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A NOTE ON THE ECOGEN LANGUAGE BUILT-IN RANDOM
DEVIATE GENERATORS

JORDI OCANA, M. CARMEN RUIZ DE VILLA, GUILLEM ALONSO
UNIVERSITAT DE BARCELONA

The standard ECOGEN (a simulation language based om Pascal) random deviate gemerators are
described. For every one of them, a short usage note and a description of the algorithm and
underlying theory is presented. This paper must be considered as an addenda to a previous
one where the ECOGEN language was described. The ECOGEN random deviate generators include
the continuous and discrete uniform, Poisson, binomial, exponential, Cauchy, normal or
Laplace-Gauss, beta, gamma, Weibull, Pareto and Laplace distributions and the possibility
of simulating repeated Bernouilli trials. Further developments are discused, specially in
the sense of allowing the application of variance reduction techniques.

Keywords: RANDOM NUMBER, RANDOM DEVIATE
VARIANCE REDUCTION.

1. INTRODUCTION.

In a recent paper /13/, we described ECOGEN,
a discrete-event simulation language based

on Pascal. ECOGEN performs well as a general
the --
fact its main design goal was to facilitate

purpose simulation lanquage (despite

simulation in Population Biology, especially
in Population Genetics). The before cited pa-
per was something like an ECOGEN mini-manual
and preliminary report, previous to any im—-
plementation. Now the language is fully im--
plemented. It runs on IBM 43XX and 30XX se--
ries. Pascal/VS language and VM/CMS operating
system must be available. It may be obtained
upon request to the authors.

In /13/ we argued that there was no need for
a complete set of standard, built-in the lan-
guage,
tion.

facilities for random deviate genera-
The argument was mainly based on the -

existence of good packages to do this.

Our practical experience with ECOGEN during

the last year has greatly changed the preceed-
ing point of view. First, we have realized --
that the most reputated and widely-used pa-

ckages are not so convenient, in aspects like
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the possibility of maintaining separated ran-
dom seed sequencies, of giving facilities for
variance reduction techniques, or simply pro-
viding subroutines and functions for a wide

range of probability distributions. Second, -
even users with with a non-trivial statistic-
al training, may find some difficulties while
implementing algorithms for some common dis-
tributions. They also frequently use not very
like the for-

mer Box-Muller method /7/ for the normal dis-

good (but popular) algorithms,
tribution (slow sin, cos and log computations,
worse things may happen when it is used joint-
ly with linear congruential uniform random --
number generators, see /8/).

In this paper we describe the actual ECOGEN
standard, built-in the language, set of ran-
dom variate generators. It must be considered
just an addenda to section 4.3 in /13/. Accor-
ding to its "user manual" view, only short --
de-

tails and the study of its performances (com-

usage notes are included. Implementation

paring it with preexisting packages and the
random deviate generators from other simula--
of

tion languages) will be the subject a --
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forthcoming paper.

2. ECOGEN STANDARD RESOURCES FOR RANDOM
VARIATE GENERATION.

A description of ECOGEN facilities for ran-
dom variate generation follows. For every

function we present its heading declaration,
where the names of the arguments, their type
and the result type are clearly stated. Af-—-
ter the function heading declaration there -
is (if necessary)

the distribution (or den-

sity) definitions, mainly to show the mean-
ing of the parameters. Every generator des-
cription is closed by a short discusion on

the algorithm and its underlying theory.

First, assume the following type declara--
tions

nonegint = 0..maxint;

rangeseed = 1l..maxint;

posint = rangeseed;

maxint being an integer constant with the
greatest (implementation dependent) positive
integer value. The first argument of all —--
functions is a variable called nseed of ran-
geseed type. It is the random seed, its ---
value being changed in every case, while --

performing the random variate generation.

We will often use the not very precise (but
short) phrase "...returning a value with...
distribution..." instead of something like
"...returning a value obtained by means of
a random experience associated to a random
variable with...distribution..." longer and

not much more precise.

1. function rand (var nseed: rangeseed):real;

This is the most basic resource, return-
ing a value with uniform distribution --
over the (0, 1) interval. It is based on
a portable generator described in /8/.

Possibly, it will be changed in the fu-

ture.

2. function discrand(var nseed: range: ran-

geseed; n: posint): posint;

Returning a value with discrete uniform

distribution over {1,2,...,n},

Prob {X =i} = 1/n, if i =1,2,...,n.
function trial (var nseed: rangeseed,
p: real): boolean;

Simulating the possible occurrence of an
event with probability p, 0 < p < 1. It
returns value true with p probability and

false with 1 - p probability.

function
lambda:

Poisson (var nseed: rangeseed;

real) : nonegint;
Returning a value with Poisson distribu-

tion of Lambda (lambda > Q) parameter:

X

Prob {X=x}=exp(-lambda /(x ), if x=0,1,...

This is based on the well known (and not

very efficien%) algcrithm founded in the
relation between the exponential and ---
Poisson distributions. For large values
of lambda (greather than 6) a normal ap-
proximation

1/2

N(lambda, (lambda) )

is used.
function binomial

(var nseed: rangsseed;

n: nonegint; p: real): nonegint;

Returning a value with binomial distribu-

tion of 0 < p <1 and n < 0 parameters:
n X n-w
Probk { X = X1 = X 2] {1-n)
if v = O,l...f!.

Its algorithm is kased on counting the
absolute frequency of an event with p
probabiiity. n independent trials are

performed by means of the trial function.

For large n values (n 2= 30):

When o is intermediate (0.1<p<0.9) a normal

N(np, (no(l—p))l/%

approximation is used.
When p is small (p < 0.1)

viate with lambda = np parameter,

a Poisson de-

P(np),
approximation is used.

0.9)

generated as n - Y, where Y is taken as

Wrken p is large (p 2 the variable is

a Poisson P(n(1l-p)).
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6.

function hipergeometric(var nseed: rangeseed;

N,M,nex : nonegint):

nonegint;

Returning a value with hipergeometric dis

B

if max {0, Mtnex~-1}
(integer x)

tribution

Prot { X = ¥ } =

<z & miv{i,non

where 0 < M < N and 0 < nex < N.

The algorithm is based on directly simu-
lating the following experiment: nex
"balls" are "drawn" at random and with-
out replacement from an "urn" containing
N balls, some of them (M) being "marked".
x i1s the number of marked balls in the
(size nex)

random sample. For large N

values, more exactly, when 0.1N > nex
(see /10/) M/N)
ximation is used. This binomial is itself
approximated by a Poisson P (nex M/N) or

by a Normal N(m,s) with /10/.

a binomial, E(nex, appro-

=
]

nex M / N
1/2
{((N - nex)/N) (nex M/N) (1 - M/N)}

0
]

according to the same criteria used for

the binomial distribution.
function geometric(var nseed: rangeseed;

p: real): nonegint;

Returning a value with geometric distri-
bution

X

Prob {X = x} =(1-p} p, if x = 0,1,2,...

0 <p =< 1.

For large values of p (p > 0.5), random

independent trials (function trial) are
performed until the occurrence of the p
probability event (trial = true). For --
smaller values of p, as this algorithm
would be slow (too many trials until oc-
currence of the event), direct inversion
of the commulative distribution function
is performed:

X =[1n(1 - U) / 1n(1l - p} ]

10.

where [] is the intecer part function
and U is a random variable with uniform
distribution over (0.1) (function rand).
The critical value p = 0.5 has been em-
pirically determined.

nseed.

Function neabinon(var rangeseed,

r, p. real). nonegint,
Returning a value with negative binomial
distribution

Probh { X = x )} =

with r 2 0 and 0 < p < 1.

Direct composition of a Poisson with a
gamma distribution is performed:. a Pois-
son deviate is generated, with random --

lambda parameter drawn from a gamma dis-

tribution with a = r and b = (1-p)/p pa-
rameters.

function exponential (var nseed:! range-
seed;, b! real). real,

Returning an exponentially distributed

value
E(x) = (L/b)y exp (-x/t) , 1if x > 9
with b > 0

Direct inversion of the commulative dis-

tribution function is performed:

¥ = - b 1n{(l - )

function Cauchy (var nseed. rangeseed,
m(* median *),

s(* scale *)! real).real,

Returning a value with Cauchy distribu--

tion
f(x) = L s 1f —odx<w
2 2
I s - (x - m)
with ~ o<m<e and s>0.
Direct inversion is performed. This algo-
rithm, usinc a polynomial approximation

145



Qtiestii6 - V. 10, n.° 3 (setembre 1986)

11.

12,

13.

to the tancent function /1/ is faster
than the rejection aloorithm based on
the well-known fact that the cuotient
between the coordinates of a point ran-
domly chosen (with uniform distribu--
tion) over the two-dimensional unit cir-
cle has a standard (m = 0, s = 1) Cauchy
distribution.

function normal(var nseed! ranageseed;

m(* mean and median *),

s(* standard deviation¥*):

real) ! real,

Returning a value with normal distribu-

tion

2
1 exp{- 15:%1— } , if

s V2T 2s

f(x) =

—ooL Lo

with -o<m<® and s > 0.

This
0Odeh

uses the rational approximation of
and Evans /14/ for the inverse ---
standard normal cummulative distribution

function.

-1 pP{Y)
X=F () =Y + ——
Q(Y)
where
Y = 1n {(1-0)%}

and P, Q are degree 4 vpolynomials.

function
a, b.

beta(var nseed. ranceseed;
real) ! real ;
Returnina a value with beta distribu-

tion

a-1
X {1 - x)
f£{x) = ‘ if o

gs(a;m

where B is the

b-1

"beta function" and a > 0,
b > 0. The algorithm is based on rejec-
tion, combining the method from J¥nk

/6/ for small values of a and b (a+bs<l)
and the method of Chenag /9/ for larger
values of a+b (> 1).
function

a, b:

gamma(var nseed! ranageseed,;

real) . real,

14.

15.

16.

Returning a value with gamma distribu-

tion.
1 a-1
f(x) = —— X exp { - x / b} ,
a
() » it %= 20
with a > 0 and b > (0, where P is the

"gamma function". This is based on the
and

and / 4/ other-

rejection algorithms from Ahrens

Dieter:. /3/ when a <1

wise.

function
b, c.

Weibull (var nseed! rangeseed,
real) ! real;
Returninoc a value with Weibull distribu-

tion. The expression for the cummulative
distribution function is easier to write

than the corresponding density:

Prob { X < x} =1 - exp { -(x / b)' Y o

if =2 0

with ¢ > 0, b > 0.

This is generated directly by inversion.

1/c

X = b (exponential (nseed,l) )

function Pareto(var nseed. rangeseed;
a, b: real): real .Returning a value
from a Pareto distribution. It is custo-
mary to define such a distribution from

b

Prob { X > x'} = {a / x ) s if x> 3

with a > 0

and b > 0.

It is directly generated by inversion:

a

X = —m—m—
1/b
(1r-u
function Laplace(var nseed:. rangeseed;

m{*mean and median¥*),

s(*scale*) Ireal) ireal;

Returning a value with Laplace (or type

I error) distribution:
Ix = m|
{ =———}

2 s S

1
f(x) = — exp

where -o<m<x and s>0.
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It is directly generated by inversion . Under the second option, the main cgoal will
m+ 5 In( 20 , if 7 < 2.5 be speed. The most efficient methods (to the

X = B extent they are known by the implementors)
m-s In{ 2(L-7)y ) , 1f U > 0.5

will be vrovided, disregarding any other con-

sideration like the possibility of correctly

h QPY S S N anplying variance reduction technigues.

Apart from cuestions about some obviously
necessary improvements like the provision 4,
of cenerators for more distributions (main-
ly for some multivariate distributions} and /1/
for some basic stochastic processes, many
guestions arise on the alaorithms at present
in use. Why is inversion used instead of
other alcorithms that are in principle more
efficient, for some distributions like the /2/
exponential /11/ or the normal /2/?, why
not introduce some facilities for éeneration
from tab lated distributions (like a"buckets"
method /5/ or an "alias" method /12/?, etc.

/3/
We think that these questions must be ans-
wered under a more dgeneral view. Our project
is to provide the ECOGEN user with the pos-
sibility of deciding (in some extent) the
methods. /47

As the present running implementation (under

VM/CMS and based on Pascal/VS) is based on

a preprocessor translating from ECOGEN into /5/
Pascal, there will be nrevrocessor ovtions
introducing variance reduction or not (the

latter beinag the standard nossibility).

Under the first option, inversion or other /6/
generators, all based on monotonic trans--

forms of uniform deviates, will be provided

to ensure the vossibility of aprlyina va--

riance reduction technicues. As is well --

known, the most widelly applied (in model - /7/
simulation) variance reduction technioues,

as antithetic variates and common random --
numbers, lie on monotonicity and synchroni-

zation assumptions. Inversion methods based /8/
on transforming a single random number by

means of the inverse of the cummulative dis-
tribution function, appear as the best nos- /9/
sibility (in variance reduction). If neces-

sary, slow (in setting time) agenerators --

from previously tabulated distributioms will

be used (this will be for example the case /10/
for the gamma distribution, with no widelly '
applicable analytical or empirical formulas

for the inverse of the distribution function).
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