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ON A DISTANCE BETWEEN
ESTIMABLE FUNCTIONS

C. ARENAS

Universitat de Barcelona

In this paper we study the main properties of a distance introduced by
C.M. Cuadras (1974). This distance is a generalization of the well-
known Mahalanobis distance between populations to a distance between
parametric estimable functions inside the multivariate analysis of va-
riance model. Reduction of dimension properties, invariant properties
under linear automorphisms, estimation of the distance, distribution
under normality as well as the interpretation as a geodesic distance
are studied and commented.

Keywords: Mahalanobis distance. Multivariate parametric estimable
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1. INTRODUCTION

Cuadras (1974) has generalized to the case of multivariate estimable func-
tions the distance introduced by Mahalanobis. This allows to apply the canoni-
cal analysis to the representation of estimable functions. This distance together
with techniques of dimension reduction (canonical analysis, principal coordi-
nate analysis) makes clear the interpretation of principal effects in multivariate
analysis of variance designs. For applications in Medicine see Ballis and oth-
ers (1980); in Agriculture see Cuadras, Oller (1982) and other applications in
Cuadras (1981).

In this paper we study the main properties of this distance for multivariate
estimable functions.
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2. MULTIVARIATE ESTIMABLE FUNCTIONS

Consider the multivariate linear model

(1) Y=XB+U

where YV = (y(l),...,y(p)) is a kzp-matrix of data with y) representing the
observations of the variable j. We will suppose that these observations come
from k different populations Hj, ..., Hy and that every p-dimensional observa-
tion is assimilated to a random vector Y = (Y1, ..., Y,) with covariance matrix
3" of rank p, assumed to be the same for the k populations. X is a kxm-design
matrix of rank r. B = (fBi,...8m)! is an mzp-parametric matrix, i.e., each f3;
is a p-dimensional parametric vector. Finally the kzp matrix U is the error
matrix and it is assumed that E(U) = 0.

Let p; stand for the mean vector of Y in the population H;,i = 1,...k.
Then we have

(2) p=XB

where
p={(m, o )"

In the following F will be the real vector space generated by Y1,...,Y,, and
u! stands for the mean function on random vectors of F' in the population
Hi(i=1,..,k).

An estimable function ¢* (see Cuadras (1974), definition 2.4.1.) is an element
of the dual space F* of F given by a linear combination of the uj’s, i.e.,
¥* = dip} + ... + dipl = Dip*.

If Ep stands for the real vector space spanned by G, ..., Bm and EB* stands
for its dual space then a parametric function is just an element of EB* (see

Cuadras (1974), 3.2.).

We recall that a parametric function is said to be estimable if it has a linear
unbiased estimate. Otherwise a parametric function, say, ¥* = P87 + ... +
P,,(3% = p'B* is estimable if the vector p* belongs to the space spanned by the
rows of X. In Cuadras (1974), theorem 3.2.1., it is proved that a parametric
function is estimable if and only if it is an estimable function. The relation
between the expression ¢* = p'B* and ¢* = D'u* is given by P = X*D (see
Cuadras (1974), theorem 3.2.2.). If the matrix X (the reduced design matrix)
has full rank every parametric function is estimable. Otherwise a parametric
function ¥ = p1B1 + ... + PmBm = p'B is estimable if and only if

®3) PX'X) XX =p
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where (X*X)~ is a generalized inverse of X'\ .

We consider a sample of size ny, (resp. na,...,n;) in the population Hi,
(resp. Hg,..., H;) and denote by A the diagonal matrix with entries ny, ..., ng.

Let ¥* be an estimable function and i} the usual estimation of the mean (i =
1,...,k). If the Gauss-Markov estimation of ¥* is given by ¢* = p'ﬁ*, we say
that ¢* = D'i* is the “intrinsic expression” of '*, where D = A X (XA X)~pt,
(see Cuadras (1974), 3.3.4.).

Suppose that Y has a multivariate normal distribution and consider the
random matrix

[ Y111 ~ee Ypnt
Yiln, - Ypin,
V =
Y1k cee Upkt
Yikn, .- Ypkn,

An unbiased estimation of the covariance matrix 5 is

) Zz R? :(V—XAB*)‘(V—XAB*)

n—r n—r

with n = ny + ... + nx and B* the least square estimation of B*. In Cuadras
(1974), p. 23, it is shown that the Gauss-Markov estimation ¥* of an estimable
function ¢ with intrinsic expression ¥* = djut + ... + di iy, follows a multi-

. _ _ k
variate normal distribution, ¥* ~ N,(¢*, D) where D = 3" d?/n;. Moreover,
i=1

(theorema 4.6.1.), (n — r)i: has a Wishart distribution with n — r degrees of
freedom, (n — 7)}> ~ W(n —r, 3_) and ¢*, S are independent.

3. DISTANCE BETWEEN ESTIMABLE FUNCTIONS

For any given estimable functions Y1, ¥3, we consider the following distance
(squared) introduced by C.M. Cuadras (1974)

(5) D2 (¥}, ¥3) = (Y1 — ¥2) SN (1 — ¢ha)
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where ¥;(i = 1,2) is the vector of components of ¢ (i = 1,2) in the dual basis
Yy, ., Y.

Note that (5) is just the square of the distance between ¢} and ¢ induced
by ¥ on the dual espace F”*.

As 3" has full rank, the expression in (5) is strictly positive whenever YT £ Y5
(and zero otherwise).

PRroOPOSITION 1

The distance (5) is invariant under linear automorphisms of the variables
Yy, LY
) ) p

Proof

Let Z* = A'Y* be a linear automorphism, where Z} = a,-lYl"+...+a,-pr*(i =
1,...,p), and consider an estimable function ¢* = p'B*, where B* = MY*
and M is an mzp-matrix. Then it is easily seen that A transforms estimable
functions into estimable functions. Moreover, given two estimable functions
¥}, ¢35 if ¥i(i = 1,2) is the component vector of ¢ with respect to Y{*, ..., Y,
we have that, DL(y},¥5) = (A' 1 — Al ¢n)' (AT A) (A ¢y — Al¢e) =
(%1 — %2 AA™ T (AT AN — o) = DY (VT ¥5).

PROPOSITION 2
Let M, = X1B, + U, and M, = X3B» + U's be two multivariate linear
models with My, = (Y1,...,Y,) and My = (Z;,..., Z,) noncorrelated. If ¢* =

pt By + pb B is an estimable function with respect to the multivariate linear
model

M, X1 O By B, U
o (-0 o) G G)la)
M, 0 X, B, B- Ua

then, D2, (¥1, ¥3) = D (w1 (¥1), m(¥3)) + D (m2(¥]), m2(¥3)) where we
have set m;(y*) = p! B} for i =1,2.

Proof

Using (3) it is easy to see that m (¥}), resp. m2 (¥7), 1s an estimable function
with respect to My = X1 By + Uy, resp. My = X2Ba + Ua.

Let (¥}, ¥2) (i = 1,2) denote the component vector of ¥i, where ¥} consists
of the coordinates of ¢} with respect to Y7*,....Y;" and ¢} of the corresponding
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ones for Z7, ..., Z;. As the covariance matrix of (M, M) is
¥, 0
Z B ( 0 Ez)
where . is the covariance matrix of M; (i = 1,2) we have,
D2y (v1,93) = (81, 9) — (93, 93)' 7" (w1 ¥]) - (v}, ¥3))

= (=o' =) (B L) (- G- )

= (9} —vd)' 7' (0} - wd) + (v - 3)' 5! (v - d)
= D2 (y1, ¥3) + DI (41, ¥3).
ProrosITION 3

Let Y = XB + U be a multivariate linear model. If we add new variables
Z, such that Y = (14, ...,Yp) and Z = (24, ..., Z,) are not necessarily noncor-
related, then

DZ (%1, ¥3) < Diy (97, 43)
Proof

Let E be the real vector space spanned by Y7, ...,Y;, Z1, ..., Z;, and let F be
the subspace generated by Yi,..., Y, and ) the covariance matrix of (Y, Z),

ie.,
- Dt X, ’

where )", and }_, are the covariance matrices of ¥ and Z respectively.

The distance (5) between two estimable functions 1. 19 is given by
D¢}, ¥3) = (¥1 — ¥2)' T3 (1 — ¥)
P

But © = 9, —1), is an element of the dual space F* of F and as ), is positive
definite, there is a unique vector X in F such that Q = ), X. Therefore

D2(47, 93) = Q5! Q=X'Ty £5'8) X = XISy X

on the other hand, ~ B
D}y, (41, 43) = Q'L Q
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where Q, which lies in the dual space E* of E, is of the form (Q, M)* with M
arbitrary.

Note that the matrix E_l has the form
(A . )
Bt C

Ly,A+DB*'=D'B+%XzC =A%y + BD'=B'D+CEz =1
LSy B4+ DC=D'A+XzB'=AD+BE; =By +CD' =0

and satisfies

where as usual, I is the identity matrix and 0 is the null matrix. Consider now
the following decomposition

Q Sy X Yy X 0
= = +
M M Dt X M -D'X
If ©; stands for the ith term of the right hand side of the preceding expression

(i = 1,2), we have

Q

D7, (41, ¥3) = (', MY ( ) = () + Q)T (Q) + Q)

M
= Q’IE‘I Q + QE_,E“ Qs + QQtIS_]QQ.

But,

QS = (X', Xpys-t [ Y
pt X

e o ((ADy + BDY)X e (X
=2 XD oo o | =S XD ) = N
Ty b
If we put R= M — D'X then

Q271 Q, = (0,RHZ! 0 = (0, R") bR =R'CR
2 ’ R ’ CR
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and as 37! is positive definite, R'"CR > 0.
Finally,

0
Q! £-1Q, = (X'Ty, X'D)T-! (R)

B R
=(X'Zy, X'D) (C R) =X'"(EyB+DC)R=0

And this concludes the proof, since

Dy, (¥1,¥3) = X'Ey X + R' C R> X'Sy X = D3(yn, ¥). #

Consider the parametric family of p-multivariate normal distributions p ( - [, 30)
with 3~ fixed and g € R” being the parameter and identify this family with
F* by means of

Z5—>p(\p,D): Z*(W)= EW) =w EV1) + ... + w, E(Y,) = p'W
Then we have

PROPOSITION 4

Distance (5) is Rao’s distance between the distributions N, (¢, 3") and N, (¢35, T0).

Proof

With the preceding notations, let M be the subspace of F* generated by
K1, Mk, l.e., the space of estimable functions. Supposes that u¥, ... u? is a
basis of M

Recall that in order to find Rao’s distance between two probability distribu-
tions, we take (Cuadras, 1988) Fisher’s information matrix as the fundamental
metric tensor in the manifold generated by the parameters. If we considerer
the parametric family of multivariate normal distributions Np(p, ) where 57
is fixed and p € R? is the parameter, the fundamental metric tensor is just

-1
Y.

Now consider the parametric family of multinormal distributions No(¥,Y))
with Y fixed and the parameter % varying in M. As M is a submanifold of

R” and R? is isomorphic to F* the fundamental metric tensor restricted to M
is given by the rzr-matric G = (g;;), with

9i;(¥) = () =70 py
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and where p} is the component vector of g in the basis of F™.

As G does not depend on the parameter, the Christoffel symbols vanish, so
the geodesics are the straight lines (properly parametrized).

Then Rao’s distance between the distributions N, (¢, >°), Np(¥3, %) is
given by R?(1,2) = (¢4 — ¢1)! G(¥2 — ¥1).

If 4;(i = 1,2) is the component vector of ¢ in the basis of F*, then
Y =AY, and G=A'T7TA

where A is a prr-matrix such that

u; = ayj Y+ .. +ap; ); =L

Then we can write
D2 (4, ¥3) = (¥ — ¥ S (1 — o) = (A% — Av4) SH(AY] — AY)
= (P] — ¥4)' G (¢) — ¥5) = R*(1,2). #

For properties of Rao’s distance see Cuadras (1988).

Finally, as an estimation of distance (5) we may take
. . RSN . ;
D2t vs) = (91 —d3) S (41 -93)

where 9} (i = 1,2) is the Gauss-Markov estimation of %} and Z is the unbiased
estimation of 3~ given in (4). Suppose that (Y7, ..., Y} ) has multivariate normal
distribution and take samples of size n; in each population ;. Given two

estimable functions ¥}, ¢35, the Gauss-Markov estimation ¢* of ¢* = 7 —
k

3 follows the distribution Ny (¥ — ¢3, D), where D = S d?/n; and where
i=1

dy, ..., dy are the coefficients of the intrinsic expression of ¥. Then, under the

hypothesis H, : ] = ¢35 ,

L N
Dt (i =d3) 57 (41 - w3)
has a Hotteling distribution with parameters p and n —r, and

yn—r—p+1

S

.
D;('/'P ¥y)

has a Fisher-Snedecor distribution with p and n —» —p—1 degrees of freedom.
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