QUESTIIO, Vol 11, n® 3, pp. 37-57, 1987

EIGENANALYSIS AND METRIC
MULTIDIMENSIONAL SCALING
ON HIERARCHICAL STRUCTURES

C.M. CUADRAS and J.M. OLLER

University of Barcelona.

The known hierarchical clustering scheme is equivalent to the concept
of ultrametric distance. All distance can be represented in a spatial
model using multidimensional scaling. We relate both clases of rep-
resentations of prozimaity data 1n an algebraic way, obtaining some re-
sults and relations on clusters and the eigenvalues of the inner product
matriz for an ultrametric distance. Principal coordinate analysis on
an ultrametric distance gives two classes of independent coordinates,
describing compact clusters and representing objects inside every clus-
ter.

Keywords: Ultrametric tree, clustering, principal coordiante analy-
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1. INTRODUCTION

Holman (1972) has established the relationship between the Euclidean spatial
model and the hierarchical clustering scheme, both frequently used in represen-
tation of proximity data. He also proves that the Euclidean dimension required
to represent n objects which constitute a hierarchical system is at least n—1.
Thus Euclidean representation and network representation seem to be in op-
positon.

In this paper we discuss some properties connected with the different Eu-
clidean dimensions that are obtained via principal coordinate analysis from a
ultrametric distance matrix, thereby showing that some maximal clusters are
well reflected in spatial models.

—C.M. Cuadras i J.M. Oller - Universitat de Barcelona - Facultat de Biologia - Diagonal,
645 - 08028 Barcelona.
—Article rebut el desembre de 1987.
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Let E = {e1,...,e,} be a finite set with n = |E| > 3 objects, and let § be
a distance on E. Define §;; = 6 (e;, ¢;), and thus §;; > 0 with equality if and
only if 1 = j(z,7 = 1,...,n).

Let I, be the n X n identity matrix and consider the n X n matrix A whose
17—element is

ai; = (—1/2-6%)

Define
H=1I,--11
n
where
1=(1,...,1)
\.——\’—-/
n

and considerer the iner product matrix

B=HAH

It is well-known (see, for example, Mardia et al., 1979) that § has an m-
dimensional Euclidean representation, i.e., (E,§) can be imbedded in (R™,d),

where d is the usual Euclidean distance, if B is semi positive—definite and
m =rank (B).

The above Euclidean model identifies each object e; of E as a point in B™
with coordinates (z;i, ..., Zim) such that the columns of the n X m matrix X =
(zi;) are the eigenvectors of B. Thus

XX =B
(1) xx:p}

where D is a m x m diagonal matrix whose diagonal entries are the positive
eigenvalues of B. The method based on this identification is known as metric
multidimensional scaling,or principal coordinate analysis.

It is also well-known that if § satisfies the so called ultrametric inequality

5,',' < max(&,-k,51~k) (i,j,k = 1,...,n)
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then E can be identified with an ultrametric tree, usually represented as a
dendrogram. Moreover, in this case E can be analyzed via the hierarchical
clustering scheme (Johnson, 1967), i. e. it is possible to construct a hierarchical
structure C of nested clusters and a level function «, defined on clusters, which
is closely related to &.

Both models have been widely used and applied to the same data. Less
frequent, however, are theoretical studies on the relationship between spatial
and hierarchical models. Gower (1971) conjectured that an ultrametric dis-
tance is always Euclidean. This conjecture was proved by Holman (1972} who
seems to be the first investigator who obtained theoretical results on the sub-
ject. Other proofs of Gower’s conjecture have been obtained by Gower and
Banfield (1975), and Cuadras and Carmona (1983). Ohsumi and Nakamura
(1981) studied (with examples) a relationship between the eigenvalues of the
inner product matrix B and the cluster formations on the hierarchical structure
(C, @) associated with and ultrametric distance §. Carroll (1976} introduced
tree structures as intermediate models between spatial models and the hier-
archical clustering scheme, and described an algorithm to fit a tree structure
to proximity data. Pruzansky et al. (1982) studied and compared two di-
mensional Euclidean planes and additive tree representations, and proposed
two indices (skewness and elongation) of goodness—of-fit and some criteria for
deciding which model is more appropiate. Critchley (1985) proves that a low
dimensional scaling of a dendrogram may have a very good fit and gives some
useful results to elucidate the Holman’s theorem consequences.

2. EIGENANALYSIS OF ULTRAMETRIC PROXIMITY MATRI-
CES

Let 6 be an ultrametric distance defined on a finite set £ = {e;,...,e,}
and consider the n x n matrix A = (6;;) with &; = §(e;,e;)(5,7 = 1,...,n).
Most of the properties of the present study may be read off directly from the
A matrix, but we prefer an alternative approach of first studying a proximity
matrix, and then connecting the resulting consequences with the A matrix.

Let P = (p;;) be a n x n symmetric proximity matrix, i.e. p;; = m(e;,e;) > 0
satisfying:

Pii 2 Pij = Pji (3,7 =1,...,n)

If P also satisfies:

(2) Pii = % Z Piy Z min(pik)pjk) (7:).7') k= 1: . .,TL)
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then P is called a z—ultrametric proximity matrix, and is denoted by P®). If
in addition,
z>pi; >0 (t,7=1,...,n;1#7)

then P(%) is said to be a non-singular z—ultrametric proximity matrix.

Theorem 1. Let P(*) be a non-singular z—ultrametric proximity matrix,
and let y > 0. Then:

a) P{®) 4y, is a non-singular (z + y) — ultrametric proximity matrix.
b) P} is positive-definite;
c) the smallest eigenvalue A of P(®) is given by

A=z —max{p;;:1# j}
Proof. To prove a), we observe that:
pii+y=$+y2xzmin(pik;pjk) (i)j;k:]-"'wn)

and thus P(® + yI, = Pla+y),

To prove part b), we show by induction that det(P(’”)) > 0 and that all
principal minors of P(#) are positive. Let a = max{p;; : 1 # j}. If pi;; = pjz =
a, then by (2)

pik > min{pi;, pr; } = pry k#3
Pik > min{p;;, pri} = pri k#1

and since P{#) is symmetric, we obtain

Pik = Djk k=1,...,n (k #4,7)
Thus, taking 2 = a, P(*) has two equal rows, and hence det (P(“)) = 0. For

n = 1, P(%) is trivially positive definite. We assume that P(®) is positive definite
for n = k. Consider the function f : [0,00) — R defined by

f(2) = det (P(“+=)) = det (P(a) + zIk+1)

Notice that all P( z) matrices can be expressed in the form P( ) + Z.In .
P:
Then
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f(0) =0

£l =3 det (P +28) = 52 et (BE)
i=1 i=1

where Pi(a+z) is the k£ X k matrix obtained after deleting the © — th row and

the 7 — th column of P(2+2) Since Pi(a+z) is an (@ + z)—ultrametric proximity
matrix, the induction hypothesis gives

det (P**9) >0

whenever z > 0. Therefore f'(z) > 0 for z < 0 and f(2) is a strictly increasing
function. In particular, taking z = z — a, we have that det (P(’”)) > 0 and since

all principal minors of P{*) are positive, P(?) is positive definite. It follows, by
continuity, that P(®) is semi positive-definite, and part b) follows.

We now prove c). Let u be an eigenvector of P(*) with eigenvalue c.

Then

Py = (P(“) + (z - a)In) u=(a+(z—a))y,

and so u is also an eigenvector of P(*) with eigenvalue A = a + (z — a). Since
P{a) is positive semidefinite, 0 is its smallest eigenvalue and hence A = (z — a)
is the smallest eigenvalue of P(*). This concludes the proof.

By reordering the finite set E = {e1,...,e,} into E = {e;,,...¢€; }, one is
able to construct an adequate form of the matrix P(®) as follows:

Let 1= (1,...,1)',J = 11’ and define

a max {pij:e,e;€EE, 1#7}

(3)

E1 = {e,-l, ...,e,'nl CDigi = G1, ih 79 ik}

Then |Ei| = ny > 1. The sub-matrix P, of P(®) corresponding to E; is the
ny X n; matrix defined by P; = a;J + (z — a;) I, where the matrices J and I
have the appropiate order.

In the same way, we define
az = max {p;; : &;,¢; € E — EY, 1 # 7}
(4) E; = {ein1+1’ 1€in tng f Pinix = a2,1h 7 tk,
and p;,; = pi,;for all § £t 41, . %0, 4n,}
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Then |E3| = ny > 1. Proceeding in this way we obtain a partition of E

(5) E=E,+ - +E. +E,s 1+ - -+E, ENE;j=¢ i#£3
where

|El=ni>1 if1<i<r
|E| =1 if 5> r.

This partition is formed by r maximal clusters of equidistan objects, in relation
to P{#) and (m — r) isolated objects. Note that r > 1 and r = m are possible.

Furthermore

Pij = Pkj if eirex € Eq e ¢ By,

i.e., all the elements of E; are equidistant to the other elements of E. Notice
that the equivalence relation ~ on E defined by e; ~ e if and only if p;; = pi;
for all e; € E, 5 # ¢, k, gives the partition (5), i. e. the E, are the equivalence
classes.

Henceforth we assume that E has been arranged in accordance with (3), (4)

and the partition (5). One may refer to this arrangement as the arrangement
of E induced by P(®).

Theorem 2. Let P(*) be a z—ultrametric no singular proximity matrix.
Then

M=z—ag1 <A =z—-a3< - <A =z—a,

are the eigenvalues of P(*) The multiplicity of ); is (n; — 1) and the correspond-
ing eigenspace is generated by the n; — 1 orthogonal eigenvectors:

u{ = (01, ~ 20;0),u8) = (0,1,1,-2,0,...,0;0)'
‘) ( 1,..,1,— (n; — 1);0)’
B i-1 i
where 0 and 0 denote null vectors of orders 3 n;and n— ) n;,
=1 J=1

respectively.
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Proof. The sub-matrix of P{%) corresponding to E; is P; = a;J + (z — a;) 1.
Let

o) = (1,-1,0,...,0), ..., vpm1 = (1,..., 1, —(n; — 1))’

Then

Piv‘s'i):'(z_a’i)v}i) .7':1)"')”'1'_1)

and so vj(-i) is an eigenvector of P;. Then it is easy to see that “(1i)’ ceny u,(:‘_)_l
are orthogonal eigenvectors of P{*) whose eigenvalue is (z — ai). Moreover,
A\ = z — ay is the smallest eigenvalue of P(*), by Theorem 1, and the proof is

complete.

3. EIGENANALYSIS OF INNER PRODUCT MATRIX FOR AN
ULTRAMETRIC DISTANCE

Let A = (6;;) be the previously considered matrix determined by an ul-
trametric distance § on E. Suppose that §; > O for all © # 5. Define the
z—ultrametric proximity matrix P(?) = (p;;), where

(6) Dii = Pij = Pji =% — 1/2.5,-2:,- >0 1#£7

and suppose E is with the arrangement induced by P(*). Consider also the
partition (5) and let hy be the common distance between all the pairs of different
objects in E,,

(M) hg = &;j e, €5 € By 1# 7 1<q<r

The next theorem points out certain properties of the eigenvalues and eigen-
vectors of the inner product matrix associated with A. Later on, we discuss
some geometric interpretations of this theorem.

Theorem 3. Let A = (6;;) be an ultrametric distance matrix and let
B = HAH, where A = (—1/25,?‘].) JH=1I,—1J,0=11"and 1=(1,...,1).
Let 44 be the largest eivenvalue of B. Then:

(8) a) M =2hi<..<A=2in2<yu

=
B et
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are the eigenvalues of B. The multiplicity of A, is (n, — 1) and the correspond-
ing orthogonal eigenvectors are the same as those of Theorema 2. Furthermore,
A1 is the smallest eigenvalue of B.

b) w = A if and only if &; = &ix = 65 for every e, ¢;, ek, € E, ie. all
elements of E are equidistant.

Proof. Considerer the z—ultrametric proximity matrix P(*) defined in (6).

Then Ay = z — a1, where a; has been defined in (3), is the smallest eigenvalue
of P(=) (Theorem 1). Moreover since P = zJ + A, then

B=HAH = HP®H and rank(B)=n—1,

because HJ = 0 and rank(P(”)) =n.

Furthermore,
Bul(.l) = Alugl) = 1, ey N1 — 1
where ugl) is defined as in Theorem 2, because Hul(.l) = ugl). Thus A; is

an eigenvalue of B. In a similar manner, one can prove that Ay < ... < A,
are eigenvalues of B with eigenvectors given by Theorem 2. Since P{®) is
positive definite, we have that P(*) = TT', rank(T) = n, for some matrix
T. Tt follows that P{®) and Q = T'T have the same eigenvalues. Similarly,
S=T'HHT =T'HT and B = HP\®*) H = HTT'H have the same eigenvalues,

and

S:T’T—;IL-T'JT:Q—C,

with rank(S) = n — 1 and rank(C) = 1. Thus, p1{C) > 0 and p;(C) = 0 if
1> L

On the other hand, let ui(M) > ... > u,(M) be the eigenvalues of any
symetric positive semidefinite matrix M. Then (Okamoto, 1969), if N and
M — N are semi positive-definite matrices, and rank(N) = k < n, the following
inequalities are satisfied:

(9) pi(M — N) > pye i (M)

where u;(M) = 0 for all j > n.

44



Therefore, from (9), we obtain:
p1(@ — C) = i1 (B) 2 wa(@) = iz (P1)

Moreover, 1 (P(")) > A, because P(2) ig positive definite and an eigenvec-
tor of the largest eigenvalue must have positive components (Perron’s theorem).
It follows that pg (P(*)) > A, and thus = u1(B) > A, and (8) follows.

We now let a; = max (pi;) = ¢ — n;m (1/2.53-) = z — A1. By Theorem 1,
i#]

we have p, (P(””)) = A1, and taking again (9) into account, we obtain
p1(B) 2 . 2 pn-1(B) 2 pin (P(I)> =X > pn(B) =0

But }; is also an eigenvalue of B, 50 pn—1(B) = A1 = £h% > 0 is the smallest
eigenvalue of B, and part a) follows.

Finally, suppose s = . Then p;(B) = pa(P), i.e., u1(Q — C) = p2(Q).
This implies that C = p;(Q).v1v}, where vy is an eigenvector corresponding to

the largest eivenvalue of Q with ||vs|| = 1 (Okamoto, 1969). Then u; defined
by vy = T"u;, is an eigenvector of the largest eigenvalue of P(@)_ Tt follows that

%T'll’T = p1(Q)T"ur v\ T

and so uy = n~1/21. Therefore, 1 is an eigenvector of the ultrametric proximity
matrix P(*) and it is easy to see that p;; = pix = pyx for all s # 5 # k. It
follows from (6) that §; = 6ix = 6;x. Then E = E1, n = ny. This concludes
the proof.

Corollary. A non singular ultrametric distance 6 for a finite set E with n
objects has a n — 1 dimensional Euclidean representation.

Proof. This follows since B is semi positive~definite and rank(B) = n — 1.

The smallest eigenvalue A; has been obtained by Cuadras (1981). See also
Ohsumi and Nakamura (1981), Cuadras and Carmona (1983) and Cuadras
(1983).

It is not feasible to obtain all the eigenvalues and eigenvectors of B, but
through Theorema 3 it is posible to give some partial results. Let u; > p2 >
U3 > ... be the eigenvalues not equal to A, > ... > A;. Except for the greatest
eigenvalue u1, every other eigenvalue can be greater or less than A, (A # A1)

In some special cases, the eigenvalues y; can be obtained explicitly. For
instance, suppose:
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lEbl == |Eb+1| = ...= lEc| =np
Hy, = 51;1' = Ok = 5]‘k if e € Etn e; € Et.“ e € Et;,
bSt1<t2<t3SC

i.e., Eyp,..., B, ere equidistant clusters. Then it is possible to prove that:

(10) i =1/2 (o Hg — (mo — 1) h3)

is an eigenvalue of B of multiplicity (¢ — ) — 1. The corresponding eigenvectors
are:

(g; 1,(m 1 1, (.'.‘!’,—1,0,...,0;()) , (Q; 1, 1,1, (71— (7 _2 0, ... 0 (‘))

i.e., with similar structure of the eigenvectors obtained in Theorem 2.

We shall now describe a result concerning the variation of y; after a pertur-
bation of A;. We know (see, for exemple, Mardia at al., 1979) that

262 —n(z,uk-f-z:)\,-)

i<y

For the same reason, we have from (7)

(11) an h2/2+D—n[Z/Ak+Z -1 hz/z}

where ng (ng — 1) h2/2 is the sum of the intradistances between all the pairs of
different objects in Ey, and D is the sum of the interdistances between objects
of different clusters.

Suppose that é;; is perturbed within the cluster E,

Sf 62+eq—h + &4 e, e € By 1<g<r

but with the conditi~on that the interdistances between different clusters will
not be altered, i.e., &;; = &;;, for e; € Eg , e; € Eq,, 1 7 q2.
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Then D does not vary and we have

(12) an ) (RZ +¢,) /24D =n [Z fe + Z ) (h2 +2,) /2]

where i are the corresponding eigenvalues resulting from (5,1) From (11)
and (12) we deduce that

(13) Zﬂ'k = Z/‘k - Z (n—ng) (ng — 1) .&4/2n

The last formula gives the variation of the eigenvalues yx which decrease
if the h, distances are increased. It can be also proved that the order of the
eigenvalues of B can be modified if we perform a monotone transformation to
8;;. Then a clear relation does not exist between the order of the eigenvalues

and the hierarchical clustering scheme constructed using 6;; (see the exemple
below).

4. METRIC MULTIDIMENSIONAL SCALING ON AN ULTRA-
METRIC DISTANCE

We shall exhibit some geometrical interpretations on the principal coordi-
nates deduced from a ultrametric distance é;; on a set E. Let us suppose E is
ordered according to the ordering induced by A = (6;;).

Let X be the n X (n — 1) matrix satisfying {1). Let us arrange X as follows:

(14) X = (Xo, X1, .., X,)

where X, is the n X (n, — 1) matrix with the principal coordinates associated
with the n, — 1 eigenvectors with eigenvalue A, = %h:‘; (1<g¢<r), and Xp
contains the remaing coordinates of X. Through each X;(0 <t < r) we can
project E in a (n; — 1)-dimensional Euclidean space with a Euclidean distance
d¢ (%, 7), resulting in



The next theorem describes this reduction in the dimensionality.

Theorem 4. Let A = (§;;) be an ultrametric distance on E, and assume that
E is ordered according to the ordering induced by A. Considerer the partition
Ei, ..., By, and the principal coordinates (14). Let d; (e;, ¢;) be the Euclidean
distance obtained by using only the principal coordinates X;(¢t =0, 1, ..., 7).

a) dofei, e;) =he>0 if e,e;€E , e;#e;,, 1<qg<r
dq (i, €5) =0 if e, e ¢ Eg, 1< g<m,
where hﬁ = 2)q.

b) do(e, e5)=0 if e, e; € Ey, 1< ¢<m,
do (ei, ) > 0 if e;€Ep, e;€E, 1<p#q¢g<m.

Proof: As a consequence of Theorem 3, for 1 < g < r, the columns of X,
are

(Ae/2).(0;1, =1,0,...,0;0)', ..., (Ag/B) /2. (051, .y 1, — (g — 1) ;0)’

where g = ng — ng. We observe that the square module of each vector is A,
and that the Euclidean distance, using non null rows, of X, is

dg (ei, €5) = (2)‘11)1/2 =hy

Obviously the other distances are zero, and a) follows.

As the columns of X, are orthogonal to the columns of each Xq(l <qg<
r), Xo must have its first ny rows equal to a vector row (ay, az,...), its following
ng vector rows equal to a second row (fy,fB2,...), etc. Then do (e;, ;) = O if
ei, e; € Ey.

Let us now show that o; # f; for some . If we were to suppose the opposite,
then we would have

ni

1/2

~1 -1

61'1' = [(nl ) ay + (n2n2 ) az] < (a1 + a2)1/2 < (2A2) =hy e €E
€5 € E2

i.e., the inter—cluster distance §;; would be less than the intra—cluster distance
hz, which is incompatible with the ultrametric property.
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Generally, we can affirm that given two different clusters E, and E,, n, rows
of X, that describe E, are equal between them but different from n, rows that
describe E;. Then dg (e;, €;) # O for e; € Eyp, e; € E,. And this concludes the

proof.

We conclude this section with some results concerning the Euclidean distance
dy, its relation to 6;; and the representation of clustering C; =< Ey, ..., E,, >.

Since 6;; is ultrametric.

61(’;):5‘” if CiGEp,CJ‘EEq,p#q,

1s also an ultrametric distance on Cj;. Thus we can represent C; by using a

dendrogram. Moreover, we can apply the previous results to the ultrametric
distance 6(1) on C;.

Thus grouping equidistant clusters in Cy, we can define a new clustering Co,
and applying Theorem 3, we can obtain certain eigenvalues )\(11), ey ,\ﬁ). Calcu-
lated directly from §(!). Repeating this operation as many times as necessary,

we can build a hierarchy of clusterings

Co,C1, Oy, ..., Oy,

being Cp =< {e1}, {en},..,{en} >, Cx = E. The clustering C;; is built by
gathering equidistant clusters in C;. Each one of the clusters of the hierarchical
structure C obtained by applying the hierarchical clustering scheme on the
initial ultrametric distance §, belongs to some of the cluster C;. Theorem 3
tells us that starting from the distances §,6(%), ..., on Cy, Cy, ..., we can build
a succession of eigenvalues:

1 k—2 —_ _
(15) M<osh <A<l P < a2 < k)

Each eigenvalue (15) can be calculated directly from the original distance §.
In particular,

1
)\1 = min {5512] L€ 75 €y (S E} A(k_l) = max {%512] €, €5 (S E}

Let us note that the number of independent eigenvalues in (15) is equal to
the number of nodes in the dendrogram representing C, that is to say, to the
number of clusters in C different from {e;}, ..., {e,}.
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As a consequence of Theorem 4 the Xy—coordinates allow a (m — 1) dimen-
sional Euclidean representation of Cy. Let us relate the Euclidean distance
do (e:, e;) with (1), Tt is easy to prove that

(16) d(z) (e,-, ej) = (6;q)2 - [(np - 1) /np] Ap — [(nq - 1) /nq] Aq

where ), is defined in Theorem 3 for n, > 1. If n, = 1, we take an arbitrary

value for A, in (16). Although the Euclidean distance dé,l), defined on E, that

is to say, d(()l) (Ep, Ey) = do (e, €;) if e; € Ep, ej € Ey, is not ultrametric, (16)
2

assures us that (d(()l)> satisfies the additive inequality (or the condition of the

2
four points). Then C;, with the metric (d(()l)) , can be represented using an
additive tree, (see Sattah and Tversky, 1977).

Finally, let us suppose that Ey, Epyy,..., E. are equidistant clusters with a
common distance Hy and such that |Ey| = ... = |E;|. Then there exist, and
can be calculated, some eigenvalues i (see(10)) of multiplicity (c — b) — 1.

Let Xy = (X4, X;) be, where X contains the principal coordinates asso-
ciated with &, and X, contains the remaining coordinates. Then it can be
proved that g > {1 and that

(17) da (€i,6;) =0 du(ei,e5)=Hy if e, €y e;€E b<p#g<c
do (€5, 65) = dj (es,¢;) =0 if e,e;€By, b<g<c.

A consequence of (17) is that the a—coordinates may be inadequate for “em-
bedding” a hierarchical clustering scheme in a Euclidean space. For example,
in a representation in a plane, instead of using the principal coordinates asso-
ciated with the eigenvalues uy, uq, it is more convenient to use the coordinates
associated with uy, i, where i could be the largest eigenvalue satisfying (10).

An example. Frommel and Holzhiitter (1985) present a method for es-
timating quantitatively the influence of point mutations and selection on the
frequencies of codons and amino acids. They study an asymmetric mutation
matrix M = (m;;), where m;; is the probability of an amino acid replacement
A; — Aj; caused by a point mutation occurring per time unit. For a more
systematic classification of amino acids, they introduce a genetic distance d;;
between two amino acids A; and A;. The distance d;; is proportional to the
inverse probability of mutual replacement. Then a cluster analysis is performed
by means of the unweighted pair-group method. They obtain a dendrogram
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defining two main groups representing the hydrophobic residues and the polar
ones.

e

His  Tyr A Aep Glu Lys Qiln Arg Gly Cys Trp

FIGURE 1. Dendrogram obtained using a genetic distance according to Frommel and
Holzhiitter (1985).

We use in this exemple the 11 amino acids (histidine, tyrosine, asparagine,
aspastic acid, glutamatic acid, lysine, glutamine, arginine, glycine, cysteine and
tryptophan) belonging to the polar group. Figure 1 represents the correspond-
ing dendrogram. Table 1 contains the ultrametric distance computed from the
dendrogram but making the minimum distance equal to 1. Table 2 contains
the related principal coordinates and eigenvalues.

TABLE 1.

Distances among the 11 amino acids belonging to the polar group.

His Tyr Asn Asp Glu Lys GIln Arg Cly Cys Trp
His 0
Tyr 1 0
Asn 10.7 10.7 O
Asp 10.7 10.7 1 0
Glu 19.1 19.1 19.1 191 0O
Lys 19.1 19.1 191 191 1 0
Gln 19.1 191 19.1 191 96 96 O
Arg 191 19.1 19.1 19.1 18 18 18 0
Cly 191 191 19.1 19.1 18 18 18 6 0
Cys 19.1 191 19.1 19.1 18 18 18 12 12 O
Trp 19.1 19.1 19.1 19.1 18 18 18 12 12 84 O
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TABLE 2.

Principal coordinates obtained from the distance matrix presented in Table 1.

b1 B2 U3 pa=@ ps As Ay Az Az Al

610.03 446.28 117.23 114 60.44 35.28 18 0.5 0.5 0.5
His 9.8 —0.803 —0.032 -5.34 0.05 0 0 0.5 0 0
Tyr 9.8 -0.8083 -0.032 —5.34 0.05 0 0 -0.5 0 0
Asn 9.8 —0.803 -0.032 -5.34 0.05 0 0 0 0.5 0
Asp 9.8 -0.803 —-0.032 -5.34 0.05 0 0 0 -0.5 0

Glu -4.7 10.00 —0.076 0 3.00 0 0 0 0 0.5

Lys —4.7 10.00 -0.076 0 3.00 0 0 9] 0 ~0.5
Gln —4.31 8.86 —-0.027 0 —-6.52 0 0 0 0 0
Arg -—649 —6.58 -5.83 0 0.07 0 3 0 0 0
Cly —-6.49 —6.58 —5.33 0 0.07 0 -3 0 0 0
Cys —6.26 —6.25 5.50 0 0.09 4.2 0 0 0 0
Trp —6.26 —6.25 5.50 0 0.09 —4.2 0 0 0 0

The obtained theoretical results may be illustrated as follows:

1) The partition (5) is
(18)
E = {His, Tyr} + {Asn, Asp} + {Glu, Lys} + {Arg, Gly} + {Cys, Trp} + {GIn}

Thus r =5, m =6 and

Moreover

h1=h2=h3:1<h4:6<h5=8.4,
B=[2x(10.7)2-(2—1) x 1?] /2 =114

Looking at Table 2, we observe that theorem 3 and 4 are satisfied and the
fi—coordinates satisfy (10).
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Glu M2
s * g

His Tyr
AsnAnp

|

FIGURE 2. Two dimensional representation of dendrogram displayed in Figure 1
using the first and second principal axes.

2) Figure 2 is a two-dimensional representation of the 11-aminoacids using
the first and second principal coordinates. Note that His, Tyr, Asn and
Asp lie on the same point, so the partition (18) is not well represented.

M
em
Anp
Arg Cys A4ln
Gy "Trp Gl M
Lys
!is
Tyr

FIGURE 3. Two dimensional representation of dendrogram displayed in Figure 1
using the first and fourth principal axes.

3) Figure 3 is the representation using the first and fourth principal coordi-
nates. As {His, Tyr} and {Asn, Asp} are locate separately, this represen-
tation is more suitable than the previous one.

.t Cys

Gly Arg

.Irp

FIGURE 4. Two dimensional representation of amino acids inside the clusters Arg,
Gly and Cys, Trp.
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4) The amino acids inside every cluster are described through the principal
coordinates related to A—eigenvalues. For exemple, Figure 4 contains the
representation of the amino acids {Arg, Gly}, {Cys, Trp}. On the other
hand, note that we can represent Gln only through pu—coordinates.

5) By gathering equidistant clusters we obtain the following clusterings:
Co = {[His|, [Tyr], [Asn], |Asp], ...,|Cys], [Trp|}
C, = {[His, Tyr], [Asn, Asp],[Glu, Lys|, [Gln], [Arg, Gly],[Cys, Trp]}
Cz = {[His, Tyr, Asn, Asp], [Glu, Lys, Gln), [Arg, Gly, Cys, Trp|}
Cs = {[His, Tyr, Asn, Asp|, [Glu, Lys, GlIn, Arg, Gly, Cys, Trp|}
C4 = {[His, Tyr, Asn, Asp,..., Cys, Trp|}

The succession of eigenvalues (15) is

Al=A2=A3=0.5<A4=18<A5=35.28
<A =46 <AV =57.24 < AV =72 < AP = 162 < A®) = 182.4
Note that these eigenvalues can be computed directly from the ultrametric
distance matrix on Table 1.

6) The X, coordinates allow a five dimensional representation of C;. The
Euclidean distance dg verifies (16), i.e. d2 satisfy the additive inequality.
Figure 5 is an additive tree in parallel form, representing C; with the metric

(dg1>)2.
|

L1+

HAis,Tyr Awn Asp

FIGURE 5. Additive tree in parellel form representing the clustering C;.

7) We are also able to represent Cz, C3 and Cy4 using the coordinates related
to the eigenvalues )\gl), }\gl), )\gl), /\52), A3). As C, contains only three
clusters, the graphical display is omitted in this case.

8) Finally, we now consider a monotone transformation of the distance on

Table 1. We put 17.7 instead of 10.7 and 17 instead of 12. Then the
hierarchical clustering scheme does not vary, but the new eigenvalues are
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B1 P2 pa=f pa As Ad .y
481.8 378 278.38 261.96 35.28 18

i.e., the order is different from Table 2.

5. SUMMARY AND CONCLUSSIONS

In this paper we investigate some geometric and algebraic properties on rep-
resentations of ultrametric distances using metric multidimensional scaling or
principal coordinate analysis. We also obtain some results about eigenstructure
of the inner product matrix for an ultrametric distance on a finite set E with
n objects.

The main conclussions obtained in this paper are:

a) The eigenanalysis on A = (§;;) can be done directly or on a matrix of
proximities P, relating P and A using (6). The matrix P has the advantage
that is positive definite.

b) Let B be the inner product matrix obtained from A. There exist certain
maximal clusters Ei, ..., E,, that define a partition in E. Each E; contains
equidistant objects. The clusters such that |E;| = n; > 1 are related to certain
eigenvalues ); of B that can be obtained directly from A. In some special cases
other eigenvalues, using elemental expressions, can be obtained. However, it is
not possible to obtain a global solution relating to the eigenstructure of B.

c) Let us consider the spectral descomposition B = I'DI' = XX'. We can
express the main coordinates as X = (Xo, Xr, ..., X1), where X;(¢ > 0) contains
the eigenvectors with eigenvalue ;. Then X, allows Euclidean representation
of Ey,...E,, while each X;(z = 1,...r) allows an Euclidean representation of
those E; such that |E;| > 1. If |E;| = 1, the Euclidean representation of E;
is obtained through the Xo-coordinates. If |E;| > 1, the objects contained in
E;, do not remain separated if we project through the X;—coordinates (5 # 7).
Moreover, the coordinates Xg, X1, ...X, define orthogonal spaces.

d) Even though the number of Euclidean dimensions needed to represent E

is (n — 1) (Holman, 1972), in fact it would be enough to project an (m — 1)
dimensional space.

e) The Euclidean distance dy defined through X, can be expressed through
6i; and Ax. Moreover d2 satisfies the additive inequality, or the condition of
the four points.

f) The perturbations of the eigenvalues of B after certain monotonic trans-
formations of §;; has been studied, and some conclusions have been obtained
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about the order of the eigenvalues and the hierarchical clustering scheme con-
structed on FE.
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