in one analysis, which had the
added advantage that a number of cross- and auto-regressive influences can be
investigated simultaneously. The influence of mothers’ past behaviour on their
present behaviour, is given by the combination of the mother lag0 and mother
lagl set; the influence of children’s past behaviour on their present behaviour,
is given by the combination of the child lag0 and child lagl set. Instantaneous
relations between mothers and children are modelled by the combination of
mother and child sets of same lag. For a schematic representation see Figure 4.

As we have more than two sets, we performed multi-set analysis for this

set up, using the computer program OVERALS. All variables were treated as
ordinal variables.

ANALYSIS RESULTS

The eigenvalues represent a fit measure of an OVERALS analysis; they al-
ways vary between zero and one. The eigenvalues resulting from the mother and
child data analysis were .801 for the first dimension, and .730 for the second
dimension, which is quite nice. The component loadings, that correspond to
the correlations of the rescaled variables with the dimensions, are in Figure 5.
Mother variables are typed plain face, child variables italic face; the points of the
component loadings are not connected to the origin, but instead the component
loadings of lagl-versions are connected to those of the lag0-versions of variables,
an arrow indicating the lag0-version. The first and second dimensions have been
switched in this picture, to make it more comparable with the Figure 2 of Van
der Burg and Bijleveld (1993), although it is still tilted slightly counter-clockwise
with respect to this figure.

The most striking feature of the picture is that present and prior variables
are almost always located closest to one another. This is most apparent in the
periphery, for instance prior and present exploration and crying by the baby
are situated very closely, past and present watching by the mother are very
close, as are past and present versions of uninvolvedness and physical contact.
This implies, that present behaviour of mothers as well as present behaviour of
children is always most strongly related to their own past behaviour. Thus, in
preference over past or present behaviour of the other, the best predictor of the
behaviour of mothers and children, are their respective past behaviours. One
could translate this into saying that inter-individual differences are larger than
intra-individual differences, with mothers as well as children fluctuating at more
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or less individually particular levels of behavioural activity, that do not change
dramaitically in the course of the first six months after birth.
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Figure 5.

Component Loadings of Mother (plain face) and Child Variables (italic face) in
Lagged Analysis.

An exception to this pattern is the past positive behaviour of the child with
present effective stimulation by the mother (circled in the plot). These are
located very close to one another, indicating that positive behaviour of children
in one month in general goes together with effective stimulation by the mother
in the next month. Maybe, once children start exhibiting this type of positive
behaviour, this triggers the mother’s stimulative behaviour; this result might be
explained by supposing that mothers only start stimulating their children in this
way, once the children give the signal that they are ready for it.
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Another striking point of Figure 5 is that the lag0 and lagl responsiveness
variables differ more from one another than do the other lag0 and lagl com-
binations. Mother’s lag0) responsiveness to positive behaviour is in fact closer
to children’s lagl positive behaviour than it is to its own lagl version. Proba-
bly mothers can only become responsive to their children’s positive behaviour,
once the children have expressed such behaviour. For lag( responsiveness to
crying, and lag0 crying, as well as for the two lagl versions of these variables,
the situation is slightly more complicated, as they are in opposite directions: res-
ponsiveness to crying is in an opposite direction to crying. This indicates that
the less the child cries, the more responsive the mother is, when crying does
occur; these relations should not be taken as absolute however, as the compo-
nent loadings are not very high. The lag0 and lagl versions of responsiveness to
crying, are quite wide apart. Lagl responsiveness to crying is closest to the chil-
dren’s vocalising at lag0, indicating that an increased responsiveness to crying
might stimulate children to vocalise.

Figure 5 gave the scores for the rescaled variables. It is also possible to depict
the subjects (the mother and child pairs) in this plot. Then we could track the
average developments of the three attachment groups in the plot, by averaging
the scores of the mother-child pairs per time point per attachment group. This
would have produced similar results to those of Van der Burg and Bijleveld
(1993), with the resistantly and avoidantly attached travelling in the upper part
of the plot (from right to left) characterised by a lot of crying, and the securely
attached travelling in the bottom of the plot (also from right to left), starting out
with a lot more responsiveness to crying, positive behaviour and stimulation. All
three attachment groups develop more or less from dependent to independent
behaviour, that is, from lots of physical contact towards exploration.

DISCUSSION

Lagged variables are a nice tool to use in longitudinal data analysis. Es-
pecially when working with non-numerical longitudinal data, for which many
analysis techniques are unsuited, they may provide a help, at least in exploring
the structure of the data or changes over time. In our example, the use of lagged
variables gave some valuable insights into the relationships in time between the
mother and child behaviour variables. We could demonstrate how certain types
of child behaviour elicited mother’s behaviour, pointing away from the custo-
marily supposed central force of the mother (maybe a comfort for some mother
readers?). Furthermore, we could depict in an attractive way mother and child
behaviour development.
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We could have done a similar analysis using Van Buuren’s SERIALS method
(van Buuren, 1990). Van Buuren’s SERIALS model combines elements of the
Box-Tiao transform with state space analysis, providing an extension for scaling
of any non-numerical variables. In this technique, present variables are combi-
ned into one set, and past versions of the data set in the other. The two sets are
then analysed using an OVERALS type model, that tries to find directions that
explain most of what is common between the two sets. In principle, van Buuren’s
method offers the possibility to model a time dependence of the object scores on
themselves as well. The main difference between our method and the SERIALS
method, is that in our method the optimal quantifications of the categories of
lagged and unlagged versions of variables may differ. This could constitute a
problem, as lagged and unlagged variables then become qualitatively different
variables, that cannot be related as if they were measuring the same phenome-
non. In our example, the category quantifications of the lagged and unlagged
versions of variables differed only minimally, but especially when working with
nominal variables, differences may turn out substantial. In such cases, one had
perhaps resort to the SERIALS method, that has the major advantage that it
constructs identical quantifications of the categories of lagged and unlagged ver-
sions of variables. An important advantage of the OVERALS method, on the

other hand, is that it provides the opportunity to differentiate between variables
for mother and child.
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