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A MATRIX DERIVATION OF A
REPRESENTATION THEOREM FOR (trAP)l/ P

H. NEUDECKER

University of Amsterdam

A matriz derivation of a well-known representation theorem for
(trAPYVP is given, which is the solution of a restricled mazimiza-
tion problem.

The paper further gives a solution of the corresponding restricted mi-
nimization problem.
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1. INTRODUCTION

In a recent contribution Magnus (1987) gave a representation theorem for
(trAP)!/P  where A is a non-zero positive semi-definite (n x n) matrix and
p> 1

The result reads:

(1.1) trAX < (trAP)Ur
for every positive semi-definite (n x n) matrix X satisfying trX? = 1, where

¢=p/(p—-1) > 1.
Equality (1.1} occurs if and only if

(1.2) X1 = (trAP)~! Ap

The representation therorem was derived by applying Holder’s and Kara-
mata’s scalar inequelities. This can be established even more rapidly by using
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a scalar inequality that goes back to Schur. It is, however, appropriate to de-
rive the result by means of matrix calculus, even if the proof becomes lengthy.
This is done in this note. For details of the technique used see Magnus and
Neudecker (1988).

2. THE DERIVATION

The obvious aim is to maximize the function trAX subject to trX? = 1.
Let us therefore consider the Lagrangean function

(2.1) B(Y) = trAY'Y — Aftr(Y'Y)? — 1]

where X was replaced by Y'Y, Y’ being a general (n x n) matrix.

The surface S defined by tr(Y'Y)? =1 is compact. Hence the differentiable
function trAY’Y assumes its maximum and minimum values at some points
Yo and Y; of S. We must look among the critical points of ¢ to find those
points. See for analytical details Marsden and Tromba (1988, sections 4.2 and
4.3).

From

(2.2) 1dp(Y) = trAY' dY — Aqtr(Y'Y)9'Y'dY

we find as necessary conditions for an extremum:

(2.3) AY' = x(Y'Y)'Y!
and
(24) tr(Y'Y) = 1.

Among the points Y satisfying (2.3) and (2.4) are the points at which the
constrained extrema occur.

We shall express the equations equivalently in terms of X, viz.

(2.5) AX = MX?
and
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(2.6) trX9 =1.

Let us first solve equation (2.5). It is easy to see that

(2.7) r(X) <r(A),

where r(.) denotes rank.

It also follows from (2.5) that A and X commute:

(2.8) AX = XA.

The reason is that AX = (AX) = X’A’ = XA, because of the symmetry
ofa A and X.

Both A and X will therefore be diagonalized by one orthogonal matrix.
Leaving out the zero eigenvalues of A and X, we can write:
(2.9) T'AT = A, T{XT, = M,

where T} is a subset of 7', and A and M contain the non-zero eigenvalues of
A and X respectively.

In case r(X) =r(A), we have Ty =T.

We can now rewrite (2.5) as:

(2.10) TAT'T; MT! = A\gTyM?T".

From (2.10) we obtain

(2.11) AT = AgX 77!,

where A, is a subset of A, corresponding to the eigenvectors in Ty .
In case r(X) = r(A), we have A; = A.
We have now expressed the points X in a more efficient way.

Raising both sides of (2.11) to the power p yields
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(2.12) TyART] = (Aq)P XY,

because p(g—1) =q.
By virtue of (2.5) and (2.6) we can write (2.12) as

(2.13) TlA’l’Tl' = (trAX)P X7,
Hence
(2.14) trA’l’ = (trAX)",

because (2.6).

It is our aim to maximize trAX , which is equivalent to maximizing (trAX)" .
It is immediate from (2.14) that (trAX)? reaches a maximum when A; = A or
equivalently 7(X) = r(A). The maximum is then trA?. Hence max trAX =
(trAP)1/P Tt follows from (2.11) and (2.6) that X = (trA?)~'/¢ AP~! maxi-
mizes trAX subject to the constrain trX7 = 1.

The function clearly reaches a minimum when A; contains only the smallest
(non-zero)eigenvalue of A, A, say.

Let an associated normalized eigenvector be 1, . We then find
(2.15) X =11},
which minimizes trAX subject to tr.X? =1, 0r min trAX = A,.

Restating our result we get

(2.16) Ay < trAX < (traAP)/P

for every positive semi-definite matrix X satisfying trA? = 1, where ¢ =
p(p—1) > 1 and A, is the smallest (non-zero) eigenvalue of A.

3. APPENDIX
We show that
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dtrX® = atr X1 dX,

when X is positive semi-definite and o« > 1.

Proof.

We use the spectral decomposition of X, viz. X = SMS’, S orthogonal and
M diagonal.

Then

dtrXo=dtrtM® = attM*~1dM
= atrS'X*~1SdM =
= atrX*"HS(dM)S' + (dS)MS' + SM(dS)'}
=oatrX*"1dX,

as O = d(S'S) = (dS)'S + S'dS.
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