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Two basic sources of error are associated to the use of booistrap me-
thods: one is derived from the fact that the true distribution is sub-
stituted by a suitable estimate, and the other is stmulation errors.
Some techniques to reduce or quantify these errors are discussed in
this work. Some of them such as importance sampling or anlithetic
variates are adapted from classical Monte Carlo swindles, whereas
others such as the centered and the balanced bootstrap are more spe-
cific. The existence of common methodological trends, such as the
use of influence functions and Von Mises expansions to estimate the
variance of the method is emphasized.
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1. INTRODUCTION

Bootstrap methods (Efron (1979) [6], Efron (1982) [7] or Efron and Tibishi-
rani (1986) [10]) allow us to assess the bias or the variability of a statistic (let us
say T', an estimator for ), or to estimate probabilities such as Pr(T — 6 < d),
most often in order to calculate confidence limits or to test hypotheses about 6.

*This work was done while the author was visiting the Department of Statistics at Stanford
University. The author is grateful to his advisor, Dr. Jordi Ocafia, for introducing him to
the topic and to Dr. Bradley Efron for a good number of helpful conversations. The work is
partially supported by CGYCIT grant, PS89-0043.

—Article rebut el novembre de 1990.
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Given a statistic T, which estimates a parameter 6(F), and a data sample
X = (X1,X2,...,X,) from F we are interested in quantities such as the bias,
the variance and the quantiles of T(X), namely

(1.1) bias(T(X)) = EpT(X)-0(F)
(1.2) var(T(X)) = EpT*X)- (EFT(X))?
(1.3) T st. probp(T(X) < T) =a.

The bootstrap procedure consists of replacing F' with some estimate F, in
general the empirical distribution function, so that the estimates under the boot-
strap distribution are:

(1.4) biasp(T(X)) = ET(X*)—0(F)
(1.5) varg(T(X)) = EpTHX*) - (EpT(X*))?
(1.6) Tg st probp(T(X*)<Tg)=a
where X* = (X7,X3,...,X}) is a bootstrap sample, i.e. a sample of size

n from F. If F is the empirical distribution and T' = @(F) then 6(F) is the
observed value of T on the original sample. We shall consider it so from now on
and call 6(F), T° for brevity.

Expectations under the bootstrap distribution can only be obtained analyti-
cally in a few cases . However we can evaluate them using the following Monte
Carlo algorithm:

1. Draw B samples, X*;,X*,,...,X*g from F’
2. Form T(X*;),...,T(X*B)
3. Let

B
(1.7) T=B"1) T(X%)
b=1

then the approximate bootstrap estimates are:

(1.8) biasp(T(X)) = T-T°
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B

(1.9) varpg(T(X)) = 1/(B-1)) (T(X*)-T)
b=1

(1.10) Tg st [#(T(X")<Tgl/B=«

Let R be any of the preceding characteristics, the bias, the variance or the
percentiles, and let Rp, Rp(= Rj) and ng(z Tiﬁ) be the estimators under
F, under the bootstrap distribution and the Monte Carlo approximation to Rp
respectively.

All along the “bootstrapping” process there are different sources of error:

I . Those deriving from the fact that
Rp # Rp, because F #F

Some questions arise here:

e Can we use another estimator of F, F = G, instead of the empirical*
c.df., F = F, in order to improve the estimation of Rp by means of
Rp?.

e Can we find a better estimator than Rp (R';)

e How can both approaches be combined efficiently?.

I1. Those due to the “finiteness” of the Monte Carlo approach, i.e. to the fact
that:

Rp # Rp, because, B < o

again some obvious questions are:

e Do any of the changes in (I.) (i.e. using Rg or R}, instead of Rp)
affect the convergence rate of Rp to Rg as B — oo?

e Can we apply any of the classical ideas of Monte Carlo swindles (va-
riance reduction techniques or VRT) to obtain more efficient estima-
tors? (this generally meaning with minor variance).

(Again we find ourselves in a similar situation to that in (I.) as some
VRT use different estimators, whereas others change the sampling
distribution).

We can, therefore find a series of efficient booistrap techniques intended to
reduce or quantify some of these errors (there is no necessary one-to-one relation
between the methods and the errors mentioned above). From a wide perspective
we can find methods that:

*whenever we need to differentiate between ¥ and the empirical we shall use this notation.
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e modify the estimates to obtain more efficient ones:
The centering method of Efron (1988) [8].

The linear bootsirap introduced by Davison, Hinkley and Schechtmann
(1986) [4].

Control function estimates, discussed by Therneau (1983) [34].

e use more sophisticated resampling schemes that hasten the convergence of
Rp to Rp = Reo:
The balanced bootstrap by Davison, Hinkley and Schechtmann (1986) [4]
and Graham, Hinkley, John and Shi (1987) [14].

The accelerated simulation procedures outlined by Ogbonwman and
Wynn [32].

o use the Monte Carlo device of importance sampling.

Introduced by Therneau (1983) [34] in the context of bootstrap estimation,
it has been used by Johns (1988) [31] in a quantile estimation problem, by
Hinkley and Shi (1989) [28] in a double bootstrap problem, and has been
widely reviewed by Hesterberg (1988) [26).

e use computationally cheap methods to estimate the errors in (1.) or (IL.):

The jackknife-after-bootstrap measures of error introduced by Efron

(1990) [9)].

2. CENTERED AND LINEARIZED BOOTSTRAP ESTIMATES

2.1 The Centering Method. (Efron (1988))

The work by Efron* (1988) [8], in contrast with others we shall coment on
later, obtains improved bootstrap estimates by means of sampling from the
empirical c.d.f. in the ordinary bootsirap way, and modifying the calculations to
estimate Rp, using say RB, instead of Rpg.

The estimators introduced, I;a\sB, varg, and TE, are obtained with no ad-
ditional cost using information contained in the bootstrap samples.

For each of them some kind of “diagnostic”, is given to assess the gain in
efficiency in using these estimates instead of the “straightforward ones”.

*All along this section, when omitting the reference, we are referring to this work.
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The improved bias estimate. Let P be the resampling vector associated
with a given bootstrap sample, (X7, X3,..., X}}), i.e. the vector:

(2.1) (Pi,...,P)st.  Pi= ﬂln——x}- j=1,...,n

n
(2.2) and SpP=1
i=1

so that the statistic evaluated on a bootstrap sample, T(X*) is T(P). The
resamplmg vector corresponding to the original sample is P° = n, e ,% .
Let P be the average of the resampling vectors:

B
(2.3) P=B""') P
and let
(24) T(P)

be the statistic evaluated on it.
The bias estimate introduced here

(2.5) biasg =T — T(P)

is a substantial 1mprovement on the straightforward bias estimate (1.8).

The superiority of bzasB over biasg may be exactly shown in the case where
T is a quadratic, functional statistic (Efron (1982) [8], sections 2.6, 4.4. and
6.1.), i.e. a statistic that only depends on the data X through F (that is what
functional means) and is of the form:

(2.6) T(P)=T°+ (P - P°)U + %(P —P°)V(P - P°)

where U is a n x 1 vector s.t. Z;zl Ui = 0, and V a n x n symmetric

matrix s.t. z;',zl Vi = Z;,:l Vjr; = 0. U is the empirical influence function
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for T and V is the second order empirical influence function for T (see Efron
(1982) [7], Huber (1977) [30] or Hampel et al. (1986) [25]).

———

The justification of why biasp performs better than biasp in this case comes
from seeing that biasp matches biasp closer whereas biasg adds extra linear
terms that inflate the variance of the estimate.

A more generally centering argument (that gives its name to the method) is
the following: The theoretical expectation of the resampling vectors P!,.. P"
is P°, but their mean value is P, so using T — T((P) instead of T —T'(P?°) corrects
the bias estimate for values of P # P°. .

Some simulation experiments in a problem of ratio estimation show biasg to
be up to 50 times less variable than biasg, although, as the author comments,
this gain is much greater than the usual one.

An orthogonal decomposition for the bootstrap replications of the statistic
T(P), based in its ANOVA decomposition (Efron and Stein (1981) [11]) is con-

sidered:
27) T(P) = 4 + a(P) + A(P)

where p = E{T(P)}, o(P) = P'a (3(P) is the “residual”’), and « has
components
(2.8) o = n[B{T(PY|X} = 2;} — 4.

a(P) is the linear part of T(P). It may be estimated by ordinary least
squares, or by different versions of the empirical influence function*(which allows

it to be called the bootstrap influence vector).
From the definition of

(2.9) R? = var{a(P)} / var{T(P)}

the relative efficiency of biasg to I;(E»‘B is established in Theorem 1 in Efron

(1988):

var(biasp) _

(2.10) 11+ 0,(1/n) + 0y(1/VB)

var(bj(:sB) -

*Although we do not develop the relation between o and U it’s worth mentioning that
they are closely related, especially in order to consider the relation between this method and
others outlined below such as the linear bootstrap.
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Thus, by estimating R?, we can predict the gain in efficiency from using
biasp instead of biasp. For instance in the ratio estimation example referred to

Tias
above with B = 20 the average value of 3—‘—'1(—1—-0\3—3) over 10 simulated samples

var(biasg)
is 65.5 and the predicted ratio is 65.4

The improved variance estimate. We consider a decomposition of the
straightforward variance estimate,

(2.11) Targ = &'Sa + varg(h)

where ¥ is the usual unbiased estimate of covariance for P:

B
(2.12) £=(B-1)"'> (P"-bP)P*-FPY,
b=1
and
(2.13)

B B
ware(f) = B-1)7'Y BP=B-1)"Y [T°-T-(P'-P)a’

i=1 i=1

(Note that here we are working with centered versions of T" and P, T -T
and (P* — P)).

From the preceding decomposition an improved estimate of var{T(P)} is
obtained:

(2.14) tarp =|| & ||* +dn,B - varB(B)

where d, p = 1-n(n—1) /(B — 1)(B — n — 1). Essentially, the improvement
comes from the substitution of the true covariance matrix X in place of X in
(1.9).

In some simulation experiments (see tables 4 and 5 of Efron (1988)) the
observed ratio Targ/varp gave average values ranging from 8.7 to 1.4, so that
the gain in efficiency, though clear, is not as great as in the bias case.
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There is no result available, such as theorem 1, relating 7arg to varg. A
normal theory analog is suggested:

var(varg) 1-r

(2.15) var(varg) ~ (1 - R*) — (1 — R?)?

Though in the simulation experiments mentioned above this relation happens
to be too large, ranging from 28.6 to 1.0 it seems to be roughly proportional to
the real relationship, so that it may give at least an idea of the gain in efficiency.

Efron (1988) [8] relates the estimator 7arp to the control function estimates
of Therneau considered below.

The improved percentile estimates. Again, a decomposition for the boot-
strap replications of the statistic T(P), in a linear and a residual part is consi-
dered:

(2.16) T =T(P%) = L* + M®

where L} = P& and M? = T® — [} :

From there the improved percentile estimate 7 is obtained by means of a
cumulant adjustment formula. It consists in applying a correction to the values
T T* b =1,... B such that the first four empirical cumulants of the corrected
values L® match the first four theoretical cumulants of (L&) (ie. with & fixed).
The improved percentile estimate is then the observed percentile, f’g for the
T% ( b=1..B) values

A result for the asymptotic relative efficiency of both estimates is available
(as Theorem 2):

var(Tgs) < a(l —a)

(2.17) var(Tg) = E[x(L)(1 - n(L)]
where
(2.18) m(L) = P[T(P) < T (a)|L].

The use of this result as a method for diagnosing the increase of the efficiency
is not immediate, in as much as E{r(L)(1 — x(L)] is difficult to evaluate. (It
seems however that it might be properly estimated through logistic regression).




Two simulation experiments are referred to in Efron (1988). In the ratio
estimation problem, there is always a much greater gain in efficiency when central
quantiles are estimated that in the extreme quantiles’ case. In another example
(with the "bootstrap stars”, the law school data) the gains are not so great, and
even a loss may be observed for 95 and 97.5 percentiles.

Finally two other estimates of T are introduced. A regression estimate T
based on applying the cumulant adjustment process, starting with

(2.19) T = T(P%) = g(Lb) + M?

instead of starting with (1.10), where g(.) is some smooth function fitted to
the scatterplot of (ib, Tb) This estimate may represent a modest improvement
on Tg .

Another estimate T based on a different estimation of #(P) in (2.18) is
introduced in the last section. It has the (theoretical) advantage of achieving
equality in (2.17) but it is also more difficult to evaluate and, up to now, ex-

perimental results only show that it performs as well as, but no better than
Tg.

Open problems. Some problems related with or arising from this work are

the following:

e Is there any advantage in combining this approach with different resam-
pling schemes, such as, for instance, those of Davison et al [3], or Johns [31]7.

e How do these methods apply to more complicated situations?.

e Can E[x(L)(1— n(L)] be easily and accurately estimated (for instance
through logistic regression as suggested), in order to make the predictions
of theorem 2 available?.

e Would the use of a smoothed version of the bootstrap help to sidestep the
difficulties in the estimation of =?.

o Will the answers to the former problems clarify the theoretical advantage
of 5§ over S§7.

e Can the percentile estimation be modified for the (very common) case
where we are interested in extreme probabilities?.
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2.2 The Linear Bootstrap. (Davison et al (1986))

One of the ideas behind this approximation, made by Davison, Hinkley and
Schechtmann (1986) [4], is one of the main variance reduction strategies, namely,
integrate as much as possible analytically leaving only a small variance remainder
to be simulated.

Let us consider (whenever possible) a von Mises expansion (see Efron
(1982) [7], Hinkley and Wei (1984) [29] or Fernholz (1983) [12]) for the statistic
of interest, T(F):

(2.20)

n n

T(F) = T(F)+n‘1ZL(\,,F "QZZQ( Xe, F)+ ...

j=1 j=lk=1

where L(X;F) is the first-order influence function of T(F), Q(X;, Xi; F) the
second order influence function and so on (The ANOVA decomposition of Efron
and Stein (1981) [11] approaches this expansion as n — oo see, e.g. Efron
(1982) [7] sec. 4.3.).

Let the frequency of X; in a (bootstrap) sample, (X}, X3,..., X}) from F
be:

(2.21) ff =card {j : X} = Xi}.

The bootstrap approximation to (2.20) will be:

(2.22)
1 n n
™ = T(F -1 L(X; F =2 X, Xi, F
(F)+n Zf (L] )+5n ;kzlf fi Q JQ B )+

The use of this approximation would require the calculation of the empirical
influence functions f,j = L(Xj; F), ij = Q(X;, Xi; F) up to the desired degree
of accuracy (taking the first two terms would give us a linear approximation,
and the first three terms a quadratic approximation).

Now suppose that we know how to calculate the first-order empirical influence
functions f/j and that we wish to estimate the bias and the variance of T', that is
we want to calculate Ex(T)—T° and var (7). Standard results about influence
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functions make it possible to prove that E*(L) = 0 and var*(L) = n~! 3" L2, s0
that if we write:

(2.28) T(F) =T(F)+n! i L(X;,F)+Dy, (D =T(F)—Tr)

j=t
N = ,
(224) T =T(F)+n™! Zn:f;ij +D; (D} =T* —T})
ji=1
. - .
we have:
(2.25) Ex(T) = T°+ Ep(Dy)

n
n=? Z i}? + 2covs(Dyr, Ty) + varF(Dyp).
=1

(2.26) var(T)

where only the terms involving Dy need to be estimated by simulation, e.g.
with the following algorithm:

1. Compute T° and I:_,-, (7 =1,...,n), on the original sample

2. Let b=1,..., B and compute, for each b:

(2.27) T*b

(2.28) TP = T°+n7 ') L
i=1

(2:29) DP = T -1}

1. Calculate Dy = B-1 32 Di*.

The linear estimates of the bias and the variance are:

B
(2.30) biasy = Dy =B"'> DY
b=1
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n B
(2.31) vary = n7?Y L2+2B7') DT -T})
ji=1 b=1
B —
(2.32) +(B-1)"' Y (Di* - D)
b=1

It’s worth noting that the leading term in the variance estimate contains no
simulation terms. This method may also be applied when the influence function
is not known, by substitution of jackknife estimates for influence values.

Davison et al.(1986) [4] suggest that these results may easily be derived
for any moment or cumulant of T, directly, as done here, or exploiting some
properties of the moment generating function M ()} that enable us to write the
bootstrap estimate of M() as:

239 MIQ) = {07t Y exp(AL;/m)}" B fexp(AD1))
J
where EI denotes expectation with respect to the probability distribution

(2.34) Pr(X* = X;) x exp(ALj/n) (j=1..n)

t

and only E, and its derivatives in (2.33) require simulation.

Davison et al (1986) [4] give some examples where they examine numerically
the variability of the bootstrap estimates, in three cases: the sample mean, the
correlation coefficient and the eigenvalues of a covariance matrix. They focus
on percentile estimates of T'— 6 (instead of T') and distinguish between the raw
percentiles, i.e. the straightforward percentile estimate (1.10) put as Tp — T°
and the Normal percentiles (coming from the somehow strong assumption that
T is approximately normal) bias + vars + & (a).

In the cases where the normal approximation is appropriate it always im-
proves the percentile estimation (i.e. diminishes its variability). Analogously,
whenever the normal approximation is appropriate the linear bootstrap increases
the efficiency of both the ordinary and the balanced bootstrap (also with normal
approximation). In any situation, simply switching from ordinary to balanced
resampling only represents a slight improvement, mainly for the central per-
centiles.

The author of this work gives some hints on how to improve these results such
as controlling the quadratic component of (2.20) for the balanced resampling case
or making higher moment corrections for the normal approximations.
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Open Problems.

¢ Can the use of formula (2.33) for the m.g.f. of T™* provide computationally
efficient methods for estimating the exact distribution of 7*7.

o As seen before the thinnest point in percentile estimation is tail probabi-
lities estimation. It seems to deserve specially differentiated attention.

2.3 Relation between centered and linear bootstrap estimates.
(Hall (1989)

Introduction The equivalence of the two former methods (and to a third one,
the balanced bootsirap to be discussed below) is shown by Hall (1989) [17], in the
case where the estimates are smooth functions of means*, by proving that the
variances (and MSE) of each bootstrap estimate are asymptotically equivalent
up to the same constant (Bn2)~!, what means an improvement over the ordinary
bootstrap for wich the rate of convergenece of the variance is (Bn)™!.

This improvement is explained showing that the application of each algorithm
is equivalent to removing the linear term in a Taylor expansion of the ordinary
bootstrap estimator.

As far as the results apply to smooth functions of means we shall adapt our
notation to it, writing:

(2.35) T° = T(X) (for T(X))

(2.36) Top = EA(T(X) (for Ex(T(X")))
B

(2.37) = B T(X;)
b=1

Methodology The Taylor expansion of T(T;) is:

(238) T(X;) = T(X)+ (N} —T)T'(YH%(T; - XPT(X) - ...

If we take expectations on it we obtain the ordinary (unbalanced) bootstrap
estimate Top, and, taking variances on this expansion we have:

*This enables the proofs to be based on Taylor expansions for the statistics. It seems that,
given that the results to be related have been established using the influence function tools, it
would be nicer to use them here as well.
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(2.39) varp(Top) = 0+varpg(B™' Y (X, ~ X)T'(X))+ O(B~'n"2)
b=1

(2.40) (Bn)~'¢*T'(X)? + O(B~'n72)

where 62 = n71 3" (X; - X)2. _

The core of this work lies in proving that Efron’s centered estimate, T'(P)
(2.4), (= Tca), and Davison et al’s linear and balanced estimates Ty, Tegn
are built in such a way that the variance corresponding to the linear part is
eliminated.

e In the linear estimate, Ty g the linear term is explicitely removed, so that:
241) T =B, {1®) - (T -}
and therefore, from (2.40) its variance is of order O(B~1n~2).

o In Efron’s centered estimate, thg_yariang*is not explicit%‘ removed, but
writing the grand mean (i.e. T(bP)) as X = B! Z,?:l X, we can write
TrLp as
(242) Tep =B T,L TR - (X = BT, X, - XT'(X)
and now using
(2.43) X" -X)T'(X)~T(X") - T(X)
we obtain the centered estimate:

(244)  Tep=B 'Y P T(X;)-T(X") + T(X)

e by noticing that ifo = X then the linear term correction is 0 we come to
the balanced method estimate, Tgp where this equality is achieved making
each observation appear exactly B times in the B resamples, so that if
we call X;‘ =n"1y, XL the mean under balanced resampling then the
balanced estimate is:

—1 B .
(245)  Tes=B'YE, T(x))

Tgp is examinated in the next section.

It is worth noticing that these three estimates are equivalent in their asymp-

totic variance, but not in their unbiasedness, kept only by Trp, (and by the
ordinary estimate Topg)

Some generalizations of minor applicability are also provided in this work.
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3. THE BALANCED BOOTSTRAP AND RELATED TECHNIQUES

3.1 The Balanced Bootstrap. (Davison et al. (1986))

The key idea of this method arises from the fact that, when we resample in
the ordinary way from the empirical distribution (i.e. drawing n values with
replacement from the original sample, (X, X,,..., X,,)) the frequency of each
value in all B samples is not necessarily (probably never) the same as it has
in the original sample (1/n in the case where all values are different; if B were
infinite, by the laws of large numbers the observed frequencies would be the same
as those in the sample).

In order to eliminate this source of error Davison et al. (1986) [4] propose a
balanced resampling method consisting of:

1. Concatenate B copies of (X, Xa,...,X,) in a string of length nB
2. Randomly permute this string

3. Read off the B bootstrap samples as successive blocks of length n in the
permuted string,.

Gleason(1988) [13] suggests different algorithms to perform the above efficiently.

It can be seen that this algorithm arises if we obtain the frequencies of the
element X;, i = 1...n, in the bth resample, b = 1...B, f};, from a hypergeometric
distribution with row sums f, * = n and column sums f;* = B instead of
taking them from a multinomial distribution with expectations (1,...,1) as does
the ordinary bootstrap.

Arguments for the superiority of the balanced bootstrap over the ordinary
way of resampling are also given by Davison et al. (1986) [4], applying some
calculations for the hypergeometric and multinomial distributions derived from
Haldane (1940) [15]. To do this, they calculate the expectation and the varian-
ce of the bias estimate and the expectation for the variance estimate for the
estimates of both ordinary and balanced methods. In every case the balanced
method estimate turns out to be better.

The balanced bootstrap, will be obtained by a straightforward application
of formulas (1.8), (1.9), (1.10) to the b balanced resamples obtained from the
preceding algorithm.

3.2 The Accelerated Simulation Method. (Ogbonmwan and Wynn
(1986))

In a contribution to the discussion of a 1986 paper by C.F.J. Wu [32], Wynn,
H.P. and Ogbonmwan S.M. introduce the idea of accelerated simulation establi-
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shing a frame in which the efficiency of a given resampling plan may be quanti-
fied.

If S is the set of all possible configurations that may be obtained sampling
with replacement from (X1, X3, ..., X,) the ordinary bootstrap takes B samples
from S by simple random sampling (s.r.s.). As happens in sampling theory it
may be expected that a more sophisticated sampling scheme would give more
accurate estimates.

An alternative to s.r.s. given by J. Tukey (1978) [35)] is considered. It consists
in making a complete enumeration from S’ C S where S’ is much smaller than
S and it fills out S in a certain dense way such that any inference based in S’ is
valid for S.

The authors give some hints on how to measure the discrepancy between
the true and the estimated statistic and argue through them why the balanced
bootstrap performs better.

The problem, of course, here (as in any problem in sampling theory) is how to
choose S’ (e.g. the balanced method, of Davison et al, is a good choice). They
suggest that subsets chosen by minimizing the discrepancy or by a judicious
“space-filling”, together with balanced resampling, would do better than the
ordinary bootstrap.

4. IMPORTANCE SAMPLING AND THE BOOTSTRAP
4.1 Introduction. Importance Sampling

In this work — as in the following — a classical Monte Carlo swindle, impor-
tance sampling, is used as a way to increase the accuracy of bootstrap estimates.

The traditional importance sampling method is concerned with the estima-
tion of expectations (Hammersley and Handscomb (1964) [21]). Very briefly
stated, the method goes as follows: Suppose we want to estimate the expecta-
tion of a response function ¢(-) from an input random vector U = [Uy,...,Up)
uniformly distributed over the m-dimensional unit cube with probability density

fo(u), so that, in terms of the random variable Y (U), the estimand of interest
is:

(4.1) = FE(Y)= /Rm d(u)fo(u)du = /I’" ¢(u)du.

This may, of course, be estimated by the sample mean Y. For a given sam-
ple of size n, variance reduction techniques (VRT) usually yield an alternative
estimator 8,,, with




(4.2) E(0,)=0, and war(f,) < var(Y,).

Importance sampling requires the input vector U to be sampled from an al-
ternative density f(-) instead of the uniform density fo(-). To compensate for
this distortion of the input so as to achieve condition { 4.2) the original response
Y = ¢(U) is replaced by the variate Z = ¢(U)/f(U). The importance estima-
tor 6, is then taken to be the sample mean Z, computed over n independent
replications of the new response Z. When the importance density f(-) closely
mimics ¢(-) the ratio #(U)/f(U) is nearly constant, and a substantial variance
reduction is achieved. The trouble in this technique lies in the appropriate se-
lection of f(-) up to the point that not only is variance reduction not guaranteed

but also, with a poorly chosen importance density, large variance increases can
occur (Bratley, Fox and Schrage (1987) [2]).

4.2 Importance Sampling for Bootstrap Confidence Intervals. (M.
Vernon Johns (1988))

Quantile estimation Importance sampling is here applied to quantile esti-
.mation, a different problem from mean estimation and therefore the procedures
must be adapted. Standard results for order statistics guarantee that, as m be-

comes large, if f = F’ exists and is continuous at &, (the p-quantile of an r.v.
£) then:

d
(4.3) vm(é, — £)2N(0,72)
where r2 = p(1 - p)/f2(&,) and fp is the sample p-quantile. The importance
sampling approach is as follows:
1. Generate Yi,...,Y,, ~G; (G =yg)
2. Let the ordered values be: Y1) < ... <Yy

3. Let
(4.4)

1~ f(Y6y)
Sy = — E 1<r<m
m g(Y(z)) -

i=1
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where, by means of the order statistics theory, S, = F(G~!(%)), and given
that S, = p — Y(,) = G~1(&) = F~'(p) = p the following importance
sampling estimator is suggested:

SR <p
45) & .,.=Yng, Rst (R) =
5 &, ) {5(n+1)>P

The problem, of course, is how to appropriately choose G in order to obtain
an accurate estimator {; ,, with moderate sizes of m.

By studying the asymptotic distribution of £ ,, the author obtains the fol-
lowing result:

(4.6) V(€ — )N (0,2

where, letting IC(Y ; G) represent the influence curve for Y under the distri-
bution G we have (again):

) 1 133 fz(y)
(4.7) r? = Eg(IC*Y;G)) = f2(£p){ —eo 9(¥) w-r }

Alhough this should , in principle, allow us to reduce r choosing the appro-

priate g(y) (close to f(y)1(y < &)/p), in practice it is rarely feasible for f and
€p are not fully known and only in particular cases may a substantial reduction
be obtained.

Bootstrap confidence limits for location estimates The preceding im-
portance sampling scheme may be combined with the percentile method for buil-
ding bootstrap confidence intervals (see Efron and Tibishirani (1986) [10]) to
obtain an importance sampling estimate of the pth quantile, ¢,, of a location
estimate T(F) This is accomplished by associating a resampling probability
G(X) = (91,92, -+ 9n), Y.i=1 gi = 1 to each value of X = (Xi,...,X,) in the
original sample. So the likelihood of a bootstrap sample X* = (X7, X3,...,X}}),
G is given by:

n n
(4.8) lg(X*) = HHgija { 9ij _ 9i o

-+ L =1 otherwise.
i=1j=1

The corresponding likelihood under ordinary bootstrap is {p(X*) = n™"
and so we may obtain the bootstrap analogue of ( 4.4):

H
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(4.9) Z iz g <r<m

so that, as in ( 4.4), the estimate of the pth bootstrap quantile of T(F) is
T(ry where R is such that Sg < p and Sp41 > p.

To choose T appropriately , a representation for T(F") — T(F) is introduced:
Let Z; = (X; — T(F))/S(F), where S(-) is some location-and-scale equivariant
scale functional, then:

(4.10) VA(T(F) = T(F)) = 1/VR'Y_ h(Z:) + op(1)
i=1

This enables us to generate the distribution G by ezponential tilting, which
consists in letting:

(4.11) hi=f X—_-I@ , i=12.n
S(F)
for the original X/s and setting:
(4.12) gi = exp{a(h;/\/né) + b}

where 62 = (l/n) S h? and b is chosen so that 37, g; = 1. Now re-

sampling under G as before we obtain the following likelihood for the bootstrap
sample:

(4.13) Ig(X*) = exp{aV"* + nb}

where V* = 1/\/_0'2 h; and h} = hj — X! = X;. Under ordinary
bootstrap the quantity V™ is approxlmate]y N(O 1), whlch in turn is the approxi-
mate distribution of (v/n/o)(T(F)~T(F)). Under tilted bootstrap, V* is approx-
imately N(a,1) which is then the approximate distribution of (vVno ) (T(F*) -
T(F)), so that the approximate distribution of T(F*) is centered at T(F) +
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ac/y/n and has variance 6?/n, which is the same as the approximate variance
of T(F).

Now, the importance sampling estimate, Tg) given by (4.9) has asymptotic
variance given by (4.7), which may be minimized choosing g to minimize I =

i’;o f2(z)/gn(z)dz where, in the present context, f, and g, are the approximate

densities of T(ﬁ’) and T(ﬁ'*) respectively. With an adequate change of variables
we can now substitute f, and g, in I by N(0,1) and N(a,1) so that the upper
limit £, now becomes the pth quantile of the N(0,1), z, and a that must be
chosen to minimize . The minimizing values of a may be obtained numerically
for given values of p.

Johns (1988) [31] applies this method to build confidence intervals for a
robust location estimate. The method is compared with ordinary bootstrap re-
sampling. Both resampling procedures are also applied to a studentized version
of the statistic. In every case the estimate obtained by importance sampling
has as much as 10-fold less variability than the one obtained by ordinary boot-
strap. Though this method works fairly well when the sample size is small, a
slight increase in the variability of the lengths of the intervals is observed for a
small number of replications (10). In general the studentized statistic produces
coverage probabilities closer to the nominal value of the confidence level in both
cases but also with an increase in the variablity of the interval lengths.

Open Problems

e The method of exponential tilting leaves the variance of the statistic un-
changed. Some other transformations performing in the same way, but
directly reducing the variance, might be tried.

o The performance of the method should be numerically and eztensively
contrasted with other methods to increase the efficiency such as saddlepoint
approximations or the use of estimates of the moment-generating function
of a linearized version of the statistic (as cited in Davison et al (1986) [4]).

e The method might be generalized to many other bootstrap confidence
intervals methods, especially those in which the statistic could admit a
representation of the form (4.10).

4.3 Importance sampling and the nested bootstrap. (D.V. Hinkley
and S. Shi (1989))

Introduction Iterative bootstrap methods have been proposed by different
authors (Beran (1987) [1], Hall and Martin (1988) [20], Di Ciccio and Romano
(1988) [5] and in the work by Hinkley and Shi (1989)[28]) as a way to achieve
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higher order accuracy when building confidence intervals. A comparative study
of these methods and others that do not use iteration, such as Efron’s percentile
methods, has been done by Hall (1988) [16]. Except for the case of the automatic
percentile method (Di Ciccio and Romano (1988) [5]) —which may be iterated but
in which the number of required calculations increases linearly with the number
of iterations— all other iterative methods have the drawback that the number
of calculations increases exponentially with the number of iterations, so that
higher accuracy is only obtainable at a higher computational cost. This is then
an appropriate situation to apply some kind of variance reduction technique, and
in this work the authors apply importance sampling to a new iterative bootstrap
method, the nested bootstrap.

The nested bootstrap This method may be viewed as making a correction
to the percentile limit (see Efron (1982) [7] or Efron and Tibishirani (1986) [10}),
where the upper P confidence limit for an estimate T'(F') is simply T('R) where
T('f) represents the ordered values of the B bootstrap replications of T(f:' ) and

R = |BP] is the integer part of BP. The implicit idea is to estimate the
deviation from P in coverage of the percentile limit T’R) and hence to define an

adjusted value R’ of R such that 7’5, will give coverage closer to P. It turns out
that this modified percentile limit 1s the Q quantile of the bootstrap distribution
T*, that is (*S) with S = | BQ| where @ satisfies the double bootstrap equation:

(4.14) Pr [Pr(T** < T|F*) < Q|F] =P,

and writing U* = Pr(T** < T|ﬁ'*) (4.14) may be expressed as:

(4.15) P=Pr(U" <QIF)

where U*, as an c.d.f it is, will be approximately uniformly distributed for
large values of n.

Equation (4.14) may be solved using simulated samples to estimate the pro-
babilities in the folllowing way:

1. Let b run from 1 to B.

2. Generate a sample (X7, X3,..., X2)? from F and calculate Ty

(a) Let m run from 1 to M.
(b) Generate a sample (X;*,... X*)¥" from F* and calculate Ty

(this will give M estimates Ty, ..., Tp%y)
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(this will give B estimates, Ty, ..., Ty and a total of BM estimates Tj,r ).

Now if we let I4(y) denote the indicator function for a set A then the empirical
version of (4.15) is:

B
(4.16) P=B"'Y "I q(l})
b=1
where (7; = 1...B analogously estimates the innermost probabilities of

(4.15). The solution Q to (4.16) can be found ordering the U*'s and then solving

R +1
(4.17) Z(m<BP< Z Ut

for R’ = | BQ|. The double bootstrap confidence limit is Tlrry-

Two-level Importance sampling The key computation of the method has
a simple analogue in terms of normal distributions. An importance sampling
scheme for Monte Carlo implementation of this analogue is first derived and
then translated into the bootstrap context.

The main idea for the normal analogue consists of considering that, “as often
happens” T is approximately normally distributed T ~ N(8,n"1V), with V =
var{L(X, F)}, and L(z, F) is the influence function of T" at = under F. From
this it follows that T™ |F is approximately N(T, n 1V) and T™* is approximately
N(T*,n~1V*) so that (4.14) becomes:

(4.18) P =Pr{Pr(Z <ulY) <@}

where Y ~ N(p,0?) and (Z]Y = y) ~ N(y,0?).
The approach is done in two stages.

o First we suppose that U = u(y) is known, so that we can estimate P as:
(419)  Po=B 'YL ToqUs).
Following thue usual importance sampling approach we write:

(420) P = [ Ipq)(u(y)) |22l g(y)d(y)

which leads us to the estimate

-1B o to{(Yy —w)/o}
(4.21) BlE,,:lI[o,Q](Ué)[ o ]
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where the Y, are sampled from g(.) and U] = w(Y/). Now taking g(y) =
o~ '¢{(y — u — no)/o} which makes Y ~ N(u + no,a?), we arrive at the
estimate, depending on a parameter, 2:

. exp(37°)B~" TyL1 To,q1(Up)er (P< b,
(422) P, =
1-exp(3n*)B~' Ty Iqu(Upes (P> 4)

where Ey = exp{-n(Yy —n)/c} (b =1,...,B). and 75 is chosen so to
maximize in some sense var(Pp)/var(P,) (called EEF, by the authors of
the work). The optimal value of 9, call it np, may be approximated by:

(4.23) e =(I5pl + 3 — VIkpDsgn(s — P).
where kp = ®~1(1 — P). It is quite robust to minor changes in 7.

e A second level sampling involves the estimation of u(y). Proceeding in an
analogous way to in the preceding step we obtain:

exp(3)M 1 N T oo i (Z) i (v > p),
(4.24) a(y) =
1-exp(ABOM TN T oo)(ZiMm (¥ < p),

where f,, = exp{—B(Z}, - y)/e} (m=1,...,M), the Z!, are indepen-
dent N(y+80,0?), and 3 is also chosen optimally. Writing r(y) = (u—v)/o
the optimal value for 8 is approximately:

(4.25)  B(y) = (Irw)l + % = 1VIr(W))sgn{r(y)}.

Now setting y = Y in (4.24) and substituting U} = a(Yy) for u(Y{) in
(4.21) we obtain the estimate:
- B
. exp(30°)B™! Lz To@i(Uy)es (P<3)
(426) Ppp=
L= exp(3n)B™ Dl lqu@ies (P2 3)
where E) is as before.

There is a problem in that, to choose optimal values of 4 and 7, we must know P
and u(y). However, due to their robustness, the values obtained with the normal
approximation continue to be right even when we don’t know P and u(y).

Two level importance sampling for the nested bootstrap In order to
apply the foregoing to the nested bootstrap we need T* and T** to be approxi-
mately normal (so that they can play the role of Y5 and Zps in (4.21) and (4.24)).
In the work by Johns (1988) [31] it is established that approximate normality
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for T* may be achieved by sampling from an ezponentially tilted distribution,
i.e. if we sample (X*) from a multinomial distribution F, with probabilities

(4.27) Pr(X* = z;) < exp{nL:/(n&)} (i=1,...,n)

then T* is approximately N(T + né,6?), with 62 = n=2 3" {L(=, )2
A parallel is feasible for T7** so that, if we sample X** from Fj a multinomial
with probabilities:

(4.28) Pr(X** = o}|F*) x exp{BL}/(n6")} (i=1,...,n)

with L} = L(zf, F), then T** is approximately N(T*+p3¢,6*2). The optimal
choice of B depending on T** in a similar way as in (4.25):

(429) BT = (r(T) + 5 — /I Dsgn{r(T")}.

where r(T*) = (T — T*)/6*. Similarly the analogue to exp(37%)es in (4.26)
will be:

(4.30) LR} = fI dF,(z3;)/dFo(z];).
j=1
With all the analogues completed, the bootstrap algorithm is as follows:
1. Calculate T, L; = L(z;, F),i=1,...,nand 62 =n~2 Y L?
2. Calculate the optimal value of 7, following (4.3) and the tilted probabilities
(4.31) pi = p(z;) o exp{nLi/(no)}, (i=1,n)
3. Repeat for b=1,...,B

4. Sample z;1,...,zp, randomly from p;,...,p,. Then calculate T, and

LR} = TIj-, {nb(=};)}

5. Calculate L}, = L(z},, F*), (k=1,..n) 62 =n"23 4, L} rpy = (T —
T*)/&}, optimal values of 3, following (4.29) and the probabilities:

(4.32)  phi = p*(x3) < exp{Bs L} /(nd7)}
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6.

Repeat for j=1,..., M:

Sample z3},,...,z};, randomly from (pjy,...,p},), calculate T, and
H;::l{"f’*(x;;,k)}
7. Calculate
) MY I oom(Ty )/ LR (T; > T)
(433) Ur=
1-MSN L oo)(T) /LRy (Ty <T)
8. Calculate
[ BT L lea T/ LE; @5 <),
(4.34) P=

1- B8  Lon(UD/LR; (@) > 1)

Open Problems

How can this approach be applied when T is not approximately normal?.

Can we obtain theoretical approximations playing the same role as the
double bootstrap iteration?

To what extent could theoretical approximations achieve the same effi-
ciency as the second bootstrap?.

How is M to be optimized in the second level resampling?.
How would these techniques apply to more complicated situations?.

An improved second-level sampling is introduced in the paper as a kind of
“adaptive correction”, but it is not analyzed in much depth.

As mentioned in other places more experimental evidence is required to
draw reliable conclusions. It seems that a wide simulation study would be
of general interest.

5. CONTROL FUNCTION ESTIMATES FOR THE BOOTSTRAP
(THERNEAU (1982))

Introduction. This method arises from the following identity:

(5.1)

E{f(X)} = E{f(X) - h(X)} + E{h(X)}
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and consists, when we try to estimate the expectation of f, in taking another
function h, whose expectation is a known quantity E{h(X)} = us, so that
E{f(X)} may be estimated by the following control function estimator:

B
(5:2) Econt. = B™')_[f(z) — h(zs))] + 1
b=1

which has variance:

(5.3) var(Econt.) = B %var(f — h).

The appropriate choice of h will make the variance of (f — h),

(5.4) var(f — h) = var(f) + var(h) — 2cov(f, h)

much smaller than var(f). A reasonable election of h will take it close to f
so that (f — h) is small, and correlated, so that cov(f, h) is positive and as large
as possible.

Therneau (1983) [34] in an unpublished Stanford Ph.D. thesis applies this
method to the bootstrap and discusses a wide set of control functions. For
brevity we shall only consider the bias and variance estimates.

If T is the statistic whose expectation we are trying to estimate, the bootstrap
version of this method will consist in finding a function g whose expectation
under the bootstrap distribution is known, so that we may write:

(5.5) E;T(P)
(5.6)

Ep{(T(P) — g(P)} + E4g(P)
Ep(T(P) = g(P)} + pq

Bias Estimation. Two natural choices for g(P), when we want to estimate
the bias seem to be the quadratic functional(see Efron (1982) [7]):

(5.7) (P)=c+ PU +PVP.

or simply the linear functional:
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(5.8) lin(P) = ¢ + PU'

These terms are closely related to the first two and first term respectively of
the von Mises expansion (2.20) of T so that the requirement of being close to
this expansion is in principle fulfilled.

Some simulation experiments prove that choosing ¢ to be the linear functional
of P allows the number of resamples needed to achieve a given variance to be
reduced by a factor of 5 to 10 with respect to the ordinary bootstrap. Though
the use of quadratic functionals would probably achieve higher reductions, they
are not so recommendable as far as the number of coefficients to determine is
also much bigger (n(n + 1)/2 vs n for the case of linear functionals), so that
linear functionals seem to be the right compromise.

Bootstrap Estimate of Variance. Given a linear approximation, lin(P) to
T(P) as in the preceeding section, the control function suggested by Therneau
to estimate the variance of T, Ez = {T(P) - T} is

(59) gvar(P) = (IIH(P) - ﬂlin)2-

As before, this expression closely matches {T(P)—T} and has known expec-
tation. Moreover it works better than the more straightforward approximation
lin(P)? to T(P)?, seemingly due to the fact that the curvature of the func-
tions increases when they are squared. The author leaves open the possibility of
correcting this square so that it might work better.

6. ANTITHETIC RESAMPLING (P. HALL (1989))

6.1 Introduction

Hall (1989)[18] has introduced an antithetic resampling method for the boot-
strap based on the well known VRT of antithetic variates introduced by Ham-
mersley and Morton (1956)[22]. (See the classical book of Hammersley and
Handscomb (1964)[21] for a description.) The basic idea of the method is as
follows. Let 6 be a statistic. To estimate E(é) by simulation we calculate g on
n independent runs and then use
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= n ~
(6.1) b=n"1> 6
i=1
to estimate E(f). The variance of this estimate is:

(6.2) var(Z) = n~tvar(6).

~

If we can generate our simulated samples so that the estimates él,éz, e, By
are negatively correlated by pairs (p(62i—1,62;) < 0) the pairs mutually being
independent among them we may define:

é?i—l + é?i

it _
(6.3) o = 2=

that will give the same estimate as 6.1

nf2

(6.4) ot = (/21 S 6l =0
i=1

If the negative correlation is adequately induced this estimate may have a
lower variance than 6.1 by the relation:

- 1 N 1 N 1 A N
(6.5) var(B}) = Zvar(ﬂz,-__l) + Zvar(&_;,-) + -z-cov(Og,-_l, 6s;)
L —
<0

As in other VRT there is a subtle point that lies in how to induce the negative
correlation between #,;_1 and f,;.

6.2 Antithetic resampling

Suppose we are interested in the bootstrap estimation of the expected value,
¥ of an order invariant statistic 8(.\'1,..., X,). The bootstrap estimate of ¥ 1s:
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(6.6) ¥ = B{0(X], X5,..., X})|F}

where “|ﬁ"’ denotes the ordinary bootstrap sampling. As usual this expec-
tation may very rarely be evaluated analytically and we approximate it by:

B
(6.7) ¥ =By [0(X7 X5, X))
b=1

To introduce antithetic resampling we use the following equivalent formula
for 6.7:

B

(6.8) ¥ = B 0(X1,1y, - Xrm)]
b=1

where I(b,7) (1 < b < B,1 < i < n) are independently and uniformly
distributed on 1,2,...,n.

The idea of antithetic resampling is to choose appropriately an anfithetic

permutation m of the integers 1,...,n so that if we define
R B
(69) ¥** = g1 Z[H(X,,{[(b‘l)}, ceey ‘Yr{l(b,n)})]b
b=1

then ¥* and ¥** should be negatively correlated and, as a consequence, the
estimate:

(6.10) gt = %(\If + )

should enjoy the traditional advantages of antithetic sampling.

Whe are going to see that this permutation, call it =, is of the form: #(i) =
n—1+1

Let us first suppose, for simplicity, that the estimate (X, X2,...,X,) is
a function of the mean, (and henceforth it admits a Taylor series expansion),
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0(X1,X2,...,Xn) = 6(X). We assume X; d-variate and # smooth, and define
8;(z) = (8/827)8(x) and

d
(6.11) Z 8, (X)(X: - X

It may be easily seen, by a 1st order Taylor series expansion that

n
(6.12) var(¥*|F) = var(¥**|F) ~ (Bn)"'n~' ) V7
i=1
and
n
(6.13) cov(¥” , W**|F) ~ (Bn)"!n 1ZY,-Y,,(,~)

and therefore
(6.14)

var(\il”ﬁ’) = (2Bn)~! (n'1 EYiZ +n! ZYiYw(i)) +O(B™'n"?%)
i=1 i=1

It is known that, given a set of ordered real numbers ¢; < ap < ... < a,,
if b1,...,bn is a rearrangement of these numbers then ) a;b; is minimized by
taking the smallest a; with the largest b;, the second smallest with the second
largest and so on. Therefore, under the notational convention that Y1 <Y¥3... <
Y, the series ) Y;¥y(;) is minimized over all permutations m by taking = (i) =
n—1+1.

In the more general case where € is not a function of the mean, other gene-
ralizations may be made for the former idea to be valid. One possibility is to
use the regression version of antithetic sampling replacing the X;’s by estimated
residuals in 6.11. An alternative is considering the von Mises expansion of f
instead of the Taylor expansion, i.e. if we put: 6 = 0(X1,Xa,...,Xn) = A(F)
and let IC represent the influence function of A (see appendix I) we can write:

(6.15) A(F) = A(F) + 071 S IC(X:) + 0p(n3)
i=1
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and replace definition 6.11 by

If we do so, then the ensuing definition of the permutation = continues to be
valid.

6.3 Estimation of distribution functions and quantiles

The former ideas apply not only to bootstrap expectation estimation but also
to other situations that are typically analyzed by bootstrap methods. Suppose
we want to estimate the distribution function of 6 or of a studentized version of
@ such as:

(6.17) T =n*{6(X) - 0(n)}/6

where p = E(X).
As before, we define, the bth resample:

(6.18) {X7, 1<i<n) ={Xjp4, 1<i<n}

and the antithetic resample

(6.19) (X 1<i<n) = {X;y00y 1<i<n)

The bootstrap estimate of G is

(6.20) G(z) = pr[T* < z|F)

which we usually approximate by G*, the empirical c.d.f. of the sample. If
we now define:

(6.21) Gt = %(G* +G*)
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it may be proved that G* and G** are negatively correlated and that the
antithetic permutation 7 defined before gives the greatest degree of negative

correlation and so maximizes the performance of G'.

It is possible from this idea to define an antithetic quantile estimate l p and
Hall (1989) indicates that under certain regularity conditions the asymptotic

relative efficiency of l/tB with respect to 1] g is the same as that of Ga(zp) -
G(z,) relative to G(zp) — G(zp).

6.4 Antithetic resampling and other “efficient bootstrap methods”

Hall (1989) [18] compares the performance of antithetic resampling to impor-
tance resampling in problems of distribution function estimation and quantile
estimation as introduced by Johns (1988) [31].

He develops importance resampling schemes for distribution function estima-
tion and shows that antithetic resampling often gives greater efficiency towards
the center of the distribution but not at the tails.

It must be kept in mind however that importance resampling may be much
harder to carry out than uniform or even antithetic resampling, so that the
theoretical increase in efficiency may be partially lost by the increase in the si-
mulation costs. Hall (1989b) [18] gives some expressions to quantify this increase
in both, antithetic and importance resampling.

The combination of antithetic resampling with other “efficient bootstrap
techniques” is not a good strategy. Not only does this not improve the effi-
ciency but it even decreases it (this is, in fact common in variance reduction).
For instance Hall (1989b) [18] proves that combining antithetic resampling with
Efron’s centering method means that the covariance between the antithetic pairs
cannot be made negative (this implies that we shouldn’t either combine anti-
thetic resampling with the balanced or with the linear bootstrap, asymptotically
equivalent to the centered bootstrap). He also proves that the combination of

antithetic and importance resampling gives a poorer performance than either of
the methods alone.

7. MEASURING THE ACCURACY OF BOOTSTRAP ESTIMATES

7.1 Jackknife-After-Bootstrap Standard Errors and Influence Func-
tions. (Efron (1990))

Introduction. One of the main uses of bootstrap is to obtain measures of ac-
curacy for a given estimate, such as the bias or the standard error. If one wants to
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know how accurate those measures of accuracy are, a straightforward approach
consists in bootstrapping them to obtain for instance the bootstrap estimate of
their standard error (i.e. we have to bootstrap the bootstrap estimates). This
procedure may not only imply an additional source of variability but it is also
highly (CPU) time consuming, especially in the case of complicated estimates.
A different approach to efficient bootstrapping is proposed here, which essen-
tially consists in a way to measure the accuracy of the bootstrap estimates (of
accuracy) with no additional resampling.

This approach is based on the use of jackknife influence functions and esti-

mates of standard error: If we indicate with X(;) the data set remaining after
the deletion of the ith point:

(7.1) Xey= (X1, X2y Xim, Xign, -+, Xn),

and let S(;y = S(X(;)) be the corresponding deleted-point value of the statis-
tic of interest, S(X), then we may define the jackknife influence function for S
as:

(7.2) U,'{S} = (n d 1)(5( Yy — 5(,‘)), (S(.) ZS(;)/TL).
i=1

and the relative jackknife influence function as:

(7.3) u}{S) = ui{S) /[Z ui{S}/(n - 1)]3.
J
Tukey’s jackknife estimate for standard error of S(X) is:

1
2

(7.4) sejack{S} = [Z ui {S}?/(n(n - 1))]

Let us call S(X) a primary statistic. Some bootstrap statistics, to measure
its accuracy are:

e The bootstrap estimate of standard error, 5€p, i.e. the square root of the
bootstrap estimate of the variance defined in (1.9).



e The bootstrap estimate of bias, biasp{S} defined in (1.8)
e The length of a confidence interval,
(1.5) L = §*(:95) _ g*(.05)
where $*(?) is the bootstrap estimate of the ath percentile as in (1.10)
o The shape of a confidence interval:
(7.6) Sh =log{(S*%) — §*(:50))/(§*(:50) . §*(.05))
e and the 95th percentile for the bootstrap-t (see Efron (1982) [7] sec. 10.10).

We shall call them secondary statistics. If T(X, F) is some random variable
of interest —such as the bias or standard error of a statistic S(X)- depending on
the sample and on the underlying distribution F, and we write ¢[T'(X*, )] to
indicate some measure of accuracy for 7', then the general form of a bootstrap
statistic or secondary statistic will be:

(1.7) ¥(X) = ¢[T(X*, F)]

The efficient measures of accuracy developed in the following are based on:
e Jackknife influence functions and standard errors.
e Delta method influence functions.

e Calculation of internal errors (which also allows us to measure the accuracy
of the two former measures)

e A parametric bootsrap approach

It is worth noting that all these measurements of accuracy have been pre-
viously developed as first-level error measures, though they are applied here at

a second (or a third) level. Efron (1982) (7], chapter 6, reviews them, as well as
their inter-relations.

Tukey’s jackknife for bootstrap statistics. To obtain the jackknife es-
timate of standard error of 4(X) we need to compute the jackknife influence
function u(;){¥}, and to do this we need to calculate the deleted-point values

Yy = ¥(Xiy). Let F denote the ordinary empirical c.d.f., putting probability
1/n on each point of the sample and F(i) the deleted-point empirical c.d.f.,

(7.8) F(;): probabilityﬁon zj, j=L12,...,i—-1i+1,...,n
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The following result (Lemma 1 in Efron (1990) [9] enables us to calculate
Yy

An i.i.d. sample of size n from F’(;),

(1.9) (X1, X2,...,Xn) "~ F

has the same distribution as a bootstrap sample from F' in which
none of the X7 values equals ;.

Let P denote the resampling vector as defined in (2.2). Then, from (7.9) it
follows that

(7.10) Yy = o[T(X™, F)|P = 0],

where [T(X*, F)|P; = 0] indicates the conditional distribution of T(X, F")
given that P; = 0.
Let

(7.11) F(X) = ¢[T(X**, F), b=1,2,...,B]

indicate the Monte Carlo approach —i.e. with a finite number of replications
B- to (X} (in the same way we approximated {1.4), (1.5) and (1.6) by (1.8),
(1.9) and (1.10). Equivalently, the Monte Carlo approach to (7.10) is:

(7.12) Yy = $IT(X™", Fiay), b, st PP = (]

Once we have obtained ¥(; for any bootstrap statistic we may calculate the
influence functions, which will enable us to see which is the influence of every
point in the variability of the statistic, and to compute the jackknife estimate of
standard error.

The Delta Method for Bootstrap Statistics. The delta method, another
well-known device used to derive first-level estimates of standard error for a
statistic, may under certain circumstances give more accurate results than the
jackknife estimates when applied to a bootstrap statistic. It will only apply,
however, to functional statistics.

As in the former case we first define a variant of the empirical c.d.f. (that
is to say a different estimate of F to F), and a delta method influence function
from where we obtain a delta method estimate of the standard error.

~]
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Let

(7.13) F.; : probability

onzj, j#i.

The delta method influence function, also called empirical influence function
or infinitessimal jackknife for S is the derivative:

_0S{F}| o S(Fe) = S(F)
A - R
e=0
and may be approximated by putting a small value of ¢ in the expression.
Finally the delta-method estimate of standard error is:

(715) Sedelta{S} = [Z Ui{5}2/n2]§

where the n? is arbitrarily put, in the denominator instead of n(n—1) as in
(7.4) in order to agree with the usual nonparametric delta method estimate of
standard error.

For convenience of notation the calculation of the influence function is first
restricted to bootstrap statistics of the exrpectation form:

(7.16) ¥(X) = y(F) = Ep{r(T(X", F))}

where #(T') is some differentiable function of T and E indicates the ordinary
bootstrap expectation. The delta method influence function may be calculated
through theorem 1 of Efron (1990) [9], which establishes that it has the form:

(7.17) Ui{r} = ncovp{Pi, 7"} + Ex{(r *UAT(X*, F)}}

where the subindex F indicates the calculations done under bootstrap sam-

pling, and the empirical c.df. F is related to (7.13) by lemma 2 of Efron
(1990) [9], which we omit.




Once we have the influence functions the calculation of the delta method
estimate of standard error is straigthforward.

Efron (1990) [9] applies this formula to obtain the delta-method estimates of
bootstrap statistics mentioned in the introduction. He also derives an alternative
estimate of (7.17) based on the ANOVA decomposition of a bootstrap statistic
(2.7), .e. by means of the bootstrap influence function. This formula is more
efficient than (7.17) when applied to measure the accuracy of the bootstrap bias
estimate, but not much more when applied to the standard error estimate, which
may be explained by the fact that being based on a linearization, its advantage
comes from the amount of linearity that the statistic has. A comparison between
the jackknife and delta method estimates is also given. For the bias estimate
the (improved) delta method estimate works better, whereas for the jackknife
estimate there are no remarkable differences. In fact in the case of linear func-
tionals there is no difference between U;{¥} and »;{%}, and they are equal to
the bootstrap influence functions.

Internal errors. In the search for cheap methods to measure the accuracy of
bootstrap statistics, a further step comes from realizing that we can not really
know U;{¥} and u; {4}, but only their Monte Carlo estimates, U; {9} and #%;{4}.
Efron (1990) [9] calls the difference hetween the ideal and the Monte Carlo
estimates the internal errors.

Roughly speaking, he proceeds, with assistance of a lemma that he intro-
duces, and some matrix algebra, to apply Tukey’s jackknife covariance formula
(see Efron(1982) [7]), to obtain the covariance matrix of U;{¥} and u; {4},

(7.18) COVintern ( g{{’;}} ) )

where the square roots of the diagonal elements give the standard errors of
u{%} and U{4} respectively. Using these elements, the following result is estab-
lished: (7.19)

Ep{Sejack {#}?} = sejack {7} + trace(coviptern {ii})/(n - (n — 1)) + O(1/B)
from which a corrected estimate for se;jq.x will be:

(7.20) [§ejack — trace(coviprern{})/(n - (n — 1))]3.

The corresponding delta estimates are directly obtained by making the ap-
propriate substitutions and changing n(n — 1) for n? in (7.19).
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When the sample size, n, increases so do the internal errors, as a result from
the fact that the internal coefficient of variation is O(n/v/B) (see remark H of
Efron (1990) [9}).

Parametric Bootstrap Sometimes the bootstrap is applied parametrically.
In general this will mean resampling from F(X,8) instead of from F(X,#8), i.e.
we first estimate the parameter from the sample, and then generate samples
from F' depending on the estimated 9.

Let 4(X) be a bootstrap statistic,which we estimate, as in (7.11) using
F(X, 6) instead of F:

(7.21) (X)) = ¢[T(X**,6), b=1,...,B]

To apply the methods we have discussed up to now we need to estimate ¥y,
but now formula (7.12) no longer makes sense. It is replaced by an importance
sampling estimate. The idea consists of first obtaining a deleted point estimate
é(i) of @ based on the deleted point data-set (7.1), and then resampling from the
original sample but assigning a probability to each point z;

- _ S5, (X
(7.22) Ri(X*) = T

Lemma 3 in Efron (1990) [9] establishes the equivalence between ordinary
bootstrap resampling with those probabilities and deleted-point sampling (equiv-
alence here meaning equality of the expectation of r(T(X*, )), as in (7.16) under
both sampling schemes), and suggests the estimate:

(7.23) ) = SIT(X*®,05)), with probabilities R;(X*")/B]

where probability R;(X*?)/B is put on each T(X*b,é(i)).

An example with the parametric bootstrap-t percentiles shows that they have
smaller standard errors than the non-parametric ones.

Efron (1990) [9] develops Delta method estimates and influence functions for
the parametric case.
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APPENDIX

A. STATISTICAL FUNCTIONALS, VON MISES EXPANSIONS
AND INFLUENCE CURVES

Several concepts such as Influence functions and von Mises expansions appear
repeatedly, and in different situations, in the context of resampling methods.
Influence functions are actually mainly known from robust Statistics (Hampel
(1974)[24], Huber (1977){30] and Hampel et al (1986)[25]) but the basic ideas
come from the work of von Mises (1947)[36] who made a “differential approach”
for deriving the asymptotic distribution theory of statistical functionals.

A.1 Statistical functionals

Let (X, X2,...,X,) be a sample from a population with distribution func-
tion (d.f.) F and let T, = T,,((X1, X2,...,X5)) be a statistic. If T, can be
written as a functional of the empirical df. F,,, T,, = T(F,) where T does not
depend on n then T will be called a statistical functional.

Ezamples:

1. For any function h(z) let
(A1) Ta((X1,X2,..., X)) =n7 30 R(XG).
Then for a general d.f. G the functional defined by:
(A.2) T(G) = [ h(2)dG(z)
satisfies T,,((X1, X2, ..., X»n)) = T(Fy).

2. Let ¥ be a real valued function of two variables and let 7, be defined
implicitily by
(A3) S ¥(X;,T,) =0.
The corresponding functional is defined as a solution T(G) = @ of
(A4) J¥(z,60)dG(z) = 0.

Estimators of this form are called M-estimators.

Functionals of the form

(A.5) T(G) = / h(2)dG(x)
are called linear statistical functionals or simply linear functionals.
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An application of the central limit theorem shows that for a linear functional

T,

(A.6) V(T (F,) - T(F)) — N(0,0?) weakly
provided that

(A7) 0< /h2(r)dG(l’) - (/ h(r)dG(z))? = 02 < 0.

The central idea behind the von Mises Method is to extend this asymptotic
normality result to statistical functionals which are not linear by means of an
approximation by linear functionals.

A.2 Von Mises expansions

Von Mises (1947)[36] proposed that a Taylor expansion could be used to ap-
proximate statistical functions by statistical functions of simpler form, and that
this result could be applied to obtain results about its asymptotic distribution.
The main result is established informally in the following theorem of von Mises
that appears in Serfling (1980)[33]. p. 212:

Theorem 0.1 The type of asymptotic distribution of a differentiable statistical
functional T,, = T(F,)) depends upon which is the first nonvanishing term in the
Taylor development of the functional T(-) at the distribution F of the observa-
tions. If il is the linear term, the limit distribution is normal (under the usual
resirictions corresponding to the central limil theorem). In other cases, “higher”
types of limit distribulions resull.

Serfling (1980)[33] and Fernholz (1983){12] provide schemes for the analysis
of T(F,) in this framework in order to derive its asymptotic distribution.
Roughly it starts by considerating a Taylor expansion of T(F,,) — T(F):

(A8) T(F,)-T(F)=d,T(F:F, - F)+ %(IQT(F;F,, - Fy+---
Analysis of T(F,,) — T(F) is to be carried out by reduction to
1
(A.9) > ﬁd,» T(F.F, - F)

j=1
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for an appropriate choice of m. The reduction step is performed by dealing
with the remainder term

(A.10) Run = T(Fa) = T(F) = Vinn

and the properties of T(F,) — T(F) then are obtained from an m-linear
structure typically possessed by Vi,n.

A.8 will be called the von Mises expansion of T" at F.

The existence of this series expansion A.8 depends on differentiability pro-
perties of statistical functionals. To deal with them, a derivative for functionals
is introduced as the von Mises derivative also called the Gateauz differential of
T at F in the direction of G.

Let F and G be two points in the space F of all distribution functions. The
“line segment” in F joinig F and G consists of the set of distribution functions
{(1=X)F+AG, 0 < A < 1}, also written as {F+XG-F),0< X< 1}. Consider
a functional T defined on F + MG — F) for all sufficiently small A. If the limit

(A.11) & T(F;G - F) = Ali11()1+T(F+/\(Gj\F))_T(F)

exists, it is called the Gateaur differential of T at F' in the direction of G.
(Note that d; (F; G — F) is simply the ordinary right-hand derivative, at A = 0
of the function Q(A) = T(F + M — F)) of the real variable ).

A.3 Statistical Interpretations of the Derivative of a Statistical Func-
tional: The Influence Curve.

In the case of a statistical functional having nonvanishing first derivative
(implying asymptotic normality under mild restrictions), a variety of important
features of the estimator, such as the asymptotic variance parameter and certain
stability properties may be characterized in terms of this derivative. In typical
cases the Gateaux derivative is linear: there exists a function T}[F; ] such that:

(A.12) & T(F:G - F) = /Tl [F: 2]d[G(x) — F(2)].

If we put
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(A13) h(F;2) =T[F;z] - /TI[F;:c]dF(:c)

the reduction methodology based on the analysis of the remainder term A.10
shows that the error of estimation in estimating T'(F') by T(F,) is given approx-
imately by:

1 n i
(A.14) ~ ;h(F,‘\,-).

Thus h(F; X;) represents the approrimale contribution or “influence,” of the
observation X; towards the estimation error T(F,) — T(F). It was introduced
by Hampel (1968, 1974)[23,24] who calls h(F;r), —00 < & < 400 the influence
curve, or influence function of the estimator T(F,) for T(F). Note that the
curve may be defined directly by:

(A15)  IC(z;F\T) = dT1F + 2/(\6’ ] , —00<z< 400
g A=0

. T[(1 = \)F + A8,] — T[F]
(A.16) = lim 5

where 6, means a point mass 1 at x.
FErample Let the mean of F exist and be equal to g. The influence curve of
the sample mean, T = [ zdF(r) is:

(A17) IC(I;F,T):limD(l_/\)H; Az - p =zx—p

The expansion A.8 may now be rewritten as:

(A18)  T(F,)

i

T(F)+ /IC(J';F,T)(](F,,, —F)z)+ Van

(A.19)

T(F)+/IC(r:F.C')dF,,(z)+an
since [IC(x; F,T)dF(r)=0.
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A.19 is the expression of the the von Mises expansion of T' at F' by means
of influence functions.

The influence curve is closely related to the asymptotic variance of T' (as may
be easily derived from A.19). If (X1, X2,...,X45) "2 F then according to the
Glivenko—Cantelli theorem F,, will tend to F. If we suppose that T,(X;, X,...
Xpn) = Tu(Fn) =~ T(F,) (ie. that we may approximate the functional depending
on the sampling distribution, F,, by that evaluated on the empirical distribution)
then we may write:

(A.20) T,,(F,,):T(F)+/I(”(r:F,(“)dF,,(.r)-{—Vm,,

and evaluating the integral over F,, and rewriting yields

NG Y IC(Xi T, F) + Vinn.

=1

(A.21) Va(T, = T(F)) ~

By the CLT, the first term on the right-hand side is asymptotically normal.
In most cases, as n — oo the remainder, V},,, — 0 so that 7, is assymptotically
normal, 1.e.

(A.22) In(V1(Ty = T(F)) — N(O, var(T, F))
where
(A.23) var(T, F) = /IC'Q(I;T, F)dF(x).

This formula emphasizes the interest of influence functions, not only as a
general tool for assymptotic expansions but also as an approximation to the
variance of an estimate.
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