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The atm of this review is to give different {wo parametric generali-
zations of the following measures: direcled divergence (Kullback and
Letbler, 1951), Jensen difference divergence (Burbea and Rao 1982
a, b; Rao, 1982) and Jeffreys invariant divergence (Jeffreys, 1946).
These generalizations are pul in the unified ezpression and ils pro-
perties are studied. The applications of generalized information and
divergence measures towards comparison of experiments and the con-
nections with Fisher information measure are also given.
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be the set of all complete finite discrete probability distributions. It is known
that the Shannon’s entropy satisfies the following inequalities

(D H(P) < H(P||Q)
and
) H(P);H(Q) <H (P;Q>

for all P,Q € A,, with equality iff P = Q ie., p =¢ . Vi=1...,n,

where

n

(3) H(P)=-Y pilp
i=1
and
(4) H(PIQ) = —Z pilng;
i=1

It is understood that 0In0 = 0 ln% = 0and p; = 0 as and when g¢; for
some 1, and vice-versa.

The measure H(P) is the Shannon’s entropy (Shannon, 1948) and the
measure H(P||Q) is the inaccuracy (Kerridge, 1961). The inequality (1) is
known as Shannon-Gibbs inequality, and the inequality (2) arises due to
concavity property of Shannon’s entropy.

The difference

() D(P|IQ) = H(PIIQ) — H(P)=3}_ pin %
i=1 !

is known directed divergence (Kuilback and Leibler, 1951). And the diffe-
rence
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R(PIIQ)= H(P4?) — #EHH

_~~[pilnpitelng _ (pitae) PH‘%‘)
T = 2 2 2

13

(6)

is known information radius (Sibson, 1969) or Jensen differencen diver-
gence measure (Burbea and Rao, 1982a,b; Rao, 1982).

By simple calculations, we can write

) R(PIIQ) = 3 [D (PliP+Q> + D(‘?“P—;_Q)]

-3 2

The measure of directed divergence, D(P||Q) is not symmetric in P and Q.
Its simmetric version i.e., Jeflreys invariant (Jeffreys, 1946) is given by

(8) J(PlIQ) = D(PIlQ) + D(Q[IP)

The measure J(P||Q) is known in the literature as J-divergence. For
simplicity, we call the measure R(P||Q) as R-divergence

Burbea and Rao (1982a) and Sgarro (1981) established an inequality between
the measure (6) and (8) given by

(9) J(P||Q) z 4R(P|lQ)

The aim of this review is to give different two-parametric generalizations
of the measures (5), (6) and (8) and to study their properties and applica-
tions. These generalizations are put in the form of unified expressions. Some
inequalities generalizing the inequality (9) are also presented. In particular,
entropy-type measures and measurement of generalized income inequelity are
also specified. The applications of generalized information and divergence mea-
sures towards comparison of experiments and the connections with Fisher in-
formation measure are given. The work reported in this review is due to Taneja
(1983, 1986¢, 1987, 1989), Taneja et al. (1989b; 1990a, b), Pardo et al. (1989b)
and Menéndez et al. (1990). Some applications of generalized measures to sta-
tistical pattern recognition can be seen in Taneja (1989, 1990).

We see the R-divergence (6) depends either on Shannon’s entropy (3) or
via Eq. (7) on directed divergence (5). While, the J-divergence (8) dependes
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only on directed divergence (3). In order to generalized the R & J-divergences
first we need the generalizations of the directed divergence (3). While the
generalizations of the Shannon’s entropy (3) are obtained as a particular case
of the generalizations of the directed divergence.

2. UNIFIED (r,s)-DIRECTED DIVERGENCE

Rényi (1961) fisrt presented a scalar parametric generalization of directed
divergence (3) given by

n
Dy (PllQ) = (r - 1)_1111{2 Pfqil_'} ,T#FELT>0
izl
for all P,Q € A,.
Sharma and Mittal (1977) studied two parametric generalization of D(P||Q)
including D!(P||Q) as a limiting case given by
=1
n r=1
Di(PIIQ) = (s-1)" { [E v q}-'] - 1}, PELsELr>05>0
i=1
In particular, when r = s, we have

Dy(PlIQ) = (s - 1) {E o 1}, s#1,5>0
i=1

The measure D?(P||Q) has also been studied extensively by many authors.
For a brief review refer Mathai and Rathie (1975) and Taneja (1979).

The following limiting cases are easy to check:

lim D}(PI|Q) = D:(PIIQ); lim D} (PIIQ) = D(PI|Q);
lim D;(P||Q) = lim D;(P||Q) = lim D{(P||Q) = D(P||Q).
where

(PIQ) =(s=1! {eXPe |:(.s - I)Zpi In %} - 1} , s # 1

i=1
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Instead of studying the measures D(P||Q), D}(P||Q), D:(P||Q), D;(P|IQ)
and D:(P||Q) separately, we can study them jointly. In order to do so Taneja
(1989) put these measures in the unified expression and relaxed the condition
of positivity of s. This unification is as follows:

DI(PIQ), r# 1,8 # 1
, _ ) DiPIQ), r=1,5#1
F(PlQ) = DIP|Q), r#1,s=1
D(PIQ), r=1s=1

forall P,Q € A,, 0 < r < o0oand —00 < s < co. The measure D!(P||Q)
don’t appear in the unified expression (10), because it is a particular case of
D:(P||Q), when r = s. Hence, it is already contained in it. The unified
expression, F?(P||Q) is called (Taneja, 1989), the unified (r,s)-directed
divegence.

In the following section, we give two different ways to generalize parametri-
cally the R and J-divergences.

3. UNIFIED (r,s)-DIVERGENCE MEASURES

We see the R and J-divergences given by the Eqs. (7) and (8) respectively
depend on the directed divergence, D(P||Q). Based on the unified expression
F?(P||Q) and the Eqgs. (7) and (8), we can generalize the R and J-divergences.
This we have done in the first generalization. An alternative approach to
generalize the R and J-divergence is also given, and it is based on an expression
appearing in the particular case of the first generalization.

3.1 FIRST GENERALIZATIONS

By replacing D(P||Q) by F;}(P||Q) in Eqgs. (7) and (8), we get

w e =g [z (AER) + 5 (@ 2))]

2 2

and

(12) W (PIIQ) = F(PIIQ) + F(QIIP)
respectively, for all P,Q € A,;,0 < r <00 and —00 < 5 < 0.
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The generalized Jensen difference divergence measures according to the Eq.
(11) are given by the following unified expression:

RUPIQ), r# L s # 1
1yys _ lRi(P”Q)) r=1s#1
IO =N wRipii), k#1520
R(P||Q), r=1s=1
where
RiPIIQ)= e - 11 { [0 (22 ] 7
[T () 7] -2 e
LRI(PIQ)= [2(s = D] {expe [(s — 1) Ty wen (722-)] +
+ expe [(s— N  piln (;-:’f-‘q—)] - 2}, s#£ 1
and

RPIQ) = (20 = D n{ [t (42" [T ar (22) 7],
r#1

forall P,Q €A,,0 < r < o0 and —oc < s < 0.

The generalized J-divergence measures according to expression (12) are given
by the following unified expression:

WHPNQ), r# 1 s #1
LBPIQ), r=1,5s#1
13498 — 1
W (PlIlQ) = JWPIQ), r#1,s=1
J(P||@), r=1s8=1

where
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1J,f(PIIQ)=(s—1)“{[X. T i [E,—lpf‘"q;’]:_}i - 2},
r#Els#1

HPIQ)= (s = )7 {expe [(s = ) Ty piIn 2] +

+ exp. [(s—l)zz;lq,-lnf;:] — 2},3 # 1

and

‘LHPMQ)=(r—1r‘m{[§:mw3’][Ejﬂwz’}},r 1

for all P,Q € A,,,0 < r < o0 and —00 < 5 < o0,

In particular, when r = s, we have
(13)  'RY(PlQ) = RY(PIIQ) =

= (s -1~ {0, () (242)'™ 1} s £ L5 >0
and
(14)  1J(P|IQ) = J:(PlIQ) =
=G (i +p %) -2}, s#£1,5>0

The expressions appearing in (13) and (14) are used to give an alternative
way for generalizing the R and J-divergences respectively.

3.2 SECOND GENERALIZATIONS

The second generalizations of the Jensen difference divergence measure are
based on an expression appearing in (13) and are given by

RAPIQ), r# 1 s # 1
2R(PIQ), r=1s#1
24,3 = !
Vi(PlQ) = ZRi(PHQ), r#1l,s=1
R(PIQ),  r=1s=1
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where
R(PIQ) = (o 1 { [, (235) (g -1},
r#1,s#1

*RIUPIQ) = (s = )7 {expe [(s - DR(PIQY ~ 1}, s # 1

2R1(P||Q) = (r_l)_lhl{i(ﬂ;(ﬂ> (Pi;qi)l"}, r# 1

=1

forall P,Q € A,,0 < r < o0 and —o¢ < s < .

The second generalizations of J-divergence are based on an expression ap-
pearing in (14) and are given by

PIAPIQ). v £ 1 s # 1
w1

JPIQ), r=1s=1
where
2J5(P|IQ)=2(s—1)-1{[ - (p:q,*";p}-’q,f)]'s’:“ . 1}‘,,#,3#1

2:(PIQ) = 26— )7 fewp. [(552) @] - 1fs £ 1

and

" . ler i-r r
273(P|IQ) = 2r — 1)—1111{2 (Pi g ‘; Pi ‘Ii)}’ r#E 1

=1

forall P,Q € A,,,0 < r < 00 and —o0 < § < .
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In particular, when r = s, we have
Wi (PllQ) = 2Vi(PlIQ) and 'W;(PlIQ) = *W;(Pl|Q)

The measures *V?(P||Q) (¢t = 1 and 2) are called (Taneja, 1989) the unified
(r,s)-Jensen difference divergence measures and the measures ‘W?(P||Q)
(t = 1 and 2) are called (Taneja, 1989) the unified (r,s)-J-divergence mea-
sures.

Remarks

Measures appearing in the unified expressions (11) and (15) i.e., }V!(P||Q)
and 2V?(P||Q) are due to Taneja (1989). Most of the measures appearing in
the unified expressions (12) and (16) i.e., !W?(P||Q) and 2W?(P||Q), are due
to Taneja (1983, 1987, 1989), except the measures 'J!(P||Q) and J:(P||Q).
The measure 'J1(P||Q) is due to Burbea (1983) and the measure J:(P||Q) is
due to Rathie and Sheng (1981), Rao (1982), and Burbea and Rao (1982a,b).

4. PROPERTIES OF THE GENERALIZED DIVERGENCES

We have five unified expressions given by the Eqgs. (10), (11), (12), (15) and
(16). For simplicity, let us write them as follow:

18}(P)IQ)= F(PlIQ)

@ (PllQ)= 1V} (PlIQ)
37 (PlIQ)= 2V:(PIIQ)
10(PlIQ)= "W (PIIQ)

and

*®7(PlIQ) = *W;(PlIQ)

forall P,Q €A,,0 <r <ocand —oo < s < o0.

Our aim is to present properties like: convesity, Schur-convesity, monoto-
nicity with respect to the parameter, generalized data processing inequality
etc... of the unified measures *®:(P||Q) (¢ = 1,2,3,4 and 5). The definition
of convexity for the pair of probability is well known in the literature, while,
the Schur-convexity for the pair of distributions is not very well known. Now,

" we shall define the Schur-convexity for a single probability distribution and a
pair of probability distributions and a pair of probability distributions by the
concept of majorization.
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DEFINITION 1 (Majorization)
For all P,Q € A\, we say that P is majorized by Q, i.e., P < @Q if

(l) PL 2 P2 2 ... 2 Dn and Q29> ... 2 qn with

or equivalently,

(i) there is a doubly stochastic matrix A = {ai}, aix > 0, 4,k =1,2, ... ,n
with

n n
E aik = E a;x = 1,
i=1 k=1

such that
n
pi:Zaiqu, 1=1,2,....n.
k=1

DEFINITION 2

A function F : A, — R (reals) is Schur-concave on A, if P < @ implies

F(P) > F(Q). For Schur-convexity, the last inequality is reversed, 1.e., P <
Q implies F(P) < F(Q).

These definitions can be seen in Marshall and Olkin (1979). Their extension
for two variables (Taneja, 1986a) is as follows:

DEFINITION 3

If there is a doubly stochastic matrix A = {a;x}. a; > 0, L,k =1,2,...,n
with

n n
E ik = E aip = 1,
i=1 k=1

such that

P(A) = (Zpkalk, ,Zpkank) € A,
k=1 k=1
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and

Q(A) = (qulk, Y anlc) € Ay,
k=1

k=1

Then we say the pair (P(A), Q(A)) is majorized by the pair (P, Q) in A, x
Ay, e, (P(A),Q(A) < (P,Q) in A, x A,

DEFINITION 4
A function G : A, x A, — R (reals) is Schur-convex in A, x A, if
(P(A),Q(A4)) < (P,Q) on A, x A, implies G(P(A)|Q(4)) < G(P||Q).

For Schur-concavity the last inequality is reversed, i.e,
(P(A),Q(4)) < (P,Q) implies G(P(A)]|Q(A)) > G(P||Q)

The definitions 3 and 4 were considered by Taneja (1986a) and some of their
interpretations can be seen in Vadja [23, pp. 265-267].

The following theorem gives the properties of the unified measures *@:(P||Q)
(t =1,2,3,4 and 5).

THEOREM 1
Forall PQ € H,, 0 < r < ccand —oc < 5 < o, we have

(i) (Nonnegativity) '®:(P||Q) > 0 (¢t = 1,2,3,4 and 5) with equality iff
P=qQ.

(i) (Continuity) '®:(P||Q) (t = 1,2,3,4 and 5) are continous functions of
the pair (P,Q) and are also continous with respect to the parameters »
and s.

(i) (Symmetry) '®:(P||Q) (t = 1,2,3,4 and 5) are symmetric function of
their arguments in pair, i.e.,

tq):(plw »Pn“‘ll; ’qn) = térs‘(p‘r(l)a 1p'r(n)||q‘r(1)v 1qT(n))

(t =1,2,3,4 and 5), where 7 is any permutation from 1 to n.
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(iv) (Nonadditivity) For all

Py = (p11,pP12, --- ,P1n) € Dy, P2 = (pa1,P22, .-+ 1P2n) € Ay,

Q1= (411)(1121 ;QIm) e Amy Q2 = (QQI,‘I:’Z, qum) e Amy

P Q= (Pu‘hl, oy P1iQims P12911 - - - s P129imy - - s Pinidy - - - yplnqlm)
€ Npm, and
Py x Qo= (P21421, ..« yP2192m, P22921, - - - s P2292m, - - - s P2ng21, - - - ,P'znq:m)
e Anm
we have

FOL(Py o+ Q| P2 % Q2)=
= 1Q:(P1||P2) + '®2(Q:11Q2) +
+(s = 1)'®L (P || P2) *®7(Q111Q2),
for t = 1,2,3,4 and 5.

(v) Monotonicity) *®:(P||Q) (t=1,2,3,4 and 5) are increasing functions of
r (s fixed) and of s (r fixed). In particular, when r = s the result still

holds.

(vi) (Convexity) '®:(P||Q) (t= 1,2,3,4 and 5) are convex functions of the
pair of probability distributions (P,Q) € A, x A, forall s > » > 0.

(vii) (Schur-Convexity) *®:(P||Q) (t=1,2,3,4 and 5) are Schur-convex func-
tions of the pair of probability distributions (P,Q) € A, x Ay, ie.,
(P(4),Q(4)) < (P,Q) implies

‘9 (P(A)IQ(4)) < '®}(PIlQ) (t=1,2,3,4and 5)

(vii)) (Generalized data processing inequalities) Let P € A,,, Q € Ap,,

m m
P(B) = ijblj,...,zpjbnj) € A,
j=1

i=1

and
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Jj=1 j=1

where B = {b;;}, b;; > 0, i =1,2,...,n; j = 1,2, ... ,m is a stochastic
n

matrix with Zb.-j =1 foreach j=1,2,...,m, then

i=1

‘@ (P(B)IQ(B)) < '®}(PIIQ) (t=1,2,3,4and5)

(ix) (Strong generalized data processing inequalities) If the stochastic
matrix B given in part (viii) is such that there exists an i, for which
biyj 2 ¢>0,Vj=12 ... ,m,thenfor P,Q € A,,, we have

‘9. (P(B)IQ(B)) < (1—¢)'®:(P||Q) (t=1,2,3,4and 5)

for s > r > 0.

5. ENTROPY-TYPE MEASURES AND GENERALIZED MEA-
SUREMENT OF INCOME INEQUALITY

Let U = (1/n,1/n,...,1/n) € A, be a uniform probability distribution.
Then for all P € A, , we can write

(17) FUPWU) =n*"H [EH(U) = £4(P)]

where

(A= (L™ =1, r#Ls#l
(1) [e("l)le”"“”* — 1], r=Lls#

(18) E(P) =1

(1—7‘)—111'1(2::;1]);), r # 11 s # 1

_Z?=1Pilnpi, r=1s=1

and
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R l1-s
(19) &) =
lnn, s=1
forall P€ A,,0 < r < owand —c0 < s < oo.

The measure given in (18) are the well known generalizations of Shannon’s
entropy. The unified expression, £3(P), is called (Taneja, 1989), the unified
(r,s)-entropy.

Similar to theorem 1, we have the following theorem:

THEOREM 2

Forall P € Ap, 0 < r < coand —oo < s < 00, the unified (r,s)-
entropy, £:(P) satisfies the following properties:

(i) (Nonnegativity) £:(P) > 0 with equality iff P = P°, where P% € A,
is a probability distribution such that one of the probability is 1 and all
others are zero.

(ii) (Continuity) &;(P) is a continous function of P, and is also continous
function with respect to the parameters r and s.

(iii) (Symmetry) £:(P) is a symmetric function of its arguments i.e.,
&1, - 5pn) = E(Pr ) - 1 Pr(n)s
where 7 is any permutation from 1 to n.
(iv) (Nonadditivity) For
P=(p1,...,pn) € Bn, Q=(11, .- ,qm) € Dy,

and
P*Q :(Pl’ll, oy P19my - - PGy - - - 1Pn‘1m) € Anm

we have

E(P+Q) = E(P) + £(Q) + (1-)E(PIENQ).

(v) (Monotonicity) &:(P) is a decreasing function of » (s fixed) and of s (r
fixed). In particular, when r = s the result still holds.
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(vi) (Concavity) &}(P) is a concave function of the probability distribution
P for (r,s) € T, where

I'={(r,s)/r > Owiths > rors > 2—1/r}

(vii) (Schur-concavity) £2(P) is a Schur-concave function of P, i.e.,
£ (P(4)) =2 £(P)

where P(A) € A, is as given in Definition 3.

Remarks

The proof of parts (ii), (iii), (iv) and (vii) of Th. 2 follows directly from Th.1
and Eq. (17). While, the parts (v) and (vi) of Th. 1 follow partially from Th.
1. Thus the details of parts (i), (v) and (vi) are as follows:

(i) From Th. 1 and (17), we have

£(P) < &(U)

for all P € A, . This proves that £:(P) is maximum when the distribution is
uniform. But it don’t guarantee the nonnegativity of £ (P). From Th. 2 (vii)
and Marshall and Olkin (1979, pp. 7), we have

E(P°) < £(P) < &(1)

with equality on the L.H.S. if P = P® and on the R.HS. iff P = U. But
£}(P°) = 0. This proves the nonnegativity of £(P) forall P € A, .

(v) From the expression (19) we see that the measure £2(U/) depends only
on s, whatever r may be. Thus the monotonicity of £3(P) with respect to r
follows from theorem 1 (v). And the monotonicity of £(P) with respect to
s can’t be concluded, but it can be proved directly by taking derivatives with
respect to s.

(vi) The concavity of £!(P) for s > r > 0 follows from the Th. 1 (vi),
Van der Pyl (1977) proved that H}(P) is concave for s > 2—1/r, r > 0,

r # 1,5 # 1. Thus the concavity of £(P) for s > 2—1/r,r > 0 follows
in view of property (ii).

Apart from the seven properties, the unified (r,s)-entropy, £ (P) enjoys
many others, specially with the maximum probability. These are summarized

in the following theorem:
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THEOREM 3

Let P =(p1,...,Pn) € Dn, Pmax = max{pi, ... ,pa}, 0 < 7 < 0o. Then
the following results hold:

(a)
(1) £ (Pmax,1 — pmax) < E(P)

. 1 — pmax 1 — Pmax
2Py < & Bmax L Pmex
) ex(p) < & (1oBme L I )

) (Qms) k1], s #1

I

—In Pmax S

k(s)
2
where (b) holds under the conditions that either (r > 0,5 <2—1/n < pmax <
1/2) or (r > 0,5 > 2,pmax > 1/2) or ((r,5) € I',pmax > 1/2), where

1—s
DIETRE s #1

(b) 1 — pmax < S:(P),

k(s)=
1
ma
(c) Forall P € Ap,Q € Apmyn > m,0 < r < 00,-00 < s < 00, we
have £2(P) > £:(R) provided that H(Q) < —Inpmax and that Inm <
H(P) hold together.

For P € A,,and U =(1/n,...,1/n) € A, , let us define the measure

&) - &(P)

(20) 6: (PIIV) = ==

for 0 <r < ooand —oo < s < oo. Them we can easily check that
(21) 0 < GIPIIU) <1

The measures (17) and (20) are the generalizations of the measurement of
income inequality (ref. Theil, 1972, 1980). We shall call them, the unified

62



(r,s)-income inequality measures. Some particular cases of (20) can be
seen in Kapur (1986).

7. INEQUALITIES AMONG GENERALIZED DIVERGENCE MEA-
SURES

The following results, which give inequalities among the generalized diver-
gence measures, hold:

RESULT 1

Forall P,Q € A,,, t=1,234and 5, we have

(i)
<'NPIQ), —o < s <1
143 r
q"(P”Q){ > PIQ). 1< s < oo
(i)
e piond < BPIQ), 0<r <
A ”Q){ >@PIQ), 1< 1< o
(i)
e (p >EHP), -0 <s<1
a ){ SEP), 1<s< o0
(iv)
s ESf(P), 0<r<i1
Sr(P){ < &(P), <r< oo
RESULT 2

Forall P,Q € A,,0<r<ooand —co < s < o0, we have

(i)

. <3 (PllQ), s < v
2xs r
(P ”Q){ >30:(PlQ), s >
(i)
4q>s P S 5(1);’,(P”Q), s S r
2 “Q){ >581(PllQ), s > 1
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(i) “@}(PllQ) > 2227(PlIQ)

(iv) *®3(PllQ) > 2°2;(PlIQ)

(v) “®3(PlIQ) = *®:(PlIQ) > 42¢3(P|Q) = 4°®(PlIQ)
(vi) *@}(PlIQ) 2 4%@;(PlIQ), 0<r <1

(vi)) *@p(PlIQ) > 4°2,(PlIQ), 0 <r <1

8. STATISTICAL APPLICATIONS
8.1 COMPARISON OF EXPERIMENTS

Let £x = {X,Bx,Ps; 0 € O} denote a statistical experiment in which a
random variable or random vector X defined on some sample space ' is to
be observed and the distribution P; of X depends on the parameter 6 whose
values are unknown and lie in some parameter space ©. We shall assume
that there exists a generalized probability density function f(x/8) for the
distribution P, with respect to a o-finite measure y. Let also = denote the
class of all prior distribution & € Z, and let f(z) denote the corresponding
marginal generalized probability density function (gpdf) given by

f(z) = /@ f(2/0) de

Similarly, if we have two prior distributions &;.§2 € Z, the corresponding
gpdf’s are

fi(x):/ef(z/O)d&‘ Pi=1.2

In this context, the directed divergence, the J-divergence and the Jensen
difference divergence measure are given by:

Directed divergence

fi(z)
fa(x)

xD(&]l€:) = /X £y n 28 g,
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J-divergence

xJ(EllEs) = / @) ~ ()] 2 ;

Jensen difference divergence measure

X R(&1][62)= A{[fl(z)]nfl(z) ; f2($)]nf2($)] _

- |(aegt) n (L)} o

In a similar way, we can write the corresponding unified measures in the
integral forms, such as

L ®:(&1)l€2) = x F2(&1|€2) : unified (r,s)-directed divergence

§(<I>i(£1||£2) = k-V:(f;Hfz)} . unified (r,s)-Jensen difference
%07 (Eall€2) = XV (Ellé2)

divergence measure

% PUELIE2) = kWi (EllE2)
% ®i(&1lle2) = Sk Wi(41lIE2)

} :unified (r,s)-J-divergence measure

Consider two arbitrary experiments &x = {X,Bx,Ps;8 € O} and & =
{Y, By,Qe;0 € O} with the same parameter space ©. Let = denote the class
of all prior distributions on the space ©. We shall assume that there exist
gpdf’s f(z/6) and g{(y/6) for the distributions Py and Qg , with respect to
some o-finite measures p and v respectively. Given two prior distributions
£1,62 € Z, let fi(z) denote the marginal gpdf

[ 10 des i=1ana 2
(3]

and let % ®2(&1](¢2) (t =1,2,3,4 and 5) denote the generalized divergence mea-
sures ofmformatlon contained in £x for discriminating between f(z) and fy(z).
In this context, we give the following definition.
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DEFINITION

t
We say that experiment £x is prefered to experiment £y , denoted by £x >
&y , if and only if

L®I(E1]IE2) > L B(Ey|IEo) for alléy € €

We say that experiment £x and £y are indifferent, denoted by €x L Ey,
t t
ifand only if £x > & and & > E€x .
Some studies towards this direction, including bayesian and Lehmann ap-
proaches, has been undertaken by Pardo et al. (1989a), Taneja (1986b), Taneja
et al. (1989a) and Morales et al. (1989). Based on the above definition

the following theorem gives interesting properties for the unified measures
5% @7 (6l€2) (¢ = 1234 and 5).

THEOREM 4

{a) Let £x be any experiment and £y be the null experiment (i.e., the dis-

t
tribution is independent of 6 a.e. p), then £x > &En.

(b) Given the compound experiment (Ex,&y ), where Ex and &y are the cor-

responding marginal experiments. Then {(€x,&y) é Ex (or &y ), with
indifference iff f(y/z,6) is independent of 6 (respectively f(x/y,6) is
independent of ) for almost every (z,y), where f(y/x,8) is the condi-
tional gpdf of Y given X =2 and 6 € ©.

(¢) Let 8§?) be the resulting experiment after observing £y n-times, then
! -1
e > €77V,

(d) Let &x = {X, X, f(z/0); 8 € ©} be and experiment and {E;};ien be
a measurable partition of X . Let us consider another experiment & =
{Y,Y,Q4; 0 € O} with the o-algebra generated by {E;}ie v and with

Qo(E;) = / f(z/0)dp(z)Vi € N. Then &x é &y with indifference iff
Ei

t
T= (S‘(,?)) based on the experiment 81(,?) , it is verfied that £§§‘) > ér
with indifference iff f(z/8) is independent of # for almost every .

(e) For all statistic T = T(gg(")) based on the experiment &M it is verified
t
that 81(,?) > & with indifference iff T is a sufficient statistic.
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Now we give the relation between the above criterion and Blackwell’s crite-
rion . Blackwell’s (1951) definition of comparing two experiments states that
experiment £x is sufficient for experiment £y, denoted £x > &y, if there
exists a stochastic transformation of X to a random variable Z(X) such that
for each & € © the random variable Z(X) and Y have identical distributions.
By & = {Y,8y,Qs; 8 € O} we shall denote a second statistical experiment
for which there exists a gpdf g(y/8) for the distribution @ with respect to
a o-finite measure v. According to this definition, if £x > &y, then there
exists a nonnegative function h satisfying (cf. DeGroot (1970), p. 434).

22) o(u/0) = ]X h(y/z) f(2/0) du

and

/yh(y/z)du =1

If we have two prior distributions £;,€, € O, after integrating over © and
changing the order of integration in (22), we get

(23) gi(y) = /x h(y/z) fi(x)dp, i = 1,2

Let I be any measure of information contained in an experiment. If £x >
&y implies Ix > Iy, then we say that £x is at least as informative as &y
in terms of measure I. Goel and DeGroot (1979) applied it for directed diver-
gence. Ferentinos and Papaionnou (1982) applied it for a-order generalization
of directed divergence. Taneja (1987) extended it to different generalizations of
J-divergence measure having one and two scalar parameters. According to this
approach, the results for the unified measures 5 ®:(&{|€2) (t = 1,2,3,4 and 5)
are summarized in the following theorem.

THEOREM 5

If gX > gYa then tx¢:(61“£2) > g’(pﬁ(&”f?) (i = 1v2v3v475) for every

1,6 € Z,0<r<ooand —oo < s < 00.

8.2 CONNECTIONS WITH FISHER MEASURE OF INFORMATION
Consider a family M = {Py; 8 € O} of probability measures on a mea-

surable space (X,fBy) dominated by a finite or o-finite measure g. The

parameter space © can either be an open subset of the real line or an open
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subset of a n-dimensional Euclidean space R" . Let f(z/8) = . Then the

Fisher (1925) measure of information is given by

Ey [ log f(2/6)], if @ is univariate
1£(0) =
Eol| [ 108 £(2/6) - 35 108 (2/6)] llnxn, if6is n-variate
where || |lnxn denotes an » x n matrix and Ey denotes expectation with

respect to f(z/0).

Some studies towards Fisher information measure applying differential geo-
metric approach has been succesfully carried out by Rao (1945, 1973, 1987),
Atkinson and Mitchell (1981), Burbea and Rao (1982), Amari (1984, 1985),
Cuadras et al. (1985), Campbell (1985, 1986, 1987), Burbea (1986), Burbea
and Oller (1988), Oller (1989), Cuadras (1988), etc. A direct approach has
been undertaken by Kagan (1963), Vadja (1973, 1989), Aggarwal (1974), Boe-
kee (1978), Ferentinos and Papaioannou (1981), Taneja (1987), Pardo et al.
(1989b), Salicrua (1990), ete.

Let us suppose that the following regularity conditions are satisfied

(a) f(z/0) > 0 forall z € X,0 € O.

(b) ?)Qo',f(“’/e) exists forall z € X, all # € © andall i=1,2,... n

(c) for any A € B, i/ F(x/0)dpu :/ _0_ (z/8)dyu for all i.
06; Ja 4 00;
Define

RHOE lim inf —==s Yo (f(2/0)|f(x/0 + 06)), t=1,2,3,4and

(A")2

Then the following theorem holds.
THEOREM 6

Let © be univariate and let the regularity conditions of the Fisher informa-
tion measure be satisfied. Also, suppose that [, |ai;5f(:c/0)|dp < oo for all
# € © and that the third order partial derivative of f(z/6) with respect to
6 exists for all # € © and for all z € X . Then
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191(0)= 315()
2@:(0)=3®:(0) = L15(9)
1®;(0)=®1(6) = r15(0),

for # € ©,0<r<oocand —o00o < s < o0.
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