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A NEW GEOMETRIC APPROACH
TO BIMATRIX GAMES!
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In this paper we study some properties concerning the equilibrium
points of a bimatriz game and describe a geometric method to obtain
all the equilibria of a bimatriz game when one of the players has al
most three pure sirategies.
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1. INTRODUCTION

In Borm et al. (1988), a geometric method for finding all equilibria in a 2xn
(or m x 2) bimatrix game is introduced. It is inspired in the double description
method for 2 x n matrix games described in Motzkin et al. (1953). As they
argued, geometric methods are useful because they permit to visualize the si-
tuation that they solve, so one can have new views of the problem in question.
Moreover, 2 x n bimatrix games are quite important, at least from a theoretical
point of view, because they provide many examples and counter examples of
several facts. In this paper we describe a new version of the method, now based
on a geometric interpretation of von Neumann’s minimax theorem suggested
in Luce and Raiffa (1957). It somewhat gives a dual version of the algorithm,
which could inspire new ideas through the different visualization of the problem.
Besides, our version can be also used to find the equilibria of 3 x n bimatrix
games.
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Notation

For every n > 0 we write A\, for the set

{(xl,...,rn)elR"/x;ZO ViE{l,...,n},inzl}
i=1

and {e;/7 € {1,...,n}} for the canonical basis of IR". Given a subset A of R",
we denote by conv(A) its convex hull, by Cl(A) its closure and by WPF(A) its
weak Pareto frontier, i.e.

WPF(A) = {(z1,...,20) €A/ B (T1,...,Tn) EAst. T >z; Vi€ {1,...,n}}.

Throughout this paper we identify every z € R"™ with an n x 1 matrix. For any
matrix A, we denote its transposed by A®.

2. SOME RESULTS CONCERNING BIMATRIX GAMES

We devote the first part of this section to establish the notation and derive
some useful results concerning bimatrix games. Then we describe an algorithm
to find the set of equilibria of some special bimatrix games.

An mx n bimatrix game (A, B), A and B being m x n real matrices, is a two—
person normal form game (A, A,, Hy, Hy), where A,,, A, are the strategy

spaces of player one and two respectively and Hy, H, are their payoff functions
defined by

Hi(p,q) = p'Aq, H2(p,q) = p'Byg.

For every ¢ € A, we call By(q) to the set of best replies of player one to ¢
1.e.

Bi(q) = {13 € Om /ﬁtAq = mpaxp‘Aq} .
Analogously we can define By(p) for every p € A,,. A Nash equilibrium is a
(P,q) € Am x A, such that p € By(q) and g € Bz(p). We denote by E(A, B)
the set of Nash equilibria of (4, B).
Now consider the map g defined from A, onto S := conv{Be;,...,Be,} C
IR™ given by g(q) = Bg. Analogously we can define f from A,, onto
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R:=conv{etA,...,e{,A} C R" by f(p) = p'A. Next, we prove the following
theorem.

Theorem 2.1
Let (A4, B) be an m x n bimatrix game. Then, given p € A, and ¢ € A,,,

a) ¢€ |J Ba(p) & g(g) € WPF(9)
PEA,

b) pe |J Bi(g) & f(p) € WPF(R)
g€A,

Proof
We only demonstrate a). b) could be done analogously.

It is clear that, if ¢ € By(p) for some p € Apy,, then it is not strictly domi-
nated and hence g(q) € WPF(5).

Reciprocally, let us consider ¢ € A, such that g(g) € WPF(S). Take T, =

{z e R™ [z; > elg(q) Vi€ {1,...,m}}. As g(q) € WPF(S), it is clear that

T, NS = 0. Moreover, as S and T, are convex sets, we can apply a separation

theorem and then consider and hyperplane (u, ¢) such that u'z > ¢ Vz € CY(T)

and u'z < ¢ Vz € S. Note that g(q) € Ci(T;) NS and hence u'g(q) = c. Now

taking g(q)+e; € CI(T,) for every i, we know that u*(g(g)+e;) > ¢ = u'g(q) and
s

then u; > 0. Consequently, as u # 0, Zu,- > 0 and hence p = (Eu;) ‘u €
i=1 i=1

Ay.. Moreover, it is clear that ¢ € B;(p). This fact completes the proof.

Let us give now some more definitions. For every ¢ € A, we call PB;(¢) to
the set of pure best replies of player 1 to ¢, i.e. PB1(g) = Bi(g)N{e1,.-.,em},
and C(q) to the carrier of ¢, 1.e. C(q) = {j € {1,...,n} /g; > 0} . Analogously .
we define PBy(p) and C(p) for every p € A,;,.

Next, consider the following two correspondences, both defined from
9~ (WPF(S)) := {¢g € &, /9(q) € WPF(S)}, given by

V(q) = {iE{l,...,m}/e;EPBl(q)}
v(g) = {p€bm/q€ Bap)}.
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Observe that, from theorem 2.1, v(q) # 0Vq € g~!}(WPF(S)) and then v is well
defined. Analogously we can consider U and u defined from f~}(WPF(R)) and
given by

Ulp) = {je{l,...,n}/e;j € PBy(p)}
up) = {g€bn/peBi(9)}-

Then we can state the following result which is an immediate consequence of
theorem 2.1 and the definition of Nash equilibrium.

Theorem 2.2

For every (p,q) € Am x Ay, the next three statements are equivalent:

a) (p,¢) is a Nash equilibrium.
b) g(¢g) € WPF(S),p € v(q) and C(p) C V(g).
¢) f(p) € WPF(R),q € u(p) and C(q) C U(p).

Now, from theorem 2.2 above we can describe the following method to find
all equilibria in an m X n bimatrix game:

Step 1. Obtain the set Q := g~ 1(WPF(S)).
Step 2. (For all ¢ € Q). Compute V(gq).

Step 3. (For all ¢ € Q). Compute v(g) and check, for any p € v(q), if C(p) C
V(q). In such a case, (p, q) 1s a Nash equilibrium.

Remark 2.1

As @ is in general an infinite set, step 2 apparently has infinitely many stages.
However, ( is a finite union of sides of a polytope whose vertices zi,...,z,
correspond to pure strategies of player two. Moreover, as H is a continuous
function, there is a finite number of regions R;y,..., R, in @ (these regions
being the intersection of @ with a finite number of hyperplanes and/or a finite
number of open semi spaces), such that, for every R;,V(q) = V(¢') Vq,¢' € R;.
Then, step 2 has actually a finite number of stages.

Remark 2.2

It is not easy to find v(q) for a ¢ € Q. We can act as in the proof of theorem
1 finding separation hyperplanes between @ and 7, and then obtaining v(q)
from their normal vectors. But to do that, we need to visualize Q. Hence this
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method seems to be useful only for 2 X n or 3 x n bimatrix games. By other side,
as @) is in general an infinite set, again step 3 apparently has infinitely many
stages. However, as @ is a finite union of sides of a polytope, we only have to
analyze separately the relative interior of every side, the relative interior of every
intersection of two sides, and so on. Then we have to make only a finite number
of investigations. Moreover, although v(¢q) could be an infinite set for some g, it
is a convex set with a finite number of extreme points and then to find all the
p € v(q) such that C(p) C V{(q) is a finite process.

Remark 2.3

From remarks 2.1 and 2.2, it is clear that the method we are presenting
is useful to find all the equilibria of an m x n bimatrix game with m < 3.
Obviously, we can reformulate the algorithm in such a way that it is useful for
m X n bimatrix games with n < 3. It would be like this:

Step 1. Obtain the set P := f~1(WPF(R)).
Step 2. (For all p € P). Compute U(p).

Step 3. (For all p € P). Compute u(p) and check, for any ¢ € u(p), if
C(q) € U(p). In such a case, (p, ) is a Nash equilibrium.

3. APPLICATION TO 2xN BIMATRIX GAMES

In this section we develop our method for the special case of 2 x n bimatrix
games. Analogously it could be developed for 3 x n,m x 2 and m x 3 bimatrix
games.

Consider a 2xn bimatrix game T' = (A3, Ay, 4, B) . It is clear that WPF(S)
is a finite union of sets of the form conv({Be,, Be,}) C R?. Suppose that
all columns in B are different. Then @Q is a finite union of convex hulls of
pairs of pure strategies of player two. Now, for every ¢; € Q,V(e;) = {1} if
a1j > agj,V(ej) = {2} if ay; < az; and V(ej) = {1,2} if a1; = az;. For any:
other ¢ € Q, there exists an only pair e, e, such that ¢ = ae, + (1 — a)eg,
being o € [0, 1]. In such a case, one and only one of the three foliowing cases is
verified:
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1. V(er) = V(ey). Then V(q) = V(er) = V(ey).

2. V(e,) # V(ey) and V(e,) or V(ey) are equal to {1,2}. Then V(g) is equal
to V(ey) or V(er) respectively.

3. V(e,) # V(ey) and both are different from {1,2}. Then V(q) = V(e,) if
a > B := (azg — arg)/(a1r — a1y — azr + azy), V(g) =V(ey) ifa < B and
V(g) = {1,2} ifa =4

If B has some identical columns, then some ¢ € Q can be a convex combination
~ of more than two columns. Apart from this, the process of finding V(q) is
completely similar. Now, to compute v(g) for any ¢, we must look for the
separation hyperplane(s) between @ and T,. Note that this is an easy (and finite)
task. Observe that v(g) will contain e, if and only if e} g(q) > elg(¢') V¢’ € D,
and that v(g) will contain e if and only if ebg(q) > e49(¢'), Vg’ € An. Finally,
according to theorem 2.2, to obtain all the Nash equilibria of the game, we have

to find all the (p, ¢) such that ¢ € Q,p € v(¢) and C(p) C V(g). Then, in view
of all we have seen in this section, we can state the following theorem.

Theorem 3.1

(p,q) € &2 x A, is a Nash equilibrium of T' if and only if at least one of the
following statements is fulfilled:

- q€Q,elglg) >elg(q)Ve' € Dn, V(g) D {1} and p=ey.
- q€Q, ehgl(q) > ebg(q')Ve € An, V(g) D {2} and p=es.
~q€Q@,V(g)={1,2} and p € v(q).

To finalize, we make an example to illustrate the method.

Example 3.1

We are going to compute the set of Nash equilibria of the following 2 x 5
bimatrix game.

3.6 (0.6) (5.4) (23) (5.5
(A’B)‘((o,O) @1 (5.5 (3,2 (0,4>)

In Figure 1 below, we have drawn S and have marked its weak Pareto frontier
WPF(S) with a bold trace.
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5¢ 8(e)
4T gle)
3 -
WPF(S)
2 -
14 ge)
. . . . g(e)
1 2 3 4 5 6
Figure 1.

It is clear from the picture that

Q = conv({es,e5}) U conv({es,ez}) U conv({ez,e1}).

Now, we can determine V(¢) for all ¢ € Q.

V(es) = {1,2}

V(des + (1 — Aes) = {1} (A€ [0,1))
V(des + (1= Nea) = {1} (A €(2/7,1])
V(2/7 -e5 + 5/7 . 62) = {1,2}

V(des + (1 - Nes) = {2} (A €[0,2/7))
V(es +(1—Nei) = {2} (A€ (3/5,1))
V(3/5 - e2+2/5 1) = {1,2}

V(es +(1-Ne) = {1} (A €[0,3/5))

Then, in view of theorem 3.1, the set of equilibria of this game is the union of
the next three sets:
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{(p,ea)/p € v(es)}
{(p,2/7 €5 +5/7-e2)/p€v(2/T-e5+5/T e2)}
{(e1,9)/q € conv({e1,3/5-e2+2/5-e1})}.

The straight line joining g(e3) and g(es) is £ +y = 9 and then v(e3) =
conv({es, 1/2-e1+1/2-e5}). Besides, the straight line joining g(es) and g(e2) is
3z +y = 19 and then v(2/7-es+5/7-e2) = {3/4-e1+1/4-e2}. Hence, E(A, B
is the union of the next three sets:

{(p,e3)/p € conv({e2,1/2-e1 +1/2 - e2})}

{(3/4 ey + 1/4~€2,2/7-€5 +5/762)}
{(e1,9)/q € conv({e1,3/5-e2+2/5 - e1})}.
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