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NONPARAMETRIC BAYESIAN ESTIMATION AND GOODNESS OF FIT

TEST :
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We first make a review of prior distributions neutral to the right, and then we get the'Bayqs
rule for the survival function S(t) = 1 - F(t), with quadratic loss, with these prior distri-
butions. We give,after that, the estimator with a spectial kind of processes neutral to the

right, the homogeneous processes.

We get in point four the linear Bayes rule and we give there an interpretation of the para-

meters.

We finish with a Bayesian gemeralization of the Kolmogorov-Smirnov goodness of fit test.

Keywords: PROCESSES NEUTRAL TO THE RIGHT, HOMOGENEOUS PROCESSES, LINEAR
APPROACH, BAYESIAN GOODNESS OF FIT TEST.

1. INTRODUCTION.

In nonparametric Bayesian estimation, where
the parametric space is the set of all pro-
bability distributions on a given sample
space, the prior distribution is the induced
by a stochastic process, and the posterior
distribution is nearly impossible to apply.
It is only possible to attach statistical
problems with a prior distribution indeced
by a Dirichlet process. We begin studying

a large class of prior distributions, which
contains Dirichlet processes, the processes
neutral to the right. When we study the sur-
vival function estimation problem in such a
class, with quadratic loss, and we restrict
our attention to a special kind of processes
neutral to the right, the homogeneous pro-
cesses, we get a good interpretation of the
parameters involved in the estimation of

S(t), the survival function.

We have, however, some unpleasant circuns-
tances, even in this reduced class of prior
distributions, that make it adviseable to
look for a solution. i.e., a "good estimator"
that is, workable with any kind of prior
distribution. But, what do we mean by a

"good estimator"?. Namely that all the ele-
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ments in.it have clear interpretations and
that any person who wants to use it can do
so with on ly two requirements: a prior es-
timation So(t) and a degree of belief in it,
lt' We get the estimator

S(t) = [1-p_(©)] s, () + p_(t) S_(t)

1
t
1 -[s 1)}

with pn(t)=, lt
1 + (n-1) [So(t)] - n s _(t)
and Sn(t) the empirical survival function,
which with a Dirichlet prior is just the pos-

terior mean.

We finish with a Bayesian generalization of

the Kolmogorov-Smirnov goodness of fit test.

2.- PRIOR DISTRIBUTIONS NEUTRAL TO THE RIGHT.

-The class of random distributions called

neutral to the right, introduced by Doksum,
is a class of prior distributions on the

set of probability distributions'on a given
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sample space, which has good properties in
the sense that the support of their elements
is large enough and that the posterior dis-
tribution of an element of the class is also

contained.

Definition 2.1. Doksum (1974):

A stochastic process {F(t):teR} defined on
a probability space (Q,OQ,A), with state
[0,1]

bution function neutral to the right

space is said to be a random distri-

if can
be written in the form

F(t) = 1 - exp [—Yt]

where Yt is some separable, a.s. non-decrea~

¢ing, right continuous a.s., independent in-
crement process with lim Yt =0 a.s. and
lim Yt= ® a.s. toe

toeo

Let us suppose that Y has no fixed

t
point of discontinuity; then, the increments

have infinitely divisible distributions, and
so the Lévy representation of the logarithm
of the moment generating function of Yt may
be written as

Yy

-0
logM, (8) =logE[e  l=-gq () +62) () +

o -0z © -§t
* f (e -1+ ezz)stmf/ (e - 1+—22) v (2)
t
- lt+z (o]

l+2z

where

~

Ht{|x|>e}<m and ‘/ x2arn (x) , <w
t
o<|x|xe

L .(B), if B<(-=,0)

£
If nm () =

Nt(B), if Bc(0,»)

but t20 and Yt is non-decreasing, so if

b(t) = a(t) - fw 2 an, (2)

l+z
[o]

it will be

@@
loth(e)=logE[exp—6YtJ=-8b(t)+ y/}e-ez—l)dNt(z)
o

where

® 2z
Tiz W (2) <.

(o]

In this context, Nt(.) will be a measure on
the Borel subsets of (0,9), continuous in t.
Let us relax however this condition, allow-
ing the process Yt to have some fixed points
of discontinuity (at most a numerable quan-
tity), provided (still refering to Lévy re-
presentation) the lenghts of the jumps at
these points have infinitely divisible dis-
tributions. We will refer to Nt(‘) as the
Lévy measure associated to the process neu-
tral to the right, and is used to charac-
terise the process.

At last, let us fix our attention on two
facts: the non-random component is now

~6b(t), and so if it does not exist, it will
be

g {F:F‘ is a discrete distribution function } =1

where ¥ is the distribution of the process,
i.e., F(t) will increase jumping with pro-
bability 1, although it will have fixed po-
ints of discontinuity if and only if Nt(J
has them.

Survival function estimation:

Let Xl""’xn be a sample of size n from F.
If Gu(s) denotes the prior distribution of

the jump in Yt at u, Hu(s) denotes the pos-
terior distribution of the jump in Yt at u,

given X = u, Mt(e) = ;i? Ms(e), n Fn(t)
denotes the number of Xi less than or equal

to t, and Sn(t) =1 - Fn(t). Following Fer-
guson and Phadia /2/, the Bayes rule for
S{t) with loss function

0

L(s,8) = ~/- (S(t) - 8(t))2 aw(t)
Q

where W is a given finite measure on

(R*,B_.), ana observing that the X. in
R i

the product are such that Xi € t, will be

78



Qtiesttié - V. 9, ne 2 (juny 1985)

E[S(t)/dataJ=Mt(l/data)=
nF_(t)

X
= — i . 1 .

M (nS_(£)+1) 2L M, (n=i+2) M (n-i) C_ (n-i+1)

Mt(nsn(t))

i=1 i i

where, if Xi is a prior fixed point of dis-

continuity of Yt'

0
C, (a) = ./Fe—as(l—e-s)dGX (s)
i 5 ; i

X

while, if Xi is not a prior fixed point of

discontinuity of Y

t’
W_as
Cy (0 = /e dHy (s)
1 1

(o]

We see that if we are able to manage the
moment generating function MX in the dif-
ferent points, we also will be able to

manage the Bayes rule.

3. THE HOMOGENEQUS PROCESSES:

Tﬁe Bayes rule given before is nearly im-
possible to apply (at least from a practic-
al point of view) because of the difficul-
ties encountered in evaluating HX, and that
is why we now restrict our attention to a
special kind .of process neutral to the right,

the homogeneous processes:

A random distribution function F neutral to
the right is said to be homogeneous, Fergu-
son and Phadia /2/, if the independent in-
crement process Yt = -log(1-F(t)) has as a
characteristic function,

M (8) = exp {Y(t) JF €% - 1) an(z))

[e]

where vy(t) is continuous nondecreasing,

)
limy(t) = 0 and

tr—c

limy(t) =+%; that is,
t++0
it has a Lé&vy measure independent of t.

Under these conditions, the hom?geneous
processes neutral to the right, will be
such that the distribution of the process
P, the prior distribution in a estimation
problem, will pull out a discrete distri-
bution function F with probability 1, with-
out any fixed point of discontinuity.

Because Yt has not got any fixed point of

(1)

M;.(n—i+l) M, (-i+l) M (n-2)

discontinuity Cx () depends on HX , and it
i i
is

(1~ %) an(z)

dH, (z) = - =
f (1-e"2%) an(z)
(o]

Definition 3.1:

If N(.) is the Lévy measure of a homogeneous
process, let us note by 1(N,a) the function,

which does not depend on t,

f e 0z e_z(l—e—z)dN(z)

o a=0,1,...,n.
fz e %% (1-e"%)an(z)

1(N,a) =

We see that because

_ey
M 8)=Ele =g |(s(t)) =

=exply(t) [ (e7%-1) an(a))
(o]
it is

log Mt(a+2) - log Mt(a+n
1(N,a)= =
log Mt(a+1) - log Mt(a)

log EL(S(t))%"2) - log EC(s(t))*1]

a+l]

log E[(S(t) - log EL[(S(t))%]

and also, that if we call So(t) = Mt(l), it
will be

exp{—y(xi)~/. e” M Dz ) 2 ang)) =
(o]

w©

= exp{—y(xi) ( /(1—e"2) dN(z)).
(o]

= [54(x;)]

2z

e’ (1—e'z)dN(z)> L

(1-e~%)dN(z)

6‘58

o

—

o)

e” (=1 Dz ) =2 45(4) > é
(" 1)zZ 1 _7Z) 4z

L(N,0) .L(N,1).  .2(N,n-i)

g5
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Survival function estimation:

Because the homogeneous processes are neu-
tral to the right, the Bayes rule will be
tnat given by (1), but now, i=0,1,...,n

MX‘(n—1+2) MX.(n—i)
i . i

X (n-1+1)

M, (n-i+1) M,
i i

exp {—y(t) ji e (nmitl)z (l-e_z)dN(z)}

exp {-Y(t) Ji e (n-i)z (l—e_z)dN(z)}

:[so(xi)]l(N,-l)'l(N,O)'l(N,l)'...’l(N,n—i—l)[l(N,n—D -1]

wnere 1(N,-1) is defined as 1, and is also

now
CX (n-i+1 jfe_(n_i+l)z(l—e—z)dN(z)
= = 1(N,n-i) = =2
Cy (n-1i) e_(n_l)z(l—e-z)dN(z)
1 (o]
and
M, (nS_(t) 1) Y -
L . exp{— (t)}/a nsp )z, o z)dN(z)}=
M_(nS_(t)) (o)
=05 (g) L0 =D) TI,0) 1N, 1) "L "1(N,nS_(t)-1)

ana tnen,the Bayes rule is with prior distri-
bution nomogeneous process neutral to the -

rignt and with the gquadratic loss function.

Figure 1 : L{N,ot ).

and 0¢1(N,0)s1 can be interpreted like our
degree of belief in our prior estimation

So(t) . We shall return to this later.

We saw before that the Bayes rule is not
specially easy to apply with a particular
class of prior distributions, the processes
neutral to the right. Even when we consider
prior homogeneous processes neutral to the
right we have some difficulties with the -
interpretation of certain parameters. We
give here a Bayes rule, which is very easy
to apply with all prior distributions, for
which the two prior moments E[S(t)] and

E[Sz(t)] exist. This is very near to the

E[S (&/data = [So(t)]Z(N,—l)'R(N,O)'...'Q(N,nsn(t)-l).

nF_{t)

m=s

Q(N,n-i)[So(xf JQ(N,-l)'Z(N.O)'...'Q(N,n—l+l)[l(N,n—i)—1]

Let us see something of its interpretation:
0f course, So(t) = E[S(t)] reflects our prior
guess regarding S(t). With respect to our
prior "strength of belief", let us represent
1(N,a) : if & is tne set of the Lévy measures

of homogeneous processes, we have,

posterior mean in a lot of situations, and
it is the same in some of them, for instance
the Dirichlet prior. Namely, we look for -
the Bayes rule inside the set of linear com-
binations of some given set of sample func-

tions.

Survival function estimation:

Let S{t) be a random survival function. We
make here the classical Bayesian analysis:
we select a random sample os size n and

1
look for the Bayes rule gl(t), with quadratic
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2,41
loss, for S(t) inside the set of decision (a) E[Sz(t)] = [So(t)Jt

R 1 1 .
rules like atSnl(t) + btso(t), with So(t)

(b) 0 < 1, < 1.

the prior survival function and Sm (t) the t

1

empirical survival function, as before. Then,

(c) 1t - 1 & V(s(t)) - 0.
we select another sample, of size n and

2

again we look for Bayes rule inside tEe set (d) 1, - 0 & V(S(t)) is the greatest.

of decision rules like 2at sz(t)+2bt Sl(t)' t

We continue with the process taking samples (a) is followed by sustitution, (c) because
of sizes Dgr Nype-eyny finding the respec- v(S(t) = 0 & E[Sz(t)] = EZ[S(t)] é#lt = 1.
tive Bayes rules S3(t), S4(t), ey Sn(t), (b) because V(S(t)) # 0 ¢$lt < 1, and be-

and looking egch time insi@e t&e set of de- cause S(t)<1, (d) because V(S(t)) =

cision rules ‘a S, () ¥ ENE NP =[So(t)]lt+l—[so(t)]2 is maximum o1, is

minimum eélt - 0.
Under these conditions, the Bayes rule is,

Sn(t)=[l—pn(t)] Sn(t) N pn(t) So(t) Remark 1: The smaller V(S(t)) the bigger
will be lt’ which is a function of v({sS(t)).

and the minimum associated Bayes risk,

Remark 2: 1t reflects our degree of belief

Rmin(n):pn(t) (E[Sz(t)]-EZ[S(t)])=pn(t)Rmin(0) in our prior estimation S, (t) . We shall

assign the number o to 1t when and only when

where we think So(t) is the worst prior estimation
2 of S(t). We shall increase lt when So(t) is
p,(t) = ELS(t) ] - E[S7(t)) 10sp, (B <1 better, and we shall give the greatest value

E[S(D I+ (n-l)E[Sz(t) J-n E2[S(t)] to lt’ 1, when and only when So(t) is the

best prior estimation of So(t).

and the expectations are calculated with
(&%)
respect to . Remark 3: Now, we can express our linear

estimator, for any prior distribution ¥
Tne result is followed minimizing the Bayes : .
with variance, as

risk
. 2t

. n[So(t)] -n So(t)
f/(s(t)—a s, (005, (0)° dots_ (1)) aPs) st = T Splt) =
F Y i i l+(n—1)[SO(t)] -n So(t)
where Q is the distribution of S (t) in 2

ny 1-0S ()] °

the sample and X the sample space. In the + OZ S, (t)
Eest we shall note the estimator Sn(t) by l+(n—l)[So(t)] t—n So(t)
S(t).

with minimum associated Bayes risk,
Theorem 4.1:

2
1- s (11t
For any prior distribution P with the two Ruin(m) = Lo
first moments, let lt be, l+(n—l)[So(t)J -n So(t)
2.+1

log EC(s2(t) ] s 1 sy

1 = T o o
t

log E[S(t) ]

which only depends on So(t), our prior
estimation of S(t), and on lt,Athe degree
R e : of belief in it; When lt*O, S(t)»Sn(t),
and when lt»l, S(t)»So(t), so when our

prior degree of belief in our prior esti-

f 5,(t) = E[S(¢)1,

mation is near 0 (very little) the estima-
~

tor S(t) does not weigh the prior component
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(pn(t)+0) and we have the usual nonparame-
tric estimator Sn(t). e lt+1, which --
means that we think that So(t) is a very
very good approximation of S(t), S(t) pays
attestion to the prior component (l—pn(t)»O)
and S(t)»So(t). And all this holds true for

any prior distribution with finite variance.

Remark 4: lt in some occasions does not
depend on t, for instance, with the homo-
geneous processes neutral to the right, be-
cause in this case, 1t = 1(N,0) = 1{N). 1In
this case also we have a good interpretarion
of 1(N,a).A solutioq for o # 0 is to consi-
der them equal to 1(N,0). Some homogeneous
processes, such as the exponential gamma
or the simple homogeneous, have a Lé&vy mea-
sure determined by a parameter c20, and in
these cases 1(N,a) = 1(c,oa), and c repre-

sents our degree of belief.

Remark 5: The prior'? does not necessarily
pull out discrete distributions. The reason
for which the coefficient of the sample and
the prior components add one is given in

the next theorem.

Theorem 4.2

Let B8 e@be a parameter and let Il be a
prior distribution on Q@ such that

EWEGJ#O. If E1T Em[Xi] = EW[GJ ,i=1,...,n,
ehere Em is the expectation with respect
the sample distribution, then the Bayes rule
for 8 , with quadratic loss, inside the set
of decision rules

~

~
is such that the estimations a,,...,a add
A A 1 n

one, i.e., a,+...t+a_=1.
1 r l n

A

The ays...,a, are such that the Bayes risk
- -2 .
J%)j;(e—al,xl—...—anxn) dQdll must verify

a Xl+...+an

1 X = Eﬂ[Em(B)] , and taking

n

expectations we get the result.

Theorem 4. 3:

Let S(t) be the Bayes rule for S(t), with
quadratic loss, looked for inside the set

of decision rules a S(t) + b S(t). Let g
be a linear function on |R ;: then there is
a set of decision rules such that g(g(t))
is the Bayes rule, with gquadratic loss and
the same prior distribution, for g(g(t)),
with the minimum Bayes risk being equal. The
mentioned set is g(aSn(t) + bSo(t)).

The result os got by writing g(x) = Ax + B

and taking minima.

Remark 5: The theorem 4.3 can be extended,
considering instead of linear functions,
more general ones and using the hyperplane

representation with bilinear etc., functions.

Remark 6: The linear estimator for the dis-
F(t) =
= [1—pn(t)JFn(t)+pn(t)FO(t), where Fo(t) =

tribution function F(t) is,

=1 = So(t).

Remark 7: Although sometimes we have supposed
that t20 , even that times this restriction
is unnecessary, and all the results got are

valid for a random variable - © < X < »

Comparison between the posterior mean and

the linear estimator:

We know that the Bayes rule without restric-

s(t) /x (S(0)),
but because Sn(t) is a sufficient statistic

tions is the posterior mean E

for s (t), Es(t)/z(s(t)), where z is a parti-
cular value of Sn(t), is also a Bayes rule
without restrictions. This is considered
like the regression furve of S(t) on Sn(t),
while our estimator S(t) represents the re-
gression line of S(t) on Sn(t)' So, wgen

we approximate the posterior mean by S(t),
we really determine the regression line
instead of the regression curve, and when
P is the induced by a Dirichlet process,
both are the

same.

Let us make a more precise comparison with

a sample of size one, and in the case
homogeneous process,
%

S

82

e



Qtesttié - V. 9, n.° 2 (juny 1985)

1 -1s_(0)1!
S (t) if x st
A ° 1= S_(t)
S(t) =
[So(t)]1 if x > t
and
So(t) 1,08 (0171 if x <t
E S(t)/x =
[s, (v 1* if x > t
which is like this
¢ ~* Ferqusom's
Eguﬂ R add o
Ours
x

Figura 2 : Estimators.

5. SAMPLE CHARACTERISTICS,

In any easy way we have the next results:

Result 1: S(t) takes the value
[1-p, (£)1 X + p(t) S_(t) with
A n k n-k
probability (I8 ()17 [1-8(t) ] ’

k=0,1,2,...,n.

Result 2: E [S(t)] = s(t)+pn(t)[so(t)—5(t)3,

and because pn(t)n3w0 , S(t) is
unbiased asymptotically.
V(S (£) =L (1-p _(£))%/nls (t) (1-5(8)) .

Result 3: S(t) 3:S:5(t), s(t)Ps(t), S(t) is

consistent for S(t).

Resuli +: 5(t), SN (S(t)+p_(t) S (t)-5(t) 1;

(1-pn(t>)\,5‘t’(;‘s‘t))’

QODNESS OF FIT TEST WI
0 IRI PROCESS.,

PRIOR INFORMA-

Let us suppose we want to test if the un-
derlying distribution is some specified dis-

tribution Fl(x), and also let us suppose we
know something about the unknown and true
distribution function F(x), i.e., we are
able to provide a prior distribution func-
tion Fo(x) and a degree of belief in it
lt' We suppose here that the prior distribu-
tion P is the induced by a Dirichlet process
with pérameter a. In this situation
E[F(t)/data]==;(t), the linear estimator,

and

u(ﬁh

p.(t) =p_ =
n n a{lR)+n
1, = [log (EijillﬁiElil)]/ [log(a(fQ?—a(t))]

alR)+1 a(R)
We suggested here the statistic for the
goodness of fit test, to test HO:F(x)=Fl(x)

against HI:F(X)#Fl(x),

Vn=(1-pn)s§p]Fn(x)-F(X)|+pn s§p|F0(x)-F(x)l

Remark 8: Fo(x)
tion &1 +1¢#pn

is a very good prior estima-
~l1ev - sgp]Fo(x) - F(x)]| .

So, if Fo(x) is a good prior estimation of
bet-
ween Fo(x) and Fl(x) should be small X.

Then, large values of Vn’ under Ho, tend to
descredit the null hypotheses, and so, will

. 5 .
reject HO when Vn v ,

F(x), if Ho is true, the differences

Fo(x) is a very bad prior estimation ¢«

©1 -+ 0 (:)pn >0 & Vn > Dn (the Kolmogorov-
Smirnov statistic), and so, if Fo(t) is a
very bad prior estimation, our statistic does
not weig the prior information and we have
the usual goodness of fit test which rejects

again Ho for big values of V-

In intermediate situations our statistic

will take upon itself to weigh the two compo-
nents in the right way.

So, to test HO:F(x) = Fl(x)
Hy:F(x) # F(x)

with significance level o, we will reject

. . > ;
HO if and only if Vn Vn,a' where Vn,a is such

/B Y =

that o = P{Vn>V o

n,o
]

= PAD>(V, -cp )/ (ap ) /H_}
where Dn=s§p|Fn(x)—F(x)|is the Kolmogorov-

Smirnov statistic, c = suplFo(x)|Econstant <1;
X
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and if Dn a is the value such that
’

P{D_>D /H_}= o, which can be determined
n" n, o

as usual trhough the Birnbaum tables, it is,

Vn,a = - Pn) Dn,a ¢ Py

BSEEEE_g‘ Because,
P{Vn>vn,0L/Hl}=P{Dn>Dn,on *
+[pn/(l—pn)][c-s;p|Fo(x)—F(x)|]/Hl} <
P{Dn > Dn,a/Hl} =
& under H, xeR,IFo(x)-F(x)]<o
we conclude that the Kolmogorov-Smirnov test
will be more powerful for an alternative

F(x) than ours, if and only if VxeR F(x)

is inside the band Fo(x)— c, Fo(x)+c

X
Figura 3 : Band for an alternative.

So, if there exists at least one x ¢[R for
which F(x) is out of the band, our test will
be more powerful than Kolmogorov-Smirnov. We
see also that if the null hypotheses Fl(t)
is near our prior estimation Fo(t), ¢ will
be smaller and so we shall get more power-
full tests. May be if the null hypothesis is
accepted, it can be used like a new prior
estimation, and in this way, instead of
changing our prior belief through Bayes
theorem, we can change it through hypothesis
testing, where we include our prior estima-
tion Fo(x) and a degree of belief in it, 1

r

and the sample information, Fn(x).

Remark 10: Instead of rejecting HO when

Vn>vn S different way of proceeding is
’

to reject Hy when vn>Dn In this way, we

make better use of the prior information.

Remark 11: 1In an obvious way we can cons-

truct one-sided goodness of fit tests which

would detect directional differences, using
the statistics

Vi=(1-p )D+p a = (1-p,)sup (F (x)-F(x)) +

* Pp SUP(F (x)-F(x)) and

vV, =(1-p)D_+p_ b =(1pn)sgp(F(x)—Fn(x)) +

+ Py sgp(F(X)-FO(X)).

For the alternative

:F(x)2F, (x) R
Hl,+ 1

VxR

. : . . + +
The rejection region is Vn>Vn o ! where
+ ’

N
Vn,u = (1_pn)Dn,a+a p, and for the alter
native
H tF(x) <F. (%) , Yxe R

1,- 1

H_  is rejected when V_»V_ , where V. =
o n”Vn, n,o

’

+
and D are
n,a

o

= (1-p)D + p, b and D;,u

n,o
the usual critical points in the one-sided

Kolmogorov-Smirnov goodness of fit test.

Remark 12: When n>35 the value Vn
and v©
n,o

o Vn,a
can be determined from the asympto-

tic distribution.

Remark 13: Because of theoretical properties

about the necessary constituity of F(x), which

is not assumed here because P is a Dirichlet
prior, the tests exposed here are certainly
conservative.

Remark 14: Because of the relations betweeen
survival functions and distribution function
(F(t) =1 - 8(t)), the tests exposed here

can easily be extended to test survival func-

tions instead of distributions functions.

7. EXAMPLE.

Let us suppose we want to know the probability

law of the fasting blood glucose determina-
tions of nonobese, apparently healthy, adult
males which constitutes our population of

interest.

We have got some previous information about

this variable. We have got 36 determinations
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made on people with the same characteristics p-value = P{Vn>0,1504/ﬂo}>0,32 .
as our population of interest, but of an-

other geografic area. The determinations

which constitutes the prior information

Fo(x) are shown in table 1.
TABLE 1

value |68 72 75 76 77 78 80 81 84 86 87 92

frequency | 2 2 2 2 6 3 6 3 2 2 2 4

These determinations are apparently norma-
lly distributed, and give a sample mean of
80,08/100 ml., and a quasi-standard devia-
tion of 6,19. So, it is natural to test the
null hypothesis that in our population of
interest (which is think to be not very
different from the previous data) the cha-
racteristic, with cumulative distribution
function F(x), is distributed N(80, 6,2).
So, we establish the hypothesis

HO:F(X) = N(80, 6,2)

Hl:F(x) # N(80, 6,2)
To test the hypothesis, we select a random
sample of our population of interest and
the values obtained are shown in table 2.

TABLE 2

value l69 71 74 77 80 84 87 91

frequency l 1 2 1 2 3 2 2 2

To perform the test, we compute the values

c = sup|F_(x)-F,(x)| where E(x)z=N(80, 6,2),
x "o 1 1

(table 3), and sup[Fn(x)—Fl(x)| , (table 4).
X

If we think that our prior information is such

that the ponderations P, and l—pn are equal

to 1/2, we have that

v =(1—pn)s;p|Fn(x)—Fl(x)| +

n
+ P, sip|Fo(x)—Fl(x)] = 00,1504
If our significant level was o = 0,01, will

be V = 0,2813.
n,o

Therefore, we are not willing to reject Ho.
Indeed, our p-value is



Qtiestiié - V. 9, n.° 2 (juny 1985)

TABLE 3
x| R R | R ) () |7, (x;_y)-F, (=)
68 | 0,0556 | 0,0262 0,0294
72 | 0,1111 0,0985 0,0126 0,0429
75 | 0,166T | 0,209 0,0423 0,0979
76 | 0,2222 | 0,2578 0,0356 0,0911
77 | 0,3889 | 0,3156 0,0733 0,0934
78 | 0,4722 0,3745 0,0977 0,0144
80 | 0,6389 0,5000 0,1389 0,0278
61 | 0,7222 | 0,5636 [0,1566] 040753
84 | 0,71178 0,7422 0,0356 0,0200
86 | 0,8333 | 0,8340 0,0007 0,0562
87 | 0,8889 0,8708 0,0181 0,0375
92 | 1,0000 | 0,9738 0,0262 0,0849

TABLE 4

% | Fx) ] FyE) RRCREACH) | P (3 _)F4 ()]
89 | 0,0867 0,0384 0,0263
71 | 0,2000 | ©,0735 0,1265 0,0068
74 | 0,2667 0,1660 0,1007 0,0340
77 | 0,4000 0,3156 0,0844 0,0489
80 | 0,6000 | 0,5000 041000. 0,1000
84 | 0,7333 0,7422 0,0089
87 | 0,8667 | 0,8708 0,0041 0,1375
91 | 31,0000 0,9616 0,0384 0,0949
If we follow the observation of remark 10, 8 REFERENCES:
we have that we accept HO again because
Dn,a= Dn,0,01= 0,404. Observe that the clasic /1/ DOKSUM, K.: "Tailfree and neutral random

Kolmogorov-Smirnov test would also accept be- probabilities and their posterior distri-

butions". Ann. Probability, 1, 183-201.
move the classic Kolmogorov-Smirnov statistic (1974) .

cause Dn= 0,1422, so, following remark 10, we
Dn ;, introducing the prior information.
/2/ FERGUSON AND PHADIA: "Bayesian nonparame-

tric estimation based on censored data".
Ann. Statistics, 7, 163-186 (1%79).
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/3/ GOLDSTEIN, M.: "A note on some Bayesian
nonparametric estimate". Ann. Statistics
3, 736-740. (1975).

/4/ QUESADA, V. and GARCIA PEREZ, A.: "Esti-
mation of random survival functions: A
linear approach". QUESTIIO, V.6 ne 2
(June, 1982).
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