V. 8, ne 2 (juny 1984) pp. 87-92

PARALLEL PROGRAMMING THROUGH SCHEMES
ALBERT LLAMOSI

UNIVERSITAT POLITECNICA DE BARCELONA

Taking as a basis the underlying model of Ada language, but using a more syncretic notation,
the matn purpose of the present paper is to show how, given a problem in parallel programming,
several solutions to it can be found systematically by direct or compound instantiation of
two well characterized basic schemes which correspond to the general and somewhat dual situa—

tions of cooperation and competition.

Keywords: PARALLELISM, PROGRAM SCHEMES, PROGRAMMING METHODOLOGY .

Current research on parallel programming has
been concentrated in the design of models
for which a safe notation and semantics and
a simple calculus could be developed. How-
ever, little attention has been paid to pro-
gramming methodology, in spite of the fact
that an important feature for a model is to
serve as a basis for good program construc-
tion methodologies.

On the other hand, the usefulness of program
schemes in sequential programming has been
widely recognized and this suggests that the
same approach could reasonably help to cover
that lack of methods.

The main steps in providing general schemes
of the
existing problems and to establish how each

are to elaborate a classification

class can be characterized in terms of a
scheme. An exhaustive treatment of examples
made elsewhere /10/ has led to the conclu-
sion that only two basic schemes cover sa-

tisfactorily extremely wide series of cases.

The design process proposed by the method
presented here would consist then in decom-
posing the operations to be carried out by

a program in those that can, or must, be
executed in parallel, analyzing their inter-
actions and formulating them in terms of one

of the two proposed basic systems. This

would allow to determinate the internal struc-~
ture of each process following an appropriate
pattern. Although obviously, once a solution
further
transformations can be essayed in order to

has been obtained by this procedure,

simplify it. In a longer, but yet unpublished
work /10/, some general cases of simplifica-

tion are also considered.

I have only dealt with algorithms that are in-
tended to work forever because to propagate
termination through processes properly, by the
use of basic rendez-vous, usually makes the
algorithms cumbersome. However, in /10/ I have
proposed some notational that would

allow to maintain the pleasant simplicity of

hints

the schemes presented below in a terminating
context. But this exceeds the purpose of the

present paper.

In §1 and §2 the basic schemes are presented
with examples. Composition of basic schemes to
deal with more complex problems is considered

in §3 and finally some balance is drawn out.

. _CO0P LON.

In a general sense, all processes of a program
cooperate in order to make it satisfy the re-
quired specifications. Hence a narrower notion

is needed to characterize a cooperation system.

~ Albert Llamosi -~ Facultat d'Informitica de la Universitat Politécnica de Barcelona

Jordi Girona Salgado, 31 - Barcelona 34

- Article rebut el Marg de 1984.

87

Qtiestiié - V. 8, n.° 2 (juny 1984)

By this I mean the situation where there
exist n (n>0) processes whose behaviour is
function of the information combinedly pro-
duced by other m (m>0) processes. 80 the
last ones cooperate in the first ones' con-
trol.

A suitable solution for structuring an algo-

rithm in that situation can always be obtain-

ed by the introduction of a new process, let
us call it C, that centralizes and distribu-
tes the produced informations.

The sending and receiving processes shall

have the following simple structure:

m
i gx
k=1
[s initk;
* - - i - s i
[True> prod, (s_inf,): C.senéu_lnfk)]
1
I r
k=1 k
[r_lnltk;
[True C.rec(r_infy; consk(r_infk)]
]

where the central process's structure is
c
{ c_init;
m
* 1 pos_sk;<sendk(s_infk);inck
k=1
n

> reg_sy

1 pos_rk;<recér_1nfk);extk>9 reg_r,

11

Decision steps should be:

a) Consideration of the information that must

be sent and received (s_infk and r_inf,).

b) Choice of a data structure for process C.
Its purpose is to constitute at every mo-
ment a summary of the information sent
such that information to be received can
be obtained.

c) Determination of under which conditions
sent information can be taken into consi-
deration (pos_sk) and under which condi-
tions reception of information can be

carried out (pos_r,).

d) Determination of the operations that must
be performed when a sent or received in-
formation is incorporated to or drawn out
from the data structure. Both operations

should be decomposed into the part that

must be performed inside the rendez-vous
area due to its dependency from parameter
passing and the part that can be performed
outside it (inc,, reg_s,, ext, and reg_r,
respectively) .

e) Establish the appropriate initialization
(c_init).

EXAMPLE. A REAL-TIME SCHEDULER.

Several tasks should get into execution at
fixed intervals of time. However, an operator
should be able to change, through a terminal,
the current time, the status of each task
(activated, not activated) and change their
starting times and periodicities. This pro-
blem was posed and solved in a more artifi-
cious way at /5/.

In principle there are so many processes as
tasks to be controlled. Moreover, there should
be a real-time-clock process and a process that
maintains a dialogue with the operator.

Behaviours of tasks are function of real-time
clock pulses and operator commands. So the
problem can be interpreted as a cooperation
between the two last processes onto the con-
trol of the tasks.

Hence, steps to be taken should be

a) Operator process sends commands. Real-time
clock sends signals. Task processes receive
signals. Their structure shall be:

OP I #[True » read_command (c); C.scom(c)]
RTC *[Prue - wait_next_second; C.tic]
irl:l T(i):. * [True » C.cont,; opi]

b) The central process should contain three
informations about each task: if it is ac-
tivated, its next starting time and its

period. Moreover it should keep track of
time.

type status = record active: bhoolean;
start : integer;

period: integer
end

var t: integer;

,S: afray [1..n] of status;

c) Commands and clock tics should always be

accepted. Continuation signals may only

88

Qtiestiié - V. 8, n.° 2 (juny 1984)

be received if the corresponding task is

active and its starting time has elapsed.

d) Operations to apply when receiving a com-
mand or a time pulse are quite obvious in
this case. On the other hand, reception of
a continuation signal should have as a
result the increase of starting time in
the corresponding period.

e) Initially all tasks are inactive.

c =
[i:=0; *[i<n = i:=i+1; s(i).active: =False]
*[<scom(e); cl:i=c> = (t,s):=f(s,cl)
I <tic> —+ t:=t®1
n
I s(k).active a (t@s(x).start); <cont, >
k=1
s(k).start : = s(k).start@® s(k) .period
] 1
3 PETITIO
A system of competition is one where there
are m(m>1) processes that use n(n>0) re-

sources, and an arbitrary interleaving of
operations upon them can produce
Thus kind of

should be introduced.

undesirable

effects. some restrictions

As in the case of cooperaticn, easy solutions
can be obtained by adding a new central pro-
cess that centralizes the information about
the state of the resources in conflict.

User processes have undefined structure, but
their access to resources must be parenthe-
sized as usual.First they ask permission, and
that takes generally two steps: one to notice
their purposes of use and a second one to
wait for acceptance and receive information
about the resources conceded. After use, re-
lease must also be noticed.

[} U, = [...; C.not{puxp); C. req, 4 (conc);

usek;

C.rel (conc); ...

Whereas the central process structure is

c c_init;

*[<not(purp); inc_p> —~+ reg_not

] pos_req;<reql(conc);ext> —* reg_req

l<rel(conc); inc_c> = reg_rel

Decision steps should be

a) Consideration of how to represent access
purposes, concession and process identifi-
cation (purp, conc, idk)'

b) Choice of a data structure for process C.
Its function should be to constitute at
every moment a register of the state of

the resources controlled by C and the no-

ticed purposes not yet satisfied.

c) Determination of under which conditions
and identities a request can be conceded
(pos_req,1).

d) Determination of the operations that
should be performed when a notification
of purpcses or abandon is received, or
a request has been conceded. All those
operations should be decomposed into the
part that must be performed inside the
rendez~-vous area due to its dependency
from parameter passing, and the part that
can be performed outside it (inc_p,

reg_not, ext, reg_req, inc_c, reg_rel).

e) To establish the appropriate initializa-
tion (c_init).

EXAMPLE. A DISK SCHEDULER.

On a moving head disk, the time taken to
access certain track increases monotonically
with the distance between the current and
target positions of the head. So a minimum
access time is obtained on the average if
processes that are waiting to access, in
mutual exclussion, do it in order of shortest
displacements. Since several processes that
repeatedly access at one extreme could delay
indefinitely other processes that are waiting
for access at the other extreme, some addi-
tional criteria should be introduced to grant
fairness. A simple one is to minimize the
freguency of change of direction of movement

of the heads. At every moment the head is

89

Qiiestiié - V. 8, n.° 2 (juny 1984)

kept moving in a given direction and the
next process to access shall be the one
that waits for access at the closest track

in the current direction. Only if there is

no such reguest, the direction changes. This

problem was originally posed at /8/ and

solved there by monitors with priorities.

a)Access purposes are trivially track num-

bers. Concession of information is nothing

in this case, as the user process knows

everything about the resource. Identifica-

tion of processes could be a special type,

but since different processes that try to
access the same track are indistincui-
shable from the viewpoint of the problem
it seems natural to identify processes
with this number. So user processes will
appear as

m

k|£1 Uk SR C.not(t);C.reqt;

access_at_track_t;

C.rel;...

b) The information needed by the central pro-

cess is the current direction (+1 or -1),
the status of the disk (busy or not), the
current head's position (p) a counter of
srocesses waiting at every track and the
next expected position.

var busy : boolean;
d,p,next,i: integer;

wi: array [0.. maxtrack] of integer

c)Access can be conceded if the disk is not
busy and process's identification equals

the value of the integer variable next.

d) In case of notification of access, the
corresponding counter should be increased
and both the expected next track and cur-
rent direction should be reevaluated. In
case of access, the busy state of disk and
current head's position must be recorded
and, again, the expected next track and

eventually the current direction should be

reevaluated. Indeed the corresponding wait-

ing counter must be decreased.

e)Initially the head's position is zero and
the current direction is in ascending or-

der of tracks. No process is waiting.

c o

[busy:: False; p:=0; d:=1; next:=0;
#[next € maxtrack - w(next) :=0; next:=next+l]
#[<not(t); wit):=

W{t) + 1> = evaluate_next
[busy; < req

next>—' p:=next; w(p):=wip) ~1;
busy:= True;
evaluate_next

fl<reld —=— busy:= False

11

Where evaluate_next states for

evaluate next &

[next: =p;

[d>0 - limit:=maxtrackfl d<0 —— limit:=0]

{w(next) = 0 A next # limit —e next:=next +d}
[winext) # 0 —= skip
fiwinext) = 0 -—w

d:= -d; next:=p;

[d>0 —= limit:=maxtrack [d <0 —— limit:=0]

11]

a [w(next)=0. next#limit —w~ next:=next + 4}

Use of sentinel techniques can obviously sim-
plify this algorithm, and use of additional

redundant counters increase its efficiency.

Total fairness can be granted initializing
next at p+d instead of p at the beginning of
searches, but then a poorer performance can
be expected. More subtle alternatives are
also feasible.

4, COMPOSITION OF BASIC SCHEMES.

Simple schemes can sometimes be inadequate
to solve complex problems. But nothing pre-
vents composing them, in the sense that the
existence of undefined operations in schemes
allows the possibility that parts of them
act as operations that belong to other sys-
tems or some of their operations, or pro-
cesses themselves can be further decomposed
in new parallel systems.

In a cooperation system, for example, produc-
tion of some information can involve access
at shared resources or reception of informa-
tion from other cooperation systems. Similar-
ly, consumption of information can involve
sending of information to the central pro-
cess of any other system, or even the same:
as a particular case, a system can be com—
pound with itself.

Classical pipe-line systems would be an exam-

90

Qtest#ié - V. 8, n.° 2 (juny 1984)

ple of composition of cooperating systems.
Sometimes cyclical structures can appear.
That would be the case of a spheric integra-
tion (for weather prediction calculus, for
example) that is carried out by a frame of
processes that integrate locally. Each node
is then a cooperation system where the be-
haviour of a process is function of the re-

sults produced by each of its neighbours.

2. _CONCLUDING REMARKS.

The method proposed allows to reason paral-
lel programming problems following well es-
tablished patterns. The order proposed for
the decision steps is obviously only orien-
tative. Many of the decisions to be taken
are very interrelated and sometimes the dis-
covery of difficulties leads to reconsider
previous decisions. However, the order pro-
posed is oriented to minimize this kind of
backtracking. Conscience of decision steps
is anyway an important element to discover
different solutions systematically.

Indeed, several particular cases of the ge-
neral schemes could have been considered.
For example, for the cocperation situations
where m=1 or n=1 or both, there exist sim-
plifications that become safe transformation
rules when the basic schemes are included in
a wider framework.

As the success obtained introducing under-
graduate students into parallel programming
through the method presented here seems to
show, the conceptual simplicity of the basic
schemes provides an orientative element at
design level in the sense that the program-
mer knows in advance what he has to look for.
Furthermore, the regularity that appears in
the structure of the solutions obtained in-
Creases readability. And, as it has been
pointed out in /12/, regularity of program-
ming habits increases programs portability
as well as programmers portability.

Last, but not least, I have the confidence
that restriction to the schemes presented
here could allow simpler and practical tech-
niques for reasoning and grant total correct-
ness. Current research is being done in this
direction.

6. REFERENCES.

/1/ ADA,:
ference Manual , LNCS 105, Springer Ver-
lag, Berlin, 1981.

The Programming Language Ada Re-

/2/ BERT, D.: "La Programmation générique.
Construction de logiciel, spé&cification
algébrique et verification", Univ. de
Grenoble, IMAG, 1979.

/3/ BERT, D.:
designing universal operators. Applica-
tion to program algebra", RR ne336, IMAG,
Univ. de Grenoble, 1982.

"Generic Programming: A tool for

/4/ BROOKES, S.D., HOARE, C.A.R. and ROSCOE,
A.W.: "A Theory of Communicating Sequen-
tial Processes", Technical Report PRG-16,
Oxford Computing Laboratory, Programming
Research Group, 1981.

/5/ BRINCH HANSEN ©P.: The Architecture of
Concurrent Programs , Prentice~Hall,
Englewood Cliffs, N.J., 1977.

/6/ GOGUEN, J.A., MESEGUER, J. and PLAISTED,
D.: "Programming with Parameterized Abs-
tract Objects in OBJ", in Ferrari, D.,
Bolognani, M. (eds.),
Theory and Practice of Software Techno-
logy, North-Holland, 1982,pp.163-193.

and Goguen, J.

/7/ GOGUEN, J.A.: "Parameterized Programming"

to appear in Perlis, A., Workshop on
Reusability in Programming. Proceedings.

/8/ HOARE, C.A.R.: "Monitors: an Operating
System Structuring Concept", Comm. ACM,
XVII, 10 (Oct. 1974) pp. 549-557.

/9/ HOARE, C.A.R.: "Communicating Sequential
Processes", Comm. ACM, XXI, 8 (Aug.1978),
pp. 666=-677.

/10/LLAMOSI, A.: "Programacié paral.lela
usant esquemes: vers un m&tode sistemitic
de construccis de programes concurrents,
doctoral thesis, F.I.B., Barcelona 1982.

/11/MILNER, R.: A Calculus for Communicating

Systems ,SPringer Verlag, LNCS 92, Berlin
1980.

91

Qiestiié - V. 8, n° 2 (juny 1984)

/12/ SCHOLL, P.-Cl.: "Vers une programmation
systématique &tude de quelques méthodes
et outils, th&se d'&tat, USMG-INP,
Grenoble, 1979.

92

	
	
	
	
	
	

