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BIQUADRATIC FUNCTIONS :

STATIONARY AND INVERTIBILITY IN
ESTIMATED TIME-SERIES MODELS.

D.S.G. POLLOCK

University of London

It is important that the estimates of the parameters of an autoregres-
stve moving-average (ARMA) model should satisfy the conditions of
stationarity and invertibility. It can be shown thal the unconditional
mazimum-likelihood estimates are bound to fulfill these conditions re-
gardless of the size of the sample from which they are derived; and, in
some quarters, it has been argued that they should be used in preference
to any other estimates when the size of the sample s small. However,
the mazimum-likelihood estimales are difficull 1o obtain; and, in prac-
tice, estimates are usually derived from a least-squares criterion. In
this paper, we show that, if an appropriate form of least-squares cri-
terion is adopted, then we can likewise guarantee that the conditions
of stationarity and invertibility will be fulfilled. We also re-examine
several of the alternative procedures for estimating ARMA models to
see whether the criterion functions from which they are derived have
the appropriate form.

Keywords: ARMA Models, Least-Squares Estimation, Stationarity
and Invertibility

1. INTRODUCTION

When we use the conditional and unconditional least-squares criteria in es-
timating the parameters of an ARMA process, we run the risk of deriving
estimates which violate the conditions of stationarity and invertibility. The
danger is greatest when the poles of the autoregressive operator and the zeros
of the moving-average operator are close to the boundary of the unit circle.
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The problematic nature of the least-squares estimators of moving-average
models, which are liable to violate the condition of invertibility, was demon-
strated in a widely-read but unpublished paper by Kang [10]. The problem was
also analysed in the context of the MA(1) model by Osborn [14] who derived
expressions for the expected values of various criterion functions. A similar
analysis was conducted by Davidson [6] who used the method of Monte-Carlo
experiments.

The analogous problems with the least-squares estimators of autoregressive
models, which are liable to violate the condition of stationarity, have been
highlighted by Wallis [16].

In view of these results, it has become clear to many practitioners that
the appropriate way to estimate ARMA models is to adopt the unconditional
maximum-likelihood criterion. However, the criterion is difficult to fulfil; and,
in practice, estimates are derived more often from one of the least-squares
criteria.

The purpose of this paper is to demonstrate that, by adopting the appropriate
form of the least-squares criterion, it is possible to guarantee that the conditions
of stationarity and invertibility will be fulfilled. All that is required is that
the criterion function should be in the form of what we shall describe as a
biquadratic function. This point is established at the beginning of the paper.
In the remainder of the paper, we look at the various ways in which estimators
may be derived which minimise a biquadratic criterion function. This leads us
to a new proposal for an estimating system.

This paper places several of the alternative procedures for estimating ARMA
models in a juxtaposition and it reveals some of their common characteristics.
The synoptic comparisons which this should enable may help in overcoming the
bewilderment which can arise from the fact that so many different approaches
have been taken to the problem of estimation.

2. BIQUADRATIC FUNCTIONS

Definition.

Let a(z) = ag+ ayz 4 -+ apzf and y(z) = yo+ 2+ -+ yn " be
the z-transforms of the sequences or vectors a = {ag,ai,... ,ap}, and y =
{¥0.y1,--- +¥n}. Then the product of the :-transforms is given by

ge<

a(z)y(z) Z( m.lm:) 2!
(1) !
=5 gt
t

14



Definition.

Let @ = {a;}, y = {y:} be sequences whose convolution is the sequence
g = {g:}. Let a(z), y(z) and g(z) = a(z)y(z) be the z-transforms of the
sequences. Then the biquadratic function of & and y is the function

Q(a,y) =35 § a(2)y(2)y(z " Ha(z"1) &
) = 7t §9(2)9(2™! %
= Zt: 9: s

where the contour of integration encloses the origin.

Remark.

To understand the final equality in this definition, consider writing

9(2)g(z71)= <¥g,z'> (Z gxz—s>

2o 9rgst 0
2

s

()

> (S ) o

r

Putting this back into the definition gives

Qa,y)= szE(Za,m—t) S

(4) ~p{zee st

The final equality of the definition now follows from the Cauchy Integral The-
orem—see Kreyszig [11], for example—which indicates that

1 d 1, ift=0
(5) i f T = { ?
27 z 0, ift#0

A familiar specialisation of this result comes from taking the perimeter of the
unit circle as the contour of integration. Then, by setting = = ¢'“ and changing
the variable of integration from z to w € (—m, 7], we get
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1 w

: bl 1, ift=0
(6) o . etdw = % /0 cos(wt)dw = { '

0, ift#0.

It is clear that, however we choose to express it, the biquadratic function
Q(c, y) is simply the square of the coefficient associated with 2% in the product
9(2)9(z71) = a(2)y(2)y(z"Hal(z 7).

There is also a matrix representation of the biquadratic function. It is best
to develop this by way of an example:

Example.

Let a(2) = ao + a1z and y(z) = yo + y12 + y22>. Then

(7 a(2)y(z) = aoyo + {aoyr + vy} + {ooy2 + ﬂ‘1y1}32 + 011!/213-

Consider also the equation

[0 0 0 ] [ apyo | [ag 0 0]
vi % 0 agp aoy1 + 1Yo a; ag 0 Yo
(8) Y2 1 Y| || =faptayp | =0 o aof |y
0 v mn 0 a1y: 0 0 a1f Ly

0 0y L 0 1 Lo o o]

which we can write as

9) Yoas = g = Aaya.

This is just a matrix representation of the convolution of as = {ag,a;,0} and
y2 = {y0,y1, y2}. The corresponding biquadratic function is given by

Q(a,y) = abYiYaan = yhALAay

(10) )
=99,

where Y;7Y> and A} A, are both Toeplitz matrices.

The subscripts on the matrices and the vectors are to give an indication of
their order. The subscript on the vector y» is the degree of the polynomial
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y(z) which is one less than the length of the sequence y = {yo,¥1,%2}. Since
they contain the same elements, there is, in fact, no need to make a notational
distinction between y and y;. The vector aj if formed by supplementing or
“padding” the sequence « until its length becomes equal to that of y,. These
matters are formalised in the following definition and Lemma:

Definition.
Let &« = {ag,...,ap} be a vector of order p + 1. Then we define o, =
an{a) = {ano,-..,ann} to be a vector of order n + 1 which is specified by

an = {ag,...,0n}if n < pand by an = {a0,... ,0,,0,...,0} if n > p. We
define A, to be a matrix of order (2n+1) x(n+1) whose columns are the vectors
{ano, -y ann,0,...,0}1, {0, 0n0, ... ,0nn,0,...,0}.... . {0,...,0,n0,...,%nn}
We shall describe A, as a semi-circulant matrix. The relationship between
Toeplitz matrices and semi-circulant matrices is indicated by the following
Lemma:

LEMMA.

Let C = [¢;] be a positive-definite Toeplitz matrix whose ijth elements is
¢ij = ¢ji—j|- Then the Cramér-Wald factorisation enables us to write C' = Y, Y,
where Y,, is a semi-circulant matrix.

The lemma serves to show that, if a,, = {ag,... ,@,} and if C is a Toeplitz
matrix, then we have o] Ca, = o} Y, Yoo, = yn Al Apyn which is a biquadratic
function of a,, and y,. An algorithm for obtaining the Cramér-Wald factori-
sation has been described by Wilson [17]; and his implementation of it is to
be found amongst the programs described by Box and Jenkins {4, Program 2].
The algorithm has also been implemented by Laurie [12], [13].

Now we are in a position to provide the theorem which will be used in demon-
strating that the Yule-Walker estimates fulfil the conditions of stationarity:

THEOREM 1.
Consider the bigquadratic function Q(c«,y) = o, Y, Y,a, where a, = a,(a)
with o = {1,a1,... ,a,}. If a is chosen so as to minimise the value of @, then

all the roots of equation a(z) = 1 + a1z + - - + a; 27 = 0 will lie outside the
unit circle.

Proof.

In place of Q(a,y), let us consider the equivalent function

S= o Yn')’,.a,.
(11) n+1i
—
= a,Crap,
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where Cp = [c;5] is the principal minor of order p of the matrix Y)Y, /(n + 1)
and where a, = {1,04,...,a,}. If we factorise a(z) as a(z) = ¢(z)¢(z) where
q(2) = 14 q12 + ¢22? is quadratic, then, for a given value of ¢(z), we can write
the function as

Yo Y1 72 1
(12) SO=01 a1 @lm v m||al,
Y2 Y1 Yo q2

where 2 = 3 ; ZJ- didjcli—j4+kl- At the point of the minimum, we find that

q= BL=In,
0 1
2
(13) go= 7—;‘73-—_7%3 and

S=v +aum + 97

In terms of these values, we can can express vp, 41,72 as

(14) (e a1
yp= A01=92(04ea)}  here

d=(1-¢)1+@p+qa)l+q¢—q)

Now the matrix of (12) is positive definite by virtue of its construction. In
particular, the principal minor of order 2 must be positive definite which 1s
equivalent to the conditions that 79 > 0 and 4¢ — 4§ > 0. Given that S > 0,
these imply that

(1+4¢2)*>q} and
i_ﬂxqz >0 or, equivalently, 1-¢3 > 0.

(15)
The latter conditions are necessary and sufficient to ensure that the roots of

q(2) = 0 lie outside the unit circle. They are equivalent to the conditions listed
under (3.2.18) by Box and Jenkins [4, p. 58].

We can repeat this analysis for every other quadratic factor of the polynomial
a(z) in order to show that all of the complex roots must lie outside the unit
circle when S is minimised. It is also easy to show that the real roots must lie
outside the unit circle.
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3. AUTOREGRESSIVE ESTIMATION

The Yule—-Walker Equations

Consider a stationary autoregressive process of order p which is represented
by the equation

(16) a(L)y(t) = €(),

where o(L) = ap + a1 L + --- + a, LP, which has ag = 1, is a polynomial of
degree p in the lag operator L, and where e(t) is a white-noise process with
E{e(t)} = 0 and V{e(t)} = 02. The process is stationary if and only if it has
an alternative representation as an infinite-order moving-average process:

y(t)= a1 (L)e(1)
a7) ) )

=0(L)e(?),
where 8(L) = {6y + 6, L + ---} is of infinite degree with 3" |6;| < co. For
stationarity it is necessary and sufficient that the roots of the equation a(z) = 0
lie outside the unit circle.

Given a sample of T mean-adjusted observations in y = {yo,y1,-.. ,¥7-1},
the Yule-Walker estimates of the elements of o = {1,a4,...,a,} may be ob-
tained by minimising the function

S(&,¥)= 5557 $ 6 (2)y(z)y(z7Ha(:! )%‘1
19 = fa(2)a(=")1(:)%

in respect of &. Here the Toeplitz matrix C,, which is the usual estimate of
the covariance matrix, is a minor of order p+1 of C(y) = Y/ _,Yr_1/T. When
z = €', the function

_ ¥y

becomes the periodogram. The empirical autocovariance of lag 7 may also be
expressed, in terms of the periodogram, as

€r= fz’[(z)‘:—j

20
(20) :fjﬂ e I(e™)dw.
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Remark.

The statistical consistency of the Yule-Walker estimates can be seen as a
consequence of the convergence in mean square of the function S(&,y) to the
function

S(a)= §a(2)a(z")f(=)&
= a'Tya,

(21)

where

0,2
(22) f(2) :

= 2ra(z)a(z—1)’

The latter is the spectral density function of the AR process when z = ei*,
whilst T, is the true variance-covariance matrix of order p pertaining to the
process.

The convergence of S to S follows in consequence of a spectral result which
is proved, for example, by Priestley [6, Theorem 6.2.4]. It also follows as a
consequence of the convergence of C, to I',. Given that the leading coefficients
of both &(z) and afz) are unity, the asymptotic function S attains its minimum
value of 02 when &(z) = a(z). A fundamental theorem—which is proved by
Amemiya [1, Theorem 4.1.1] and by Domowitz and White [7, Theorem 2.2]
amongst others—serves to show that if S tends in probability, uniformly, to
the function S, then the values which minimise S will tend to those which
minimise S. Thus the Yule-Walker estimates are statistically consistent.

The function S(&) gives the variance V {e(t)} of the residual sequence e(t)
which comes from fitting the AR model &(L)y(1) = e(t) to the infinite data
sequence y(¢). The hallmark of the biquadratic criterion functions is that they
closely mimic the form of this asymptotic function.

Some of the other methods which are commonly used in estimating autore-
gressive models are subject to the hazard that, if the roots of the polynomial
a(z) = 0 are close to the boundary of the unit circle, then roots of the esti-
mated polynomial may fall inside the unit circle which implies that the esti-
mated model is unstable or nonstationary. However the Yule-Walker estimates
are not subject to this hazard:

THEOREM 2.

The Yule-Walker estimates always correspond to a stationary autoregressive
process.
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Proof.

This follows directly from Theorem 1 by virtue of the biquadratic nature of
the criterion function S(&, y) of (18).

4. MOVING-AVERAGE ESTIMATION

The Approximation Method

Consider a moving-average process of order ¢ which is represented by the
equation

(23) y(t) = p(L)e(t),

where (L) = po + p1L + -+ - + pgL?, which has yo = 1, is a polynomial of
degree ¢ in the lag operator L. The process is invertible if and only if it has an
alternative representation as an infinite-order autoregressive process:

e(t)= p~(L)u(t)

24
@9 = P(L)y(1),

where ¥(L) = {vo + ¥1L + -- -} is of infinite degree with ) [¢;| < oco. For
invertibility, it is necessary and sufficient that the roots of the equation p(z) = 0
lie outside the unit circle.

Given a sample of 7" mean-adjusted observations in y = {yo,¥1,... ,y7-1},
we can estimate the elements of 4 = {1,p1,... , 4,4} according to a principle
which is similar to the one which generates the Yule-Walker estimates of an
autoregressive process. The principle gives rise to what we shall describe, for
reasons which will become clear shortly, as the Approximation Method.

The estimates of the Approximation Method are the values which minimise

S([t y) f (z)I;S?z_l) iz
F4(2)1 2)1/(71)‘3
TlpooY’ }/

(25)

Here 12)00 is a vector of infinite order containing the coefficients of the expan-
sion of v(z) whilst Y, is an infinite-order semi-circulant matrix constructed
from the elements of the finite data sequence {yo,y; ... ,yr-1}. The matrix
Y. Yoo /T is a Toeplitz matrix, likewise of infinite order, whose Tth subdiagonal
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and supradiagonal contain repeated instances of the rth empirical autocovari-
ance which is specified by

o= A S grye i |l <T =1,
(26) T}:,: Yt Ir] <

er=0 if |7|>T-1

The criterion function in (25) is biquadratic. Therefore we may write S(ji,y)
as

AL YL Yoo oo= 3y (W Wao]r -1y

(27)
=2y A()y,

where [\Il’ ¥ ¥oolr—1 = A(j) stands for the principal minor of ¥/ \ilm of order
T. The effect of commuting the elements in equation (27) is to reduce the
vectors and the matrix to a finite order.

THEOREM 3.

The estimates of the Approximation Method fulfil the condition of invert-
ibility.

Proof.

By setting ¥i = 0for i > 11in (25), we can obtain the inequality min S(#, y) <
co which shows that there is a finite-valued minimum. But S(ji, y) is bounded
if and only if Zl‘d’,l < 0. Therefore g=1(z) = v(z) converges for |z] < 1;
and so the roots of ji(z) = 0 must lie outside the unit circle. Therefore the
estimates fulfil the condition of invertibility.

Remark.

The matrix [¥/, ¥ ]r_1 = A(y) is identical to the dispersion matrix A(u) of
a vector y = {¥o,¥1,.-- ,yr-1} generated by a gth-order autoregressive process
specified by p(L)y(t) = €(t) with V{e(t)} = 1.

When ¢(t) is a Gaussian process, the likelihood function for the vector y =
{yo,¥1,--. ,yr—1} generated by the MA model under (23) is given by

) N = ol TR e { -y )

where a2Q(p) stands for the dispersion matrix of the vector. The generalised
least-squares estimates the MA parameters—which were called the uncondi-
tional least-squares estimates by Box and Jenkins [4]—are obtained by min-
imising the quadratic function y’2~!(yt)y which is to be found in the exponent
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of the likelihood function. The biquadratic function y'{W/ ¥ ]r-1y = ¥ A(u)y
is similar to the function y’Q~!(u)y ; and A(y) may be regarded as an approx-
imation to Q~1(u).

Sharman [15] has shown that the product Q(u)A(p) differs from the identity
matrix It by a matrix consisting of zeros everywhere except in the first ¢ rows
and the last ¢ rows. Balestra [2] has provided an expression for the matrix
Q~!(p) for the case of an MA(1) process which has the form of QY u) =
A(p)+W where W is a matrix whose elements decline in size as we move away
from the borders. In view of these results, the differences between Q~!(y)
and A(yu) appear minor. Nevertheless, they are crucial; and the unconditional
least-squares estimates often violate the condition of invertibility. In fact, the
second edition of the book by Box and Jenkins [4] contains an added appendix
(Appendix A7.6) which bears witness to the difficulties which were encountered
in practice with the method of estimation which they had recommended.

We may note that the biquadratic criterion function under (18), from which
the Yule-Walker estimates of the parameters of an AR process are obtained,
can be written as S(a,y) = YAy _;Ar_1y/T = y'Qa)y/T. Here Q(a) is the
dispersion matrix of a vector y = {yo,y1,... ,yr_1} generated by an pth-order
moving-average process specified by y(¢) = o(L)e(t) with V{e(t)} = 1. It can
also be construed as an approximation to the matrix A=!(a). The Yule-Walker
Method and the Approximation Method are, in a sense, mirror images of each
other.

IMPLEMENTING THE APPROXIMATION METHOD.

In evaluating the function S(y,y) = T~ 'y’ A(u)y, it is usually impractical to
form the T x T Toeplitz matrix A = 6)i—j| and to store it in its entirety for the
reason that it is too large. However, there are at least two ways of evaluating
the function which are practical.

The first way depends upon forming the T elements 6q, ... ,67_; which are
to found on successive diagonals of A. These elements are the autocovariances
of the synthetic AR process p(L)y(t) = £(t). Once they have been calculated,
we can proceed to evaluate the expression

S(”’ y): T_l Z: Zyty36|t—s|
t s

=T"! Y =1-
(29) zf:;ytyt T s

T-1
=co+2 Z crbr,
=1

t

wherein ¢, is the empirical autocovariance specified in (26). It is possible to
minimise the function S(u,y) by using a numerical algorithm which demands
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nothing more than a facility for evaluating the function for arbitrary values of
p. Nevertheless, Godolphin [9] has devised a specialised method for minimising
the function which makes use of some close approximations to the derivatives
dé, /dyu;. However, his iterative procedure has only a linear rate of convergence.

The second way of evaluating the function S(u,y) depends upon forming the
leading elements of the sequence e(t) = p~'(L)y(t) from p = {1, po,... , 44}
and y = {¥o,.-- ,y7-1}. The sequence e(t) = {eq,... ,er-1,-. .} is, of course,
infinite; but, given that the roots of u(z) = 0 are outside the unit circle, we
shall find that it converges rapidly to zero after the element er_;, which is
where the influence of y ceases. Thus T'S(y, y) can be approximated to a high

T+n
degree of accuracy by an extended sum of squares i el.
t=0

The function S(gt,y) = ¥'[¥’, Yoo Jr-1y may also be compared with the func-
tion €'é = y' M'~'M~1y wherein M = M(y) is a lower triangular Toeplitz
matrix of order T whose leading column is the vector {so,...,4t,0,...,0}.
The matrix M~! is simply the the principal minor of order T of the infinite
order semi-circulant matrix ¥.,. Therefore the product M’'~!Af~!  which is
not exactly a Toeplitz matrix, can be viewed as an approximation to A(u) =
[¥/,Woo]7-1. The value of s which minimises the function y M’~' A7~y corre-
sponds to what Box and Jenkins have described as the conditional least-squares
estimates of the moving-average process. Whilst such estimates are capable of
violating the condition of invertibility, Osborn’s [14] analysis of the expected
value of the criterion function suggests that they should do so less frequently
than the unconditional least-squares estimates. This supposition seems to be
confirmed in practice.

An attractive feature of the criterion function &' = y M'~* M 1y of the un-
conditional least-squares estimation is the relative ease with which it may be
minimised via the Gauss-Newton iterative procedure. In applying this proce-

dure, we can can make use of the analytic form of the derivative dé/dyu which
is readily avilable.

The formal algebra associated with the unconditional least-squares estimates
is not affected when the tail of the data vector {yo,y1.... ,yr~1} is padded by
zeros. However, as the extent of the padding increases, the value of function
y'M'~1M 1y converges rapidly upon that of 7S(u,y) = ¥’ A(p)y. The upshot
is that the estimates of the approximation method can be obtained, in practice,

from a procedure which is intended for calculating the unconditional least-
squares estimates.
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INVERSE METHODS

The asymptotic form of the criterion function in (25) is given by

where

0.2
(31) £(2) = SEu()nlz™)

is the spectral density function of the MA process depicted by equation (23)
when z = ¢'. The function S(j) is minimised when jt(z) = p(z), in which
case we have S(u) = o2.

Consider the “inverse” function

(32) Vi = gEOEELE

It can be seen that this also attains its minimum value when fi(2) = p(2).
This result suggests that we might estimate p(z) by finding the value which
minimises a finite-sample version of the function in the form of

174 A’y: Mz—_ﬂﬁ

= ﬂqul‘h

wherein f(z) is a consistent estimate of the spectral density function f(z). Here
R, is a Toeplitz matrix whose elements are given by

_ 1 " d
r= oy § A5 &

(34)

1 » s :
(27)2 f—x f(ewr)d‘d

These are the empirical counterparts of what Cleveland [5] has described as
the inverse covariances. The expression above can be compared with a simi-
lar expression for the empirical autocovariances given under (20). Theorem 1
serves to show the following:
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THEOREM 4.

The estimates of the moving-average parameters obtained by the Inverse
Method fulfil the conditions of invertibility.

Remark. It is notable that we need to use a consistent estimator f(z) of the
spectral density function in order to obtain consistent estimates of the inverse
autocovariances. By contrast, the sequence of ordinary empirical autocovari-
ances, which represent consistent estimates of their population counterparts,
may be obtained, according to equation (20), from the periodogram I(z) which
is an inconsistent estimator of the spectrum. It might be hoped that, if f(z)
were replaced by I(z), the function V(u) would still converge to V(p), thereby
preserving the consistency of the estimates of the MA parameters. However,
the results of Bhansali [3] suggest that this is not the case. The consistent es-
timator f(z) would normally be obtained by smoothing the periodogram, and
this is liable to add significantly to the burden of computation.

Durbin’s Method.

It is interesting to note that the method of MA estimation proposed by
Durbin [8] is, in fact, a variant of the inverse method. Consider the asymptotic
form of the inverse criterion function under (32) which can be combined with
the definition under (31) to give

() — 1 d
V(p)= 12 § HBEC ) e
(35) =2 § A==
2
= (8) wadwi.
In effect, Durbin’s proposal was to approximate the asymptotic form of the
inverse criterion function by replacing ¥(z) = p~1(z) by a finite polynomial
#(z) obtained by fitting a autoregressive model of a high order to the data
generated by the MA process. In fact, Durbin’s method is the result of using

the method of autoregressive spectral estimation to derive the function f (2)
which is to be found within the criterion function V(u,y) of (33).

5. AUTOREGRESSIVE MOVING-AVERAGE ESTIMATION

Consider an autoregressive moving-average process of order (p,q) which is
represented by the equation

(36) aL)y(t) = p(L)e(t)
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We assume that the model is both stationary and invertible by virtue of the
condition that the roots of the equations a(2) = 0 and u(z) = 0 lie outside the
unit circle.

Given our sample of mean-adjusted observations, we might derive estimates
of the autoregressive and moving-average parameters by finding the values
which minimise the function

(37) S(a, _____f 1(2) z)a(z l)dz.

2)i(z—1) iz

Such estimates would fulfil the conditions of stationarity and invertibility.
There are a variety of alternative matrix expressions which we can use for
the function S(a,u,y). However, if we wish to avoid expressions involving
matrices or vectors of infinite order, then we are constrained to write

S, i, y)= oL YA (j1)Yra,

(38)
=yl ALA (1) Ary,.

Here Y.a, = Ay, is the matrix expression for the convolution of @ = {1, a;,

yap} and ¥y = {yo,¥1,-.. ,yr-1} which depends upon the semicirculant
matrices Y;(y) and A,(a) of order (2T — 1) x T, whilst A,(u) is the variance-
covariance matrix of order r = 27" — 1 of the process pu(L)y(t) = €(t). These
expressions for S(a, i, y) may be compared with similar expressions based on
the lower triangular Toeplitz matrices A(a), M(u) and Y(y) of order T

(39) de=ad Y MM 'Ya=y AM- M 1Ay.

The values of o and p which minimises the function &’ corresponds to what
Box and Jenkins have described as the conditional least-squares estimates of
the autoregressive moving-average process. To find these values, we may use
a Gauss-Newton iterative procedure based on the analytic expressions for the
derivatives dé/da and dé/du. By padding the tail of the vector y with zeros,
we can obtain values for o and g which closely approximate the ones which
minimise the function S(a, g, y).

THE MIXED METHOD.

For an alternative way of obtaining estimates which are guaranteed to sat-
isfy the conditions of stationarity and invertibility, we might resort to a Mixed
Method with combines the Yule-Walker Method of estimating the autoregres-
sive parameters with the Inverse Method of estimating the moving-average
parameters.
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Given a value for ji, we should obtain one for & by minimising the function

S(alp)= § &(2)a(z" ") s &

= &'Gpa,

(40)

where the elements of the Toeplitz matrix G, are given by

) o= f jz) _de

a(2)i(z=1) overiz

Given a value for &, we should obtain one for i by minimising the function

-1
2 dz

L(il)= § e &
= i’ Hyfi,

(42)

where the elements of the Toeplitz matrix H, are given by

F4

1 T dz
(43) hr = (27)? ?{a(z)f“(z)d(:—l)?

These two minimisations represent successive steps in an iterative algorithm
which will generate a convergent sequence of values for & and ji. The recursion
starts with an initial estimate of & provided by the equations

Cq Cg-1 oo Cq-pt1] [@1 Cq+1
Co+1 Cg - Cg-p a2 Cqt2
Cotp—1 Cqtp-2 .- Cq &p Cq+p

Remark.

In order to implement the algorithm, we must decide precisely how the el-
ements of G, and H, are to be calculated. An obvious way is to reexpress
equations (41) and (43) in terms of the discrete Fourier transform and to use
the fast Fourier algorithm to perform the computations. An alternative way
is to borrow the method which Durbin [8] has used for estimating MA models
which we have described above. We can calculate the elements of G by form-
ing the covariances of the filtered process i~ 1(L)y(t). We can calculate the
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elements of H, by fitting an autoregressive model of high order to the filtered
process a{L)y(t).

An algorithm for the Mixed Method, which has been programmed by the
author, appears to converge at roughly the same speed as an unsophistocated
version of the Gauss—Newton algorithm for computing the unconditional least-
squares estimates. In the more sophistocated versions of the Gauss—Newton
algorithm, the rate of convergence is accelerated by selecting an optimal step-
length for each iteration. The alternative step lengths are evaluated in terms of
the associated reductions in the value of the criterion function. In the absense
of an explicit criterion function for the Mixed Method, it difficult to know how
to accelerate its rate of convergence in such a manner.

It can be shown that the estimates generated by the Mixed Method are
asymptotically equivalent to the maximum-likelihood estimates.
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