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OUTLIERS IN CIRCULAR DATA: A BAYESIAN APPROACH
G. ARNAIZ TOVAR AND C. RUIZ RIVAS
UNIVERSIDAD AUTONOMA DE MA_DRID

The problem of outliers in circular data is studied from a Bayesian point of view. Surpris-
ing observations are identified by means of a predictive measure. On the basis of Box-Tiao
methodology, the mean-shift model and some aspects of the contamination of the concentra-
tion parameter for a Von Mises distribution are analysed. Intuitive aspects of the resul-
tant weights and their applications in some classical examples are included.
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VON MISES DISTRIBUTION.

1. INTRODUCTION,

The statistical analysis of circular data
creates specific problems that differ from
the usual ones on the line. In particular,
Lewis (/8/) notes the specific problem of
outliers in this field. Barnett and Lewis
(/1/) and Beckman and Cook (/2/) in their
extensive work on outliers, include, in the
circular data section, the results from -~
Collet (/5/) who analyzed the performance

of 4 statistics (the likelihood ratio, the
one suggested by Mardia (/8/) and two others
based on intuitive considerations) for the
detection of a single outlier, characterized
by the maximum angular deviation from the
sample mean direction. Mardia and El-Atoum
(/9/) provide some aspects of the Bayesian
inference for the Von Mises-Fisher
bution.

distri-

The most usual distributions on the circle
are the Von Mises and the wrapped Normal
which have a close relationship, as ana-
lized by Stephens (/11/). The first, statis-
tically the most manageable, has the density

function

1
ZnIO(k)

£(8/u,k)= explk cos (8-u)}, 0<6<27

where k>0 (concenQ

0spu<2w (mean direction),

tration) and I_ is the modified Bessel func-
tion of the first kind and order p. Notating
AK) = I, (0)/I_(k), A'(k) = 1-a%(k)-A(Kk)/k
and following Bernardo (/3/) for the refer-
ence prior distributions, we shall distin--
guish the cases a) k, a nuisance parameter
"a priori" independent of u (f(u,k)m(A'(k)fuL
b) k a parameter of interest (f(y,k)«(kA(k)A'(k) )1/3

Mardia and El-Atoum (/9/)).

2, IDENTIFICATION OF SURPRISING QBSERVATIONS.
One of the greatest practical problems of the
Bayesian models for outliers is the computa-
tional explosioh in the calculus of the pos-
terior distribution, even for small sample
sizes. Pettit and Smith (/10/), through con-
siderations on the prior distribution of the
contamination parameter and by relating the
concepts of "contaminant" and "surprising --
observation", reduce the calculus to the ob-~
servations identified as "surprising" using

a predicative measure as a measure of "sur-
prise”.

In our context, given a sample e=(el,...,en),
we shall notate R, 6 the resultant and mean
direction of the data and for each

Mc{1,2,...,n} =N, card. M =m, L = N-M,
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t=n-m, 8(M) ={6,,ieM} and Ry+ §M

tant and mean direction of the data 6(M).

the resul-

Let us suppose that the standard model which
generates the correct observations is a Von
Mises distribution, M(u,k), and let us con-
sider a prior density of the form g(k) for
(u,k}. '

Small values of the predictive measure

h(6(M/6(L) = [£(6(M/u,k) £(u,k/B(L))dudk «
« 1
I (kR))

Ek

2
(1, (k))

where Ek is the expectation with respect to
the prior distribution of k, indicate that
the observations 6(M) are "surprising" in
relation to 6(L) (and the prior specifica-
tion for (u,k)).

As IO is strictly increasin@, the bigger the
concentration of the data with labels in L
the smaller will result the predictive mea-
sure. In otherwords, among all the subsets
of m observations, the most surprising in
relation to the others will be those which
do not belong to the set of the most concen-
trated { observations. This procedure, in -
accord with common sense, implies a succes-
sive search for the outliers in the extremes
of the maximum arcs between consecutive ob-
servations.

3, MEAN-SHIFT MODELY

Let us suppose that with probability 1l-o an
observation comes from the standard model
M(u,k) and with probability o from the con-
tamination model M(u+a,k), ae(0,2m).

Let BM be the event "observations 6(M) are

from the contamination model and the 86 (L)

from the standard model”.

The likelihood may be stated as:

£(8/u,k,a,B) ={ 21T (k) 1 exp{kRy,cos (5, -w ) (3.1)

where Ry, =( 2 8% 42 cos (8, -6, —a))l/2 and ¥,, are
MRy YRy HER Ry M L ™

the resultant and the mean direction of the
transformed data:

6., i € L
i

[ s
fl

Yi = 1,2,.4.,n

ei—a, ieM

Following the Box and Tiao (/4/) methodology
and taking k,a as nuisance parameters, the
posterior density for p will be expressed as
a weighted average of 2™ distributions:

£(u/8) = § W,£(1/8,B,)
9 =1 8

L ™ £(8/B)

Wy = P(By/8) = C(133) F(8/B

M

C (normalization constant)such that EWM = 1,
M

The weights WM will weight up the outlier
quality of each subset, 6(M), of the data.

Given the likelihood (3.1}, the results de-
pend on the prior specification for (u,k,a).

Let us analyze some cases:

3.1, K KNOWN,

Let us suppose a independent of u and for
U the reference prior U(0,2n) . Now: '

m .
O

Particularly, if a 1is known, the factor
Io(kRyM) has an obvious intuitive sense: in
that it will increase with increase in the
concentration of the transformed data Yi+

Its maximum value will clearly be obtained
for a set 8(M) displaced approximately an
angle "a" from the data mass. In this case,
the posterior density for p will be a weight-
ed sum of densities M(?M,kRYM).

. On the other hand, taking a prior U(0,2m) -

for a, we have

m
"]

Y “(I:E) Io(kRM)Io(kRL)

which will increase with the simultaneous

increase in concentration of the sets 6(M)

and 8(L). In this case:

£(u/8,By) ~M(6; /KRy ) -
Finally, let us suppose that we have a prior

knowledge of a expressed by means of a den-

sity M(ao,ko) with ao,ko known, now:
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Ea[IO(kRM)] = 2nIo(kRM)IO(kRL)f(0)

where the factor £(0) represents the value
at the 0° angle of the density function of
the random variable B =81~82—a (mod. 2w),
BI'M(erkRM)’ 82~M(6L,kRL). If we consider
that the convolution of Von Mises distribu-
tions may be taken, approximately, as Von
Mises (Mardia, /7/), £ is approximately
M(GM-S

L_ao'kl) where k1 is such that

A(kl) = A(kRM)A(kRL)A(ko).

The posterior density for p will, in this
case, be the weighted sum of the densities:

2.2 2
£(u/8,By) <I [(k"Ry + kg +
5 a2 s _
+ 2kkoRMcos(6M u ao) Jexp{kRLcos(eL u)}
which are the product of a density M(§L,kRL)

and the density of the difference (mod. 2w)
of M(SM,kRM) and M(ao,ko).

EXAMPLE 1l: Estimation of an axis.

The estimation of an axis, though formally
different from the outlier problem, may be
undertaken by means of the previous model,
taking a=m, a=1/2. Let us consider the fol-
lowing example: (Wagner's data quoted by
Mardia (/7/, p. 168)).

The vanishing amgles of 13 pigeons released
one by one in the Toggenburg Valley were
135, 145, 165, 170, 200, 300, 325, 335, 350,
350, 350, 355, 20. The hypothesis was that
the pigeons would fly in the direction of
the axis of the valley.

Applying the previous model with a=180°,
0=1/2, k=7.13 ) (gee table 1).

The weights for m=1 provide the identififa-
tion of the first five data as clearly dis-
tinct from the rest. The weight Yy for
M= {1,2,3,4,5} is of the order of 1027 ,
the next largest being of the order of 3000
times smaller. In this situation, if. the
welghts are normalized so that ZWM =1, we
will have: M

f(U/g) zf(U/ngM) ~M(YMIkR‘YM)

where ¥, = 343.12°, Ry, = 12.05.

The 0.95 HPD interval for p is
£330.5, 355.8] . The 0.95 confidence inter-
val is [329.2, 357.61 (Mardia (/7/)).

EXAMPLE 2. Data from Ferguson, Landreth and
Mckeown (1967) cited in Collet (/5/).

The aim was to investigate the homing abil~
ity of the northern cricket frog, Acris
crepitans. 14 of them were released after

30 hours enclosure within a dark environ-
mental chamber located to the north west of
the collection point. Taking 0° to be due
North, the orientations of the frogs were
104, 110, 117, 121, 127, 130, 136, 145, 152,
178, 184, 192, 200, 316.

Taking k = 2.1737, and different options --
for a, we found the following weights (2)
for m = 1: (table 2)

which clearly identifies 316° as an out-
lier; in fact, for a = 60 we can identify

the observations 10, 11, 12, 13 as a group

taking a deviated direction.

In this case, assuming "a priori" that k is

large we can obtain some approximations for
the weights and the posterior distributions.

Let us consider k and a, independent nuisance
parameters, "a priori" independent of u. Gi-
ven the reference prior distribution for --

k), (A (k) /2
taken proportional to 1/k, and in a situation

which for large k can be

of prior ignorance of a (a~U(0,2m)), we ob-

tain approximately

£(6/By,) = 73 (n_RM_RL)l—(n/z)
(R Ry)
w mz_g_)m (R(n—R))l/z(___E:B_)(n/2)—1
M T T i
1-a M L n-Ry~Rp

the factor (n—R)/(n—RM—RL) which obviously
has the greatest influence on the weight,
may be seen as a generalization, for m out-
liers, of the statistic suggested by Mardia
(/8/) and analyzed by Colled (/5/) to test
the discordance of a single deviated obser-
vation, 8, . This statistic is (n-l—RN_{k})/
/(n-R) where k is such that R

N-{k}
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mix RN—{i} , and agrees, for m = 1, with
the largest value of the factor (n-R)/
/(n—l—RL).

The posterior density for p is a weighted
sum of the densities:

(1-n)/2

f(u/Q,BM)x[n—RM—R cos (8 -u) ]

L

Analogously, if a is known

m 1/2 _
me(_Q_) 2 (_2_5_)
l-a RYM n-RyM

(n-1)/2

_ -{n/2)
f(u/g,BM)c[n—RyMcos(yM—u)]

Let us analyse, in this case, the data of

the previous examples:

EXAMPLE 1: a=180°, 0=1/2, n=13, R=2.8

Label Weights (m=1)

1 2.58
2 2.72
3 2.83
4 2.82
5 2.47
6 0.74
7 0.63
8 0.63
9 0.64
10 0.64
11 0.64
12 0.63
13 0.69

M=(12 3 4 5} , w,=7.45x10°, Ty=343.12,

RYM=12.05
With the next biggest weight of the order

of 3000 times smaller, when normalizing the
weights, we have

£(1/8) =F (u/8,B,) «[13-12.05 cos(u-343.12)170"3

By integrating this density numerically, -
the 0.95 HPD interval for u is found to
be [328.72, 357.521.

EXAMPLE 2: a.U{(0,2w), n=14, R=10.1527

Label Weights (m=1)
1 3.20
2 2.86

Label. Weights (m=1)
3 2.55
4 2.42
5 2.26
6 2.20
7 2.12
8 2.07
9 ~ 2.08

10 2.67
11 2.97
12 3.49
13 4.23
14 143.16

which again identifies the observation 14

(3160)'as an outlier.

4, CONTAMINATION OF THE CONCENTRATION PARA-
METER.

Given the standard model, M(yu,k), let us now
suppose that, whith probability a, an obser-
vation mauy be generated by the contamination
model M(p,ak), O0<a<l (for a=0 the contami-

nants come from a U(0,2w) distribution).
Now, the likelihood is:

£(6/u,k,a,B,) =

1 a Y
= exp{kRIcos(e ~1) +akR cos (8,~1) }
@m°1, 0011 ()™ L M

Let us consider the situation: a known, a>0
and the reference prior density (kA(k)A' (k))"?
for (u,k) which for large k, may be taken ap-
proximately proportional to 1/ (k)% .Assuming
"a priori"vthat k is large, we obtain

m n/2
[ m/2 ,R;)"2 n-R
e 1=g) @) ()
2 .2 2.2 = =
where T® = RL + a RM + 2aRMRLcos(6M_8L).

This posterior density for k is a weighted
. . . n 1 o

sum of Gamma distributions, T(i’ T:EH:T)'

and the posterior density for p is a weight-

ed sum of densities

n/2

(l+am-T)
£(u/8,B,)«=
~M {l+am-T cos (B—u)](rwl)/7

where T cos{R-u) = RLcos(eL—u) + aRMcos(BM—u).

For a = 0 we have, analogously:
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o ™ R f“ (n—R)n/2

wye (=) (5
M ‘lI-o R (l_RL)l72

1

f(k/e,BM)-«P(%, ﬁ)
~ L

1/2 1/2
(R4 (1-R )
](1+1)/2

f(u/ 6Byl e« —
[1—RLcos(6L-u)

2. SUMMARY.

Following the Bos-Tiac methodology, we have

analized the mean-shift model and some apro-
ximations for the contamination in the con-

centration parameter of a Von Mises distri-

bution.

In different situations, expresions for the
weights (wM) which measures the anomaly of
the subset M of the data,
intuitively the results,

interpreting thus
have been obtained.

It should be emphasized in the k-unknown
case, the appearance in the expression of the
weights of a factor interpreted such as a
m-outliers generalization of the statistic
proposed by Mardia /8/.

Finally, the analysis of some classical
examples shows how, from the'practical point
of view, the caltulus in the first place of
the individual weights (for different values
of the contamination parameter) can be use-
ful for the identification of different
groups of outliers. We must also point out
that the problem of estimating an axis can
be aborded through a particular case from
these models.
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6.NOTES.

(2)

(1)

" I-o

Non-normalized weights. The constant

2 is not included.

We consider k known for illustrative
purposes.The value 7.13 is obtained from
from the maximum likelihood estimator

of the concentration with the first five
observations shifted 180° (calculated
following Dobson, /6/)).



Qtesttié - V. 10, n.o 1 (mar¢ 1986)

Non normalized weights

IABLE 1
Label Data Weights (m=1)
1 135 0.41 E+06
2 145 0.75 E+06
3 165 0.12 E+07
4 170 0.11 E+07
5 200 0.24 E+06
6 300 0.29 E-02
7 325 0.10 E-04
8 335 0.21 E-05
9 350 0.15 E-05
10 350 0.15 E-05.
11 350 0.15 E-05
12 355 0.23 E-0S
13 20 0.37 E-03
TABLE 2
Label a~U(0,27) a = 60° a « 180°
1 0.5601 0.1345 0.0531
2 0.4817 0.1468 0.0384
3 0.4141 0.1673 0.0276
4 0.3848 0.1827 0.0235
S 0.3512 0.2118 0.0192
6 0.3385 0.2296 0.0177
7 0.3204 0.2731 0.0157
8 0.3093 0.3636 0.0145
9 0.3133 0.4621 0.0149
10 0.4408 1.1960 0.0316
1 0.5061 1.4882 0.0427
12 0.6263 1.9748 0.0675
13 0.7972 2.5830 0.1125%
14 20.9982 4,1505 66.8600

)

Nevth (0°)

Home
direction



	
	
	
	
	
	

