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TME SERIES MODEL IDENTIFICATION BY
ESTIMATING INFORMATION, MEMORY, AND (QUANTILES
EMANUEL PARZEN
TEXAS A & M UNIVERSITY

This paper applies techniques of Quantile Data Analysis to non-parametrically analyze time
series functions such as the sample spectral density, sample correlations, and sample partial
correlations. The aim is to identify the memory type of an observed time series, and thus to
tdentify parametric time domain models that fit an observed time series. Time series models
are usually tested for adequacy by testing if their residuals are white noise. It is proposed
that an additional criterion of fit for a parametric model ts that it have the non-parametri—
cally estimated memory characteristics. An important diagnostic of memory is the index § of
regular variation of a spectral density;estimators arve proposed for §. Interpretations of the
new quantile criteria are developed through cataloging their values for representative time
series. The model identification procedures proposed are illustrated by analystis of long memo
ry series simulated by Granger and Joyeux, and the airline model of Box and Jenkins.
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The contributions to time series analysis of
Gwilym M. Jenkins (1932-1982) will always be
embedded deeply into the field. His work --
(especially joint work with George Box) has
influence in diverse fields of science. I
was fortunate to come to know Gwilym early
in my career, on a visit to London in 1958.
He spent 1959~-1960 with me at Stanford and

I spent 1961-1962 with him at Imperial --
College. He earned the respect and affection
of all who knew him or his work. His life -
and work was heroic. As we cdntemplate the
sadness of his death so young, may we con-

tinue to enjoy his spirit.

1. FU APPROACH TO TIME SERIES MODEL
IDENTIFICATION,

The need to analyze data arising in the form
of time series arises in diverse fields. The
concept of a conventional analysis is not --
the same in each field. Engineers tend to —-
estimate mean, variance, and spectrum (which

may be regarded as a non-parametric signa --

MODEL IDENTIFICATION,

INFORMATION, MEMORY, QUANTILES

ture of models). Economists and forecasters

tend to estimate mean, variance, and time do-

main models such as ARMA or ARIMA (which are

parametric models). Spectral and ARMA estima-
tion are not routine procedures; there are -
many algorithms for spectral estimation and
time model identification. In addition there
are critics of spectral and correlation based
methods of time series analysis, of whom the
most prominent is Mandelbrot /24/ . This
paper describes an approach to time series

analysis which attempts to use diverse methods

of analysis simultaneously in order to meet

the needs of all the fields of applications of

inte-
with

time series analysis. It also aims to

grate spectral and correlation methods
methods for long memory and/or long tailed

time series.

An approach to spectral analysis and time do-
main modeling of time series is described in
parzen /5/ , /6/ . /1/ . /8/ .+ /9/

/10/  ,. /11/

time series methods) to statistical data analy

. An approach (motivated by

sis of probability distributions is described
in Parzen /5/ , /8/ and /9/ ., /10/ , —-
/11/ , /12/ ; it is called the Quantile
Data Analysis and FUN.STAT approach, to con-
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note that it is based on functicnal statis-
tical inference, entropy and information --
measures, and quantile and density quantile
approach.

Parzen /6/ states that "a criterion that

any general time series modeling strategy
must fulfill is that its conceptual frame-
work should provide a role for the continu-
ing quest for a time series decomposition..

Thus it seems critical that a successful --

approach to time series modeling employ si-

multaneously both the spectral domain and

the time domain." This paper discusses the

enhanced insight to be obtained by also em-

ploying simultaneously the gquantile domain

and the information domain.

This paper discusses how to add to our
approach to time series model identification
new diagnostic measures, based on guantile
data analysis of spectral density function,
and information measures. The approach im-
plemented in our time series computer pro-
gram library TIMESBOARD is called ARSPID --
(for autoregressive spectral identification).
The "enhanced" approach could be called ---
ARSPIQ (for autoregressive spectral informa-
tion quantile identification).

In empirical time series analysis a central
role in model identification is the concept
of memory (see Parzen /7/ ) which yields a
classification of a time series into one of

the following three classes:

no memory = white noise

short memory = stationary ergodic but not
white noise.

long memory = trends, seasonal cycles, long

cycles, non-stationary.

When a time series is classified as no memory
(white noise), it requires no further analy-
sis (except for guantile identification of
its probability distribution)

When a time series is classified as a short
memory time series, it is described [(parame-
trised) by ARMA (p.q) schemes that transform
it to white noise. The orders p and gq are not
measures of the length of memory.

When a time series is classified as a long

memory time series it is described (parame-

trised) by operators which transform it to a

short memory time series.

To describe the dependence structure of a
time series one introduces quantitative in-
dices which are non-parametric statistics

guiding our choice of parametric models.

An ARMA model (which is a finite parameter
time domain model) is a parametric descrip-
tion of the dependence structure of a short
memory time series. A nonparametric descrip-
tion of its dependence structure is provided
by the spectral density function from which
one can deduce "significant frequencies" (at

which the spectral density has local maxima).

The operations which transform a long memory
time series to a short memory one (or which
represent a long memory time series in terms
of a short memory one) can be considered a
parametric time domain model. Nonparametric
descriptions of long memory properties are

introduced in this paper in terms of the --

index of reqular variation of the spectral

density at a specified frequency, usually -

zero frequency.

._QUANTILE IDENTIFI OF P
DISTRIBUTIONS.

To identify probability distribution that -
fit a time series sample Y(t), t=1,...,T,
one treats the sample as a data batch ----
Xl,...,Xn.

For a data batch Xl""’Xn one can define -
the sample distribution function F(x), ----

—w<x<o, defined by

F{(x) = fraction of Xl""’Xn which are <x,
and the sample quantile function Q(u), Osucxl,
defined by

Q(u) = ;_l(u) = inf {x: F(x) 2 u}

Quick and dirty insight into the distribu--
tions that fit the univariate distribution
function F is provided by a plot of the —---

sample informative quantile function

oy = — QW - 0(0.5)
2{Q(0.75) - Q(0.25)}

532



Qtiestiié - V. 7, n.° 4 {desembre 1983)

The IQ function is plotted with a vertical
scale from -1 to 1; its values are truncated
when they exceed +1. For ease of interpreta-
tion of the IQ function, we also plet the IQ
function of the uniform distribution which
is a straight line passing through (0, -.5)
and (1, .5).

The distribution functions F(x) that we seek

to fit to the data are usually of the form
= Xy
FG) = F (28

for parameters y and 0 to be estimated, and

Fo(x) a known distribution function. The most

important cases of Fo(x) are:

X
normal F o(x) = o(x) = I ¢ (y) dy
0 = @ M2 exp - 142
exponential F (x) =1 - e, x>0

One can test (before parameter estimation)

the goodness of fit of F(x) to F(x) = Fo(ﬁgk)

by introducing the weighted spacings

. 1 -~
d = = ;
(u) 80 foQo(u) q(u)
_ -1 . I
£,0,(u) = £ (F " (u)) is the density
guantile function of the specified distribu-

where:

tion; g(u) = Q'(u) is the sample quantile --
density function (expressible in terms of
spacings, or differences of successive order
statistics); and

o = 1 fq (W q du

o o “oto
is an estimator of ¢ called the score devia-

tion. The test function is the cumulative --

weighted spacings function
D(u) = [¥ d(t) dt, Ocucl

which one compares with the uniform distribu-
tion D(u) = u.

To test for exponentiality, take fOQO(u) =
will

appear linear when the data is exponential.

= 1 - u. The diagnostic function B(u)

In the important case of a mixture distribu-
tion, [that is, the lower order statistics
represent values from an exponentially dis-

tributed sub-population ], D(u) will be -

linear over an initial interval Os<us<p. When
the data batch is the sample spectral density,
the value p estimates the proportion of the

total power which is white noise.

Diagnostic measures of time series parameters
[the sample spectral density and correlogram]
are provided by plots of suitable Ié(u) and
B(u) functions. Examples of their power as
discriminators of memory are given in Section
7.

Quantile Data Analysis of Sample Spectral

Density.

When the sample mean Y is large, it is neces
sary to transform Y(t) to Y(t) - v, other-
wise one would always obtain a diagnostic --
that ¥(-) is a long memory time series. An
alternative first step in time series analy-

sis is to replace Y(t) by
{Y(£) - Q0.5)} ¢+ 2{Q(0.75) - Q(0.25)}

When Y(t) is a pre-processed time series --
{(from the sample, the mean or median has been
subtracted) one computes the sample Fourier

transform

- T

plw) = § Y(t) exp (-27niwt)
t=1

at an equi-spaced grid of frequencies in
0<w<l of the form w = k/S, k=0,1,...,8 - 1.
We call S the spectral computation number;
one should choose S > T + M, where M is the
maximum lag at which one computes sample co-

rrelations B(v).

The sample spectral density E(w), O<ws<l, is

computed at w = k/S by squaring and norma-

lizing the sample Fourier transform:

- ~ S-1 .
2 1 k2
£ = [v|" s 5 1 @]

k=0 ‘
The classification of the time series as no
memory (or white noise} is eguivalent to the
random variables representing the values of
the sample spectral density
f(w),

w=k/S k=1,...,[8/2]

having the property that they are asymptoti-
cally independent and exponentially distribut

ed. Therefore tests for white noise can be --

(6]
w
w
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obtained by quantile data analysis based ---

tests for exponentiality of the sample spec-

tral density f(w) at suitable frequencies.

g), k=0, 1,...,8/2, is test

ed for exponentiality by forming its informa

tive guantile function IQ(u) and its cumula-

The data batch f{

tive weighted spacing function D(u), with
fOQO(u) = l-u. How one interprets the guanti
le data analysis of the sample spectral den-
sity (periodogram) is best illustrated by -

examples.

3, CORRELATION DIAGNOSTICS FOR MODEL MEMORY
IDENTIFICATION,

The time series analyst seeks to develop for
an observed sample time series Y(t),
t=1,2,..

.,T of a time series Y(t), t=0, --
*l, ... various functions that can be esti-
mated and plotted which provide insight into,
and diagnostic measures of, possible models
that fit the observed time series.

Schuster /32/ pioneered techniques of --
spectral analysis. To detect hidden periodi
cities, Schuster proposed calculating what

we today call the sample unnormalized spec-—

tral density or periodogram

T 2
TY(t) exp (-2mitw)|”

MOEEY ~0.5<u0.5.
One actually computes and plots fT(m) at an
WK/S, ==
k=0,1,...,8~1, where S is the spectral compu

equi-spaced grid of frequencies w

tation number. Using the Fast Fourier Trans-

form, one chooses T<S<2T.

The graph of fT(w) is a very wiggly function.
If one interprets local maxima of fT(w) as
indicating "significant frequencies" repre-
senting "hidden periodicities" one obtains

many spurious periodicities.

The notion of the spectral density f(w) of a
time series Y(t), t=0, +1, ... is defined --

heuristically by

flw) = lim £_(w)
w o T

If the limit existed one might call f(w) the
asymptotic spectral density of the time ---

series. However the limit does not exist in

any customary mode of convergence.

Wiener /33/

analysis problem by defining the sample co-

proposed solving the harmonic

variance function RT(V) which equals the

Fourier transform of fT(w)

1 T-v
Rp(v) = % L ¥ v veo0, 1, 11
r=
= 0 » v >T
= Rp(-v) , v<O ;
0.5
RT(V) = {0.5 exp (2nivy) fT(w)

The limit whose existence needs to be assumed

is

R(v) = 1lim (v)
T RT
one calls R(v) the asymptotic covariance func

tion of the time series. One calls

p(v) = ggg

the asymptotic correlation function; it is -
the limit of the sample correlation function

R (V)
DT(V) = ﬁ;Tﬁj

The sample correlation function pT(v) is an
important building block for methods of model
identification. Its plot is called the corre-
logram. One could test for white noise by --
testing whether pT(v), v=1,2,...,N constitute
a random normal data batch.

The cumulative periodogram

Fro) = [) £2(0") du

is a diagnostic tool for providing evidence
of hidden periodicities. If it converges, --
its limit function F(w) provides a spectral
representation of R(v):

1 .
R(V) = fo exp 2nivw dF (w)
A probability model under which the asympotic
covariance functions exists is the following:
Y(t), t=0, t1,... is a zero mean Gaussian

covariance stationary time series with co-

variance function R(v) satisfying (for all t
and v)

R(v) = E[{Y(t+v) Y(t)]

When the time series is stationary and exrgodic,
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the sample covariance function converges to
the covariance function A Gaussilan statio-

nary time series is ergodic if and only if

T

.1

lim T 2 Rz(v) =0

T v=1

It is natural to classify a stationary time
series into three classes according to the
rate of decay of the correlation function
p(v):

white noise

T
Y} p?(v) =0 for all T
=1

e

(no memory)

ergodic

(short memory)

Il o~

p2(v) + 0 as T » =

1
T v=1

. 1 T
non-ergodic T T p2(v) b O
(long memory) v=1

One of the aims of this paper is to discuss
the unifying role of the concept of memory.
The foregoing trichotomy indicates that there
are three types of memory (no, short, long).
However the insights into model identifica--
tion provided by the notion of memory are
captured not by definitions in terms of co-
rrelations (or even partial correlations) --
but by definitions in terms of the spectral

density function and sample spectral density.

4. SPECTRAL DENSITY {MFMORY CLASSIFICATION
AND INDICES.

The spectral density function f(w), —-==-=-=-
-0.5<ws0.5 is defined as the Fourier trans-
form of the correlation function p(v):

@

flw) = 7§

v=-o

e—anpr (V)

A sufficient condition for f(w) to exist as
an ordinary function is that p(v) is sumable.
A long memory time series may not possess a
spectral density. To be able to use such a
function, we

introduce the segquence of

approximating spectral densities

ET(w) = exp (-2nivw) p(v) (1l- i%l)

vta

The correlation criteria for memory classifi

cation provide equivalent criteria in terms
of

- 0 -
Var [£0) = [ {f.(w) - 1)2 dy -

-2 El[o v oa - L2

However a more useful criterion is the dyna-

mic range of fT(w).

only for the case that f(w) exists.

We discuss its definition

A stationary time series can have a spectral
density f(w) and yet not be representable as
an autoregressive process. One needs to --
assume an additional condition such as f(w)

is bounded above and below; for some constants
cy and Cys 0 <. c, = f(w) < Cy <@ The dyna-

1
mic range of f(w) is defined to be

("% 1og £(w) -™" log £(w)}

Dynamic range classification of memory of a

time series:

no memory = dynamic range = 0

Ht

short memory 0 < dynamic range < o

long memory

dynamic range = «

Often, zero frequency is the frequency at
which the spectral density has a behavior -
causing it to have infinite dynamic range.
As w~0, the spectral density f(w) is assumed
to be a regularly varying function, with the
representation [called the regular variation

representation at frequency w=01]
f — -6
(W) = w "L(w)

where L(w) is a slowly varying function. The
value of § is an index of length of memory,

since

1}
23
ft
o

No and short memory

n
2
-
o

Long memory

Long memory time series models considered by
Mandelbrodt (1973), Granger and Joyeux (1980),
and Geweke and Porter-Hudak (1983) have spec-
tral density f(w) satisfying the {egular va-

riation representation. The index §<0 ----
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corresponds to a zero value for f(y) at =0,
while §>0 corresponds to an infinite value
for f(w) at w=0.

When 6>0, the spectral density f(w) is an
integrable function only for 0s<§<1; the co-
rrelation function p(v) decays slowly as

o(v) n vd-l

as v + =«

The value at w=0 of f(w) can be » and still
§=0; this holds for f(w) ~ (logw)2 for small
w, corresponding to

p(v) ~ OBV

v

as v + o

A symbolic spectral density f(w) with §>1 is
that of a time series Y(:) whose first diffe
rence AY(t) - Y(t-1) is short memory {cova-
riance stationary with spectral density bound
ed above and below); then

2

Ey(w) v Lp £,0 ()

and §=2.

Parzen /17/ gives explicit formulas for the
index § in the context of density-quantile -

estimation:

s = lim [Mog £(uy) dy - log £(u)
w0~ °

= lim
w0

€l

o log £(2) dr - log £(w)
To estimate § one forms

1 K ‘ K+1
S = & jzl log £(1) - log £C55)

where n and k integers tending to « in such
a way that k/n tends to 0. One can show that
§ = lim 8y -

<+

k/n>0

A similar formula can be used to estimate §
in a regular variation representation of f(w)

at a frequency Wy represent w, = m/n and

define
_1 ¥ j+m K+1+m
dk = jzl log £¢( = ) - log f(-—ﬁ——)

Examples of estimates of § are given in Sec-

s

tion 7.

We estimate the memory index § from consistent
estimators %(w) of the spectral density f. We
use: (1) the non-parametric kernel spectral -
density estimator

o

£w = §  kGPep(v) exp -2riwv
V=-(x7

|w|<0.5

with truncation point M = T7/8 (in practice,

we use M = T/2) and Parzen window

k(t) =1 - 6t? +6|t]3, |t| <o0.5,

-2 (- |’ . 0.5 < fe] <1,

, oOtherwise;

and (2) autoregressive spectral density esti-
mators.

Only examples can show which values of §
occur in real series. The goal in estimating
§ is to develop diagnostics concerning the
"detrending” operations to be used to trans-
form a long memory series to a short memory
time series. To model time series, Box and
Jenkins /29/. introduced the ARIMA (p,d,q) -
model. Estimation of the parameter d can be
approached by estimating §. Estimation of p
and g can be approached by diverse order
determining methods involving estimating in-
formation.

Determining the degree of differencing: When

a time series Y (t) can be transformed to a

stationary time series Z(t) by differencing d
times, one can think of the "spectral density"

fY(m) of Y(-) as having the representation
fy(w) = |1-e"2mle)=2d ¢ ()

which is a special case of assuming that ---
fY(w) is regularly varying at w=0 with index
§=2d. The foregoing estimators for § may pro-
vide alternatives to the techniques for esti-
mating d which have been proposed by Granger
and Joyeux 20/ Janacek (1982), and Geweke
and Porter-Hudak /19/.
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5. ARMA MODELS AND PREDICTION ERROR MEMORY
CLASSIFICATION.

The concept of an autoregressive process was
introduced by Yule /34/ as an alternative

technique for detecting hidden periodicities,
and estimation of the frequency w in the time

series model.
Y(t) = A cos 2wt + B sin 2mwt + e(t)

where €(-) 1s white noise. The function ---

cos 2nwt satisfies the second order diffe-
rence eguation

Y(t) + a; Y(t-1) + a, Y(t-2) = 0

with a, = -2 cos 2mw and a, = 1. Yule sug-
gested determining coefficients a and a, -
minimizing

T 2

P AY(e) + a) Y(t-1) + ap Y(t-2)}
t=1

These coefficients may be interpreted as es-
timators of the parameters in the "random -
shock” model

Y(t) + a; Y(t-1) + a, Y(t-2) = e(t)

where €(t) is white noise. Thus was born the
AR(2) model.

Autoregressive (AR), moving average (MA), and
autoregressive-moving average schemes (ARMA)

now play a central role in time series analy-
sis, since they provide basic models for time
series model identification, forecasting, and

spectral estimation.

One definition of an ARMA(p,q) model for a
Zero mean covariance stationary time series
Y(t), t=0, +1, ... is

Y(t) + ap(l) Y(t-1) + ...+ ap(p) Y(t-p) =
= e(t) + bq(l) e(t-1) +...+ bq(q) e(t-q)

where e(t) is a white noise time series, and

the transfer functions

gp(z) =1 + ap(l)z+...+ ab(P) Zp»

hq(z) =1+ bq(l) z +...+ ?q(q) 24

have all their roots in the complex z-plane
in the region |z|>1. For the backward shift
operator B we wuse the lag operator L,

defined by LY (t) = ¥Y(t-1). An ARMA(p,q) model

is written

gp(L) Y(t) = hq(L) e (t)

An AR(») model is expressed
8, (L) Y(t) = e(t)

An MA(») model is expressed
Y(t) = h_(L) e(t)

A model for a stationary time series is an in
vertible filter which transforms it to white
noise. For a short memory time series,.the -=
whitening filters can always be represented

as AR(») or MA(») and are approximated by ---
ARMA(p,q) of suitable orders to be estimated.
The white noise £(t) to which we seek to trans
form a time series Y(t) are the infinite memo-
ry one step ahead prediction errors (innova-
tions) Yv(t) = Y(t)—Yu(t), where

YH(E) = E[Y(E) |Y(t-1), ... ]

The white noise sequence Yv(t) has mean 0 and

variance o’R(0), where
o2 = E[|Y(0)|%] + R(0), R(0) = E[|¥(r)|?)

We call oithe normalized mean square predic-
tion error, of one-step ahead infinite memory
prediction. The importance of normalization
(which may not currently be standard practice
for all time series analysts) is emphasized

by the information theory approach in the next
section. A basic diagnostic tool is the memory

m normalized mean square prediction errors

of = E[IYV'™(t)}2] + R(0),

YTy = v(e) - YW T(ey,

-y By = a (1) Y(e-1) +.. .+ ag(m) Y(e-m)

Given a true (or sample) correlation function
p(v), one can compute (using the Yule-Walker

equations) the sequence 0; which converges

'
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monotonely to the limit ci. An alternative

approach to computing Gi is the fundamental
formula

1

log of = /5

log f(w) duw

The value of oi is a very useful diagnostic

measure of the memory of a time series.

Memory classification by Normalized Mean

Square Prediction Error

10 memory 2 g2 =9
@
short memory = 0 < g2 < o
©
long memory = o2 = 1,

The estimation of oi is one of the basic pro
blem of time series model identification. --
One important method is

-

~
2 =
it g

Boe

~

where m is chosen by an order-determining --
criterion (AIC due to Akaike or CAT due to
Parzen) . The pioneering work of Akaike /27/,
/28/ has shown the central role of informa--
tion theoretic ideas in defining these cri--
teria.

The next section discusses how to use infor-
mation divergence ideas to measure the abili
ty of ARMA(p,g) schemes to provide approxima
ting models to the exact models (of a short
memory time series) provided by AR{(«) and --

MA (») representations.

6. INFORMATION APPROACH TO MEMORY AND ARMA
SCHENMES.,

Information divergence of a probability den-
sity g from a (true) probability density f£
is defined by

. = [®(- (v f d
I(£ig) = ["{-log &fs) £(y) dy
Information has an important decomposition
I(f;8) = H(f;8) - H(D

defining cross-entropy H(f;g) and entropy

,

H(f) by

3

H(f;g) = [T{-log g(¥)} £(y) dy

H(E) = H(E: ) = [7 {-log £(y)} £(y) dy
The information I(Y|X) about a continuous --
random variable Y in a continuous random vec

tor X is defined by

I(Y|X) = I(f = E, I(f

vix> By v £y
The entropy of Y and conditional entropy of
Y given X are defined by

H(Y) = H(fy)

H(Y[X) = H(fy x) = ExH(E

Y[X=x)
One can establish a fundamental decomposition

I(Y|X) = H(Y) - H(Y |X)

Define the information about Y in X2 condition
ed on Xl by

I(Y|R 5 Xy, X,p) = H(E - H(f )

)%, Y|Xy,X,

H(Y [X))- H(Y|X{,X,)

A fundamental formula to evaluate an informa-

tion increment is

I(Yin;Xl,Xz) = I(Y|X1,X2) - I(Y]Xl)

When X and Y are jointly normal random varia-
bles, let Z(Y) denote the variance of Y and
1(Y|X) the conditional variance of Y given X

(which does not depend on the value of X). -
Then

H(Y) = % log L(Y) + % (1 + log 2m)
H(Y[X) = 7 log I(Y|X) + 7 (1 + log 2m)
_ 1 -1
I(Y[X) = - Vi log I “(¥) =(¥YI|X)
A general approach to memory uses information

in the infinite past about the current value,
defined by

I, = ;iz Im
Iy = I (D) jY(1), ..., ¥(m))

Information Definition of Memory. We define a

time series Y(t), t=0, 1l1,... to be
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no memory =

short memory

]
H O H
A
=
A
8

long memory

This definition agrees with the criterion in

the previous section in terms of o2 since --

for a stationary Gaussian time series I, =
- 1 2
= - 5 lOg O'm.
Example. A random walk has long memory and

white noise has no memory.

A random walk is defined by

Y(m+l) = ¥Y(m) + e(m+1), Y(0) = 0, where e(t)
are independent N(0,02), J(Y(m+l)}) = (m+l)o?,
ElY(m+1) |¥Y(1),...,¥(m)] = ¥v(m),

DY (msl) {Y(1)1,...,¥(m)) = o2,

I, = % log (m+l), I = ~. A pure white noise
is defined by Y(m) = £(m). Then ) (Y(m+1))=c2
E[Y(m+1) [¥Y(1),...,Y(m)] = o0,

Y (m+1) |Y (1), ..., ¥(m) =02, I =0, I_=0

Both a random walk and a pure white noise can

be regarded as special cases {corresponding

to p=1 and p= 0 respectively] of the AR(l)
model
Y(t) = p¥(t-1) + e(t), e=1,2,...

where e(t) are independent N(0,0?). When
ol < 1, an AR(1) defines a stationary (or
asymptotically stationary) time series sa-

tisfying
I_=- % log (1-p).

In order to transform one's fhinking about
AR(1l) models from p to I_ one meeds a table

of corresponding values of these parameters.

A very quick and dirty rule for memory diagno
sis is to regard an observed value of I z1.5
as an early detector of very long memory, and
I,21.00 as an early detector of long memory.
This rule is to be used in conjunction with

other rules for discriminating memory type

which are given in Section 7.
We next discuss how to interpret an ARMA(p,q)

Let I =
Psq

denote the in

scheme in terms of information.

vV v
Y, Y_l,...,Y_q)

= I(Y|Y_1,.. -5

formation about Y(t) in Y(t-1),...,Y(t-p),

Yv(t—l),...,Yv(t-q). For a Gaussian stationa-

ry short memory time series

1 2

I = - » 1

P.q 7 *°8 % q
where

-1 v Y

2 = 3 Lo,y YT, Y .
o q = LM IO .Y, Y 2g)
Let Y denote the infinite past Y(t-1),
Y(t-2),... , Then
I, =I@|Y) = - % log o2

A measure of the goodness of fit of an
ARMA (p,q) model to the true model for a sta-

tionary time series is

1 = I(YlY ., ..,Y _, YV oo vy oy
P,q;® (Y, -p’ -1 -q )
= I - I
*® P.q
1 1
= (- log 02) + 5 1 2
7 1og o) + 3 log of o
A time series Y(.) is ARMA(p,q) if, and only
if, I = 0,
P.gi;®

Formulas for I
p,q;®
veloped in terms of the coefficients 8

of the MA ()

are most conveniently de

1182I"
representation of a time series:

o .1 .2 .3 4 .5 .6 .7 .8 .9 .95
I .005 .020 .047 .087  .144 223 .337 .511 .830 1.16
I, .25 .5 .75 1.0 1.25 1.50 1.75 2 3 4

o .627 .795 .88l .930 .958 .975 .985 .,991 .999 .9998
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Y(E) = ¥U(e) + 8 ¥V(e-1) +

There are two methods for estimating the
MA(w) coefficients; invert AR(m) where m is
chosen by an order-determining criterion, or
derive Bk from estimators of (the cepstral =~
pseudo-correlations)

0.5 .
y(v) = IO s exp (27mivw) log f(w) dw

In the Gaussian case, information is (up to
a constant) the logarithm of variance. It
may seem that there i1s no reason to prefer
information to variance. However information
concepts are meaninful even for non-Gaussian
series (although they have not yet been ex-
tensively calculated in the non-Gaussian
case) . Thus by translating variance into in-
formation, one can eventually transfer one's
Gaussian intuition to non-Gaussian data ana-

lysis.

To ilustrate the use of information in model
identification, let us consider the loss one
sustains in using the best fitting AR(2) mo-

del when the true model is an ARMA(1,1l)
Y(t) + a ¥Y(t-1) = e(t) + b e(t-1)

One can compute oi, o(l), p(2) in terms of a
and b. The values of p(l) and p(2) determine

(via the Yule-Walker equations) the optimal
A ~ ~

values Oy az(l), a2(2). When a = -.5, b =.5,
one obtains ol = .4286, p(1l) = .7143, p(2) =
= .3571; oF = .4418, a,(1) = -.9378, a,(2) =

= .3126. The information loss in using the
approximating AR(2) model

Y(£) - .9378 Y(t-1) + .3126 Y(t-2)

e(t)

rather than the exact ARMA(l,1) with -a=b=.5

is .015, since

Y

T(Yjy_,, =

= .4236 - .4084 = .015

Estimating MA(«) is also a prerequisite to --
using another criterion that we use to esti=s

mate memory: the Prediction Variance Horizon

function, introduced in Parzen /7/. It provi-
des a quantitative method of measuring memory
(especially medium memory) by HORIZON, defin-
ed as the smallest value of h for which

-

1+ B82(1)+...+8%(h-1)

23 YD = (- 3 log 02} - (- 3 1og o2}

> 0.95
1+ B2(1) +...

The left hand side of the above inequality
can be interpreted as representing the mean

square error of prediction h steps ahead.

/. QUANTILE BASED TIME SERIES DIAGNOSTIC.
AND THEIR REPRESENTATIVE VALUES.

This section introduces various quantile ba-
sed time series diagnostic measures. Their -
use can be considered exploratory data analy-
sis since they require no theory for interpre
tation if one is willing to base one's conclu
sions on the empirically observed values of
the criteria for representative time series.
On the other hand, the criteria are based on
clearly stated concepts of probability theory
and one could study theoretically the distri-
bution of the

criteria for @ various time

series models.

Quantile diagnostics of normality of data. A

diagnostic measure of the shape of a distribu
tion is the log standard deviation of the in-
formative quantile function, denoted LNSDIQ ,

and defined by

LNSDIQ =

= 1o {%tan@ard‘deviation'of original data.}
twice interquartile range
For a normal distribution, interquartile ran-
ge equals 1.35 standard deviation; therefore
LNSDIQ = - log 2.7 = -1 approximately. We -
can regard a significant difference of LNSDIQ
from -1 as an indication that the probability
distribution of the data is not normal )Gaus-
sian2. A more formal test of normality is to

compare LNSDIQ with LNSGMO = log do’ where
~ 1l -1 N
o, = fo ® “(u) IQ(u) du

is the score deviation (an efficient estima-
tor of ¢ for a normal distribution, obtained
as a linear combination of order statistics).
This test (analogous to the Shapiro-Wilk test
for normality) requires further theory as we
find examples in which the data have IQ(u) -
plots that are not normal (confirmed by

LNSDIQ different from -1), yet LNSDIQ and -

540



Questié - V. 7, n.° 4 {desembre 1983)

LNSGMO are not different.

To decide whether data is normal, the entire
graph of the informative quantile [IQ(u)] --
function should be examined. However an early
detector of the shape is provided by the va-
lue of LNSDIQ as is indicated by the follow-

ing empirical values:

LNSDIQ I,
Variable Cauchy white noise 0
-1.14 Airlines log monthly -1.38
-1.14 NYC Monthly Births .93
-1.24 Lines + Noise 1.72
-1.34 Cauchy random walk 1.48
-1.34 NYC Monthly Temperature 1.17
-1.32 Normal random walk 1.11

In the tables in this section, I =

= - % log o2 is estimated by In for the ap-

proximating AR(m) scheme, where the order m
is determined by the AIC criterion (or equal-
ly the CAT criterion).

Periodogram. For a white noise time series

whose random variables have finite second mo-

ment, the quantile function of the periodo--
gram should be that of an exponential distri
bution with mean 1. A test of white noise is
provided by examining IQ(u) for exponential-

ity. Powerful discriminators of memory type

are the median and variance of the periodo-

gram. For white noise

Periodogram median =

Peridiogram variance = 1.

As memory encreases, per. median decreases
and per. variance increases, as the follow-
ing empirical results confirm'[the values -
table
"Quantile Memory Analysis of Simulated AR(1)"

for AR(1) processes are based on the

in the Appendix].

Periodogram median

.89 Cauchy white noise

7 Normal white noise

.2 Normal AR(l), p = .8
.08 Normal AR(l), p = .9
.02 Normal AR(l), p = .99
.08 NYC Births Monthly
.06 NYC Temperatures Monthly
.04 Normal random walk
.03 Airlines log monthly
.03 Cauchy random wlak
.02 Lines plus noise

Periodogram variance

67.7 Lines plus noise
49.8 NYC Temperatures Monthly
41.5 Normal random walk

38.3 Cauchy random walk

39.7 Airline log monthly

33.1 NYC Births monthly
42 Normal AR(l), p = .99
22. Normal AR(l), p = .9

1 Normal white noise

.5 Cauchy white noise

Correlations. As a memory diagnostic, we use

correlations mean square of sample correlation

B(V) (v), v=1,2,...,

= op
pZ(v) )

computed for a large value of N. It is zero

for white noise, and increases with memory.
Some empirical values are:

.002 Cauchy white noise

.004 Normal white noise

.01 Normal AR(1l), p = .7
.1 Normal AR(1l), p = .9
L2 Normal AR(2), o= .99
.14 NYC Births monthly

.18 Normal random wlak

.17 Cauchy random walk

.19 Airlines log monthly

.23 Line plus noise

.26 NYC Temperatures monthly

Delta estimators. A conclusion that a time se

ries is long memory is regarded by us as valid
only when it is confirmed by the behavior of
the estimators dk of the memory index &. We
routinely form these estimators at =0 and
w=1/12. Note that 1/12 is the period of an an
nual cycle in monthly data, the program
permits the specification of any other season-
al frequency. Two sequence of estimators Gk
are formed; from the best approximating AR --
scheme, and from Parzen window estimators with
truncation point approximately equal to T/2 ,
where T is the time series sample size [the

time series examined had T=144 to 2001].

Our "estimator" § is currently only a summary

of the behavior of the sequences dk’ indicat-
ing a value about which there is clustering.
For normal AR(1l) schemes at w=0 the following

typical values were found in simulated series.
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~

approximate § 2 1.5 1
when I 1.75, 2 1.25, 1.50 1
o .99 96 .93
For empirical series we observed the follow-
ing estimators 3.
w=20 w=1/12
Best Parzen Best Parzen.
AR window AR window
Lines + Noise 1.98 2.22
Cauchy random walk 1.84 1.84 :g§ :Zé
Airlines log monthly 2.33 2.22 1.56 1.42
NYC Temperatures Monthly -.4 -.8 2.1 2.6
NYC Births Monthly 2.05 1.74 1.12 .77
Note that a negative value of § at w=0 indi

cates the possibility that the spectral den-
sity f(w) is zero at w=0.

Partial correlations. The sequence of par—--

tial correlations are usually used to diag--
nose if the time series obeys an autorregres
sive scheme, since AR(p) is egquivalent to
partial correlations equal to 0 for orders
greater than p. The gquantile function of par
tial correlations then should look like white
noise plus as many outliers as the order of
the scheme. As diagnostic measures of memory

we compute:

PCIQR = interquartile range of the quantile
function of partial correlations;

PCLNSD = log standard deviation of the in-
formative gquantile function IQ(u)
of partial autocorrelations;

PCOUT = number of partial correlations

greater in absolute value than
twice interquartile range, number
of values of u at which [IQ(u)|>1.

Typical values of these measures for represen
tative time series will be published
where.

else~-

8. ARSPI8 ANALYSIS OF SIMULATED LONG MEMORY
SERIES.

To ilustrate their research on long memory
time series models, Granger and Joyeux /20/
generated series of the form

(-3 ey = e(o)

with spectral density (for some constant c)

fy (W) = (1 - cos an)-d

This spectral density is regularly varying
at w=0 with memory index 8=2d. They gene-
rated two series of length 400, correspond-
ing to d = .25 (8=.5) and d = .45 (§=.9).We
call these series White 6.5 and White 6.9
respectively. I would like to thank Clive
Granger and Roselyne Joyéux for having given
us copies of their series to study. Some of
the diagnostics generated by ARSPIQ are as

follows:
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White 6.5 White 6.9

DATA LNSDIQ -.95 -1.03
DATA LNSGMO -.95 -1.03
Variance Periodogram 6.9 10.9
Median Periodogram .54 .30
Correlation Mean Square .J2 .03
Delta Estimator w=0

Best AR 0.9 1.0

Parzen Window 0.6 1.2
AIC order fa 7 4
I, = - 5 log 55 .14 .35
Prediction Variance Horizon 24 20

Comparing these diagnostics with the values
obtained for various series in Section 7, we
might conclude the following characteristics

for the series.

Data LNSDIQ, LNSGMO Normal

Corr. Mean Square Short memory
Periodogram, Var Short memory
Periodogram, Median Short memory
I, Short memory
Pred. Var. Hor. Medium memory
Delta w=0 Long memory

Printer plots of delta estimators are given
6, 11,

ly get an exact numerical estimate of §. But

in Figure 5, 12. One does not current
the values estimated for § are consistent —-
with the theoretical values of § used in ge-
On the of

the foregoing diagnostics, one would be jus-

nerating the time series. basis

tified in recommending a fractional diffe
rencing of the time series, using a rough es

timate of §.

If one fitted an ARMA model to these series

one might be tempted to fit ARMA(1l,1) models:
for white §.5,

Y(t) - .75 Y{(t-1) =‘e(t) - 47 e(t-1) ;

for white 6.9,

Y(t) - .89 Y(t-1) = e(t) - .44 e(t-1)

distribution func-
with the
tive peridiogram one would see that the ARMA

models inadequately modeled the low frequency

By comparing the spectral

tion of these ARMAschemes cumula~

portion of the spectral distribution function.

The question is open whether expect practic--
tioners of purely time domain ARMA or ARIMA

methods of time series analysis could iden--

tify the model generating the series simu-

lated by Granger and Joyeux.

9. DOES THE Al
MODEL?

RLINE DATA FIT THE AIRLINE

The aim of time series modeling is to find a
filter that transforms the time series to ~--
white noise. A possible model identification
procedure is to guess a model, its

if

estimate
parameters, fofm the residuals, and test
the residuals are not significantly from --

white noise. This procedure in practice may

lead two different analysts to infer two dif
ferent models. The question is open how to
(which

The concept of memory seems to

resolve which model to accept
is "better").

model

provide a characteristic of a time series
which can be estimated non-parametrically
Statisticians must decide whether to accept
as a model fitting criterion the following:

a model fitted to a time series must satisfy

the criterion that its memory characteristics

agree with those estimated from the data.

The operation of this criterion can be illus

trated by a classic series used as a test
case by researchers on time series model iden
tification methods -- log international air--
The model fitted by
Box and Jenkins /29/ to this series be-
It
takes 1st and 12th differences of the series

Y (t)

lines passengers series.
has
come celebrated as the "airline model".

to form a short memory time series Y(t):

(1-1) (I-L*2) (&) = Y(t);

Y(.) is modeled as a special form of MA(12):

Y(E) = (I-8,L1) (I-8,,L'%) e(o).
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Parzen /8/ has suggested that 12th diffe

rences might suffice as an operation which
(which has

to a new series which is

transforms the original series
long memory) just
barely short memory. The diagnostics in the

table [which one interprets by comparing
them with the representative values in

tion 7]

Sec
indicate that 12th differencing --

does suffice to yield short memory .

Log Airline

Data LNSDIQ -1.15
Data LNSGMO -1.16
Periodogram Median .03
Periodogram Variance 39.7
Correlation Mean Sq. .19
Delta Estimate w=0

Best AR 2.33

Parzen Window 2.22
Delta Estimate w = 1/12

Best AR 1.56
. Parzen Window 1.42
I, = - 3 log o4 1.38
Prediction variance herizon 51

~
Note on how we form the estimator §: we write

~
=0 to indicate that sequence 3 oscilates

k
between negative and positive values.

§<o0

Nega-
tive values could indicate and presence

of a zero of the spectral density. In our
current state of knowledge we assign a value
to g representing essentially flat behavior
of Sk. If the 12th difference spectral

sity had a zero at

den-
w=0 or w/1/12, we would
suspect that we had over-differenced.

A quantitative measure of memory is the pre-
diction variance horizon [51 for airline, >66

for 12th differencel concludes

; . one that
still thas

significant trend components (long memory) .

differencing the +time 'series

The ARARMA modeling procedure of Parzen /8/

finds that if one transforms the airline se-—

ries by the operator I - 1.02L12

by I - le,

rather than
one does obtain a time series

which is unequivocably short memory.

. ALYSIS OF 127TH
WHITE NOISE.

[FFERENCE QOF

The ability of ARSPIQ to identify time series
models may be well illustrated by an analysis
of a simulated time series

Log Airline
12th difference

-.97

-.97
.19

7.7
.05

‘OO0 oo

66+

Y(t) = e(t) - e(t-12),

where €t) is N(0,1) white noise. A sample of
It had mean .02 ,
.01, variance 2.16 . The DATA diagnos-
tics LNSDIQ = -1.04, LNSGMO = -1.04
that the data is normal.

size T=200 was simulated.

median

indicate

The diagnostics

Periodogram median .38
Periodogram vartiance’ 2.63
Correlation mean square .01
Best AR order m 24
1 ~

I, 7 log or . .27

indicate that the time series is short memory.
But the AR spectral density estimator does not
perform well.

The delta diagnostics indicates that the time
series is long memory. That spectral density
has zeroces at frequencies w=0 and = 1/12 is

indicated by significantly negative values of
§:

Delta estimate w=0 w = 1/12
Best AR(m = 24) -1.9 -1.2
Parzen window -1.6 - .9
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To estimate prediction variance horizon [and
an ARMA scheme by select regression on the -
covariance matrix of Y(t-j), Y(t-k)]1 we fit
an MA(»~) by inverting an AR(96) whose coeffi
cients are computed by a Burg. algorithm; it
estimates I = .63, prediction horizon > 100,

and chooses the model
Y(t) + .41 ¥Y(t-12) = e(t) - .55 g(t-12).

This ARMA spectral density has exactly the
shape of the true spectral density of Y (.).

11, QUANTILE GRAPHICS PRINTER PLOTS ILUS-
TRATED.

The printer plot graphical output generated
by ARSPIQ is ilustrated for the long memory
simulated series White 8.5 and White 6.9 --
which are respectively 1labelled JOY1 and

JOY2 on the attached output.

Informative guantile function of the original
time series JOY1 and JOY2 are plotted in Fi-

gure } and 7 respectively (with letters 0 and
M); IQ(u) plots indicate normality, confirmed

by D(u) plots in Figures 2 and 8.

Informative quantile function of the periodo-
gram of time series JOY1l and JOY2 are plotted
in Figures 3 and 9 respectively; they are not
exactly exponential, as is confirmed by B(u)
plots in Figures 4 and 10.

The index & of regular variation of the spec-
tral density at zero frequency is estimated -
by the "limit" of the sequence Gk'plotted in
Figures 5 and 11 (using AR spectral density -
estimator) and Figures 6 and 12 (using Parzen
window spectral density estimator). In Figure
5, a limit exists which is approximately 0.9;
in figure 6, one may assign a limit value of
approximately 0.6. In figure 11 the limit is

assigned to be approximately 1; in Figure 12,

the limit is assigned to be approximately 1.2.

Figures 13 and 14 represent covariance of -
the time series Y(t) and its innovations
e(t) = Yv(t) estimated for input into the

"ARMA identification by select regression" --
procedure. The last column is Prediction Va-

riance Horizon function.

12, CONCLUDING REMARKS.

It is important to understand the role of me-
mory when using [for time series model identi
ARIMA (p,d,q) models introduced by
Box and Jenkins /29/ . Memory is related to d,
but not to the orders p and g. An AR(1l)

fication]

pro-
cess Y (t) satisfying gl(L) Y(t) = e{(t) where
gl(z) = 1l-pz is diagnosed as long memory when
the transfer function gl(z) has its root 1/p
close to the wunit circle in the complex
z-plane. An example of a long memory popula-
tion correlation function is p(v) = cos 2mwt,
which can be regarded as corresponding to an
AR(2) scheme whose transfer function gz(z) =
= 1-(2 cos 2mw)z?+ 2z has roots on the unit
circle. In the ARSPIQ approach to time series
model identification, roots are not explicit-
ly evaluated because their role is subsumed

by memory.

The models automatically identified by ARSPIQ
have been found in practice to have the same
quality as exacﬁ models for purposes of fore-
casting and spectral estimation. Other diag-
nostics of model structure (such as correla-
tions, partial correlations, and inverse co-
rrelations) are also generated in ARSPIQ and
can be used in traditional ways to guess mo-

del structure.

There are still many open problems in the =--
theory of time series model identification, -
such as tests to determine which of several
possible models fits best. FUN.STAT (statis-
tical reasoning based on quantiles, entropy
and information, and functional statistical
inference) may be able to help statistical -
scientists find better solutions to problems

of model identification.
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Fig. 3. Ié(u) plot of periodogram of JOY1l indicates periodogram distribution
is not exponential (corresponding to white noise time series) but has

longer tail than exponential, confirmed by B(u) plot in Figure 4.
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RAW DISTRIBUTION D(U) EXPONTAL CASE
D+ = 0.0663 AT U = 0.997t . D- = -4.4206 AT U = 0.8150
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Fig. 4. D(u) to be compared with uniform distribution to test exponential
distribution of periodogram of JOY1. It rejects hypothesis of

exponential distribution of periodogram.
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DELTA MEMORY FUNCTION
BEST ORDER AR SPECTRAL DENSITY

PLOT 1 - LAG 1 IS AT FREQUENCY O
PLOT 2 - LAG 1 IS AT FREQUENCY KSEAS/NFREQS

I DELT
-------- mm_——— D T T

1 0.0174

2 0.0590 .

3 0.1176 .

4 0.1879 *

5 0.2645 *

6 0.3432 *

7 0.4207 .

8 0.4949 +

9 0.5646 .

10 0.6291 »

1 0.6882 .

12 0.7420 .

13 0.7906 «

14 0.8344 .

15 0.8735 .

16 0.9083 *

17 0.9392 *

18 0.9663 *
19 0.9900 .
20 1.0105 .
21 1.0281 *
22 1.0428 ’
23 1.0550 .
24 1.0647 .
25 1.0722 *
26 1.0775 .
27 1.0807 »
28 1.0820 -
29 1.0815 .
30 1.0792 .
31 1.0752 *
32 1.0696 .
33 1.0625 .
34 1.0539 s
35 1.0438 B
36 1.0324 .
37 1.0196 .
a8 1.0056 .
39 0.9903 »
40 0.9738 .
41 0.9561 .
42 0.9374 »

1 DELT

1 0.0020 *
2 0.0010 »
3 -0.0013 .
4 -0.0048 .
5 -0.0094 .

5. &©stimators 6k of index § of regular variation of spectral density

of JOY1 at frequency w=0 formed from AR spectral density estimator.
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OELTA MEMORY FUNCTION
SMOOTHED PERIODOGRAM - PARZEN WINDOW

PLOT 1 - :LAG 1 IS AT FREQUENC.V [}
PLOT 2 - LAG 1 IS AT FREQUENCY KSEAS/NFREQS

1 DELT
1 0.0400 *
2 0.138% *
3 0.2838 *
4 0.4654 d
) 0.6651 *
6 0.8547 -
7 1.0023 *
8 1.0871 -
9 1.1109 *
10 1.0920 >
11 1.0479 *
12 0.8879 -
13 0.9151 *
ta 0.8322 *
15 0.745¢ *
16 0.6667 *
17 0.609% *
18 0.5847 *
19 0.5983 *
20 0.6435 -
21 0.7000 *
22 0.7373 ®
23 0.7301 *
24 0.6784 *
25 0.6081 *
26 0.5521 *
27 0.5333 *
28 0.5608 hd
29 0.6325 N
30 0.7387 =
31 0.8648 *
32 0.9937 N
33 1.1083 *
34 1.1843 *
35 1.2435 *
36 1.2551 *
a7 1.2370 *
38 1.2036 “
38 1.1706 v
a0 1.1504 *
a1 1.1470 M
42 1.1536 -
1 DELT
1 Q.0262
2 0.0097 d
3 -0.0409 ®
4 -0.1189 *
5 -0.2070 -

Fig. 6. Estimators ék of index § of regular variation of spectral density
of JOY1 at frequency w=0 formed from kernel estimator of spectral
density with Parzen window.
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Joy2
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Fig. 7. Informative quantile function Ia(u) of original time series Y(t),
called JOY2, simulated by Granger and Joyeux by (I—L)'45 Y(t) = g(t).
IQ(u) plot indicates time series distribution is normal, confirmed

by B(u) plot in Figure 8.
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RAW DISTRIBUTION D(U) NORMAL CASE
D+ = 0.6127 AT U = 0.8B462 . D- = -0.3379 AT U = 0.2162
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Fig. 8. Distribution function D(u) to be compared with uniform distribution
to test normality of JOY2. This plot of B(u) indicates time series
distribution is normal.
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Fig.

9.

JOY2
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1§ (u) plot of periodogram of JOY2 indicates periodogram distribution
is not exponential (corresponding to white noise time series) but has

longer tail than exponential, confirmed by B(u) plot in Figure 10.
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RAW OISTRIBUTION D(U) EXPONTAL CASE
D+ = 0.0978 AT U = 0.9932 . D- = -9.7469 AT U = 0.9385
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Fig. 10. B(u) to be compared with uniform distribution to test exponential
distribution of periodogram of JOY2. It rejects hypothesis of

exponential distribution of periodogram.
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DELTA MEMORY FUNCTION
BEST ORDER AR SPECTRAL DENSITY

PLOT { - LAG f IS AT FREQUENCY &
PLOT 2 - LAG 1 1S AT FREQUENCY KSEAS/NFREQS

1 DELT
1 0.0126 *
2 0.04314 .
3 0.0871 *
4 0.141% *
S 0.2032 *
6 0.2691 *
7 0.3365 *
8 0.4038 *
9 0.4693 *
10 0.5323 .
i1 0.5922 .
12 0.6487 .
13 0.7017 hd
14 0.7512 *
15 0.7873 d
16 0.8401 *
17 0.8799 *
18 0.9i68 *
18 0.9510 *
20 0.9826 -
21 1.0119 *
22 1.0380 .
23 1.0640 *
24 1.0874 *
25 1.108%
26 1.1282 *
27 1.1463 *
28 1.1630 *
29 1.1783 .
30 1.1923 *
31 1.2051 .
32 1.2168
33 1.2274 *
34 1.2371 *
35 t.2457 »
36 1.2535 *
37 1.2603 *
38 1.2664 *
39 1.2717 *
40 1.2762 .
41 1.2801 .
42 1.2832 *
1 DELT
1 0.0324 *
2 0.0473 *
3 0.0614 *
4 0.0748 .
] 0.0874 *

Fig. 11. Estimators 5k of index § of regular variation of spectral density

of JOY2 frequency w=0 formed from AR spectral density estimator.
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DELTA MEMORY FUNCTION
SMOOTHED PERIODOGRAM - PARZEN WINDOW

PLOT 1 - LAG 1 IS AT FREQUENCY O
PLOT 2 - LAG 1 IS AT FREQUENCY KSEAS/NFREQS

I DELT

1 0.0055 *

2 0.0213 *

3 0.0505 .

4 0.0873 *

S 0.1642 *

6 0.25141 b

7 0.3565 *

8 0.4784 -

9 0.6167 *

10 0.7726 -

11 0.9466 .

12 1.1320 *

13 1.3076 *
14 1.4353 *
15 -1.4795 *
16 1.4412 *
17 1.3612 *
18 1.2846 *
19 1.2343 *
20 1.2100
21 1.1990 *
22 1.1889 hd
23 1.1781 *
24 t.1759 *
25 1.1943 *
26 1.2410 .
27 1.3063 *
28 1.3678 *
29 1.3945 *
30 1.3670 *
31 1.2934 *
32 1.2015 *
33 1.1472 &
34 1.0518 *
35 1.0031 *
36 0.9620 *
a7 0.9220 *
as 0.8846 *
39 0.8585 .
40 0.8526. hd
44 0.8707 .
42 0.9074 *

I DELT

1 0.08635 *

2 0.0851 .

3 0.0875 *

4 0.0714 *

5 0.0450 *

Fig. 12. Estimators dk of index § of regular variation of spectral density

of JOY2 at frequency w=0 formed from kernel estimator of spectral
density with Parzen window.
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JOoy2
LAG RYY(V) REY(V) RYE(V) REELV) PVH(V}
o 1.0000000 0.7326133 0.7326133 0.7326133 0.7326133
1 0.4082985 0.2064592 0.0 0.0 0.7907959
2 0.3084335 0.1225261 0.0 0.0 0.8112878
3 0.2363130 0.0475103 .0 0.0 0.8143688
4 0.2743%70 0.0961481 0.0 0.0 0.8269873
5 0.2721530 0.1046219 0.0 0.0 0.8419279
6 0.2550060 0.0854343 0.0 0.0 0.8518909
7 0.2875156 0.1448688 0.0 0.0 0.8805376
8 0.1891304 0.0624849 0.0 0.0 Q.8858669
9 0.1781062 0.054 1669 0.0 0.0 Q.8898718
10 0. 1442805 0.0158781 0.0 0.0 0.8302159
1" 0.2029656 0.0737349 0.0 0.0 0.8976370
12 0.1468985 0.0206350 0.0 0.0 0.8982182
13 0.1804721 0.0577810 0.0 0.0 0.9027753
14 0.1498834 0.0220696 0.0 0.0 0.9034402
15 0.1473644 0.0215390 0.0 0.0 0.8040734
16 0.1560265 0.029686 1 0.0 0.0 0.9052763
17 0. 1505627 0.0043458 0.0 0.0 0.9053020
18 0.22592u6 0.09851476 0.0 0.0 0.9176592
19 0.1822152 0.0607775 0.0 0.0 0.9227013
20 0.17188b4 0.0420270 0.0 0.0 0.9251122
21 0. 1987007 0.0762220 0.0 0.0 0.9330424
22 0. 1957907 0.0851237 0.0 0.0 0.9429331
23 0.1478132 0.0375644 0.0 0.0 0.9448591
24 0.1716287 0.0677163 0.0 0.0 0.9511182
25 0.1493408 0.0537586 0.0 0.0 0.9550630
26 0.1315936 0.0387328 0.0 0.0 0.9571108
27 0.1372958 0.0449133 0.0 0.0 0.9598642
28 0.1362370 0.0478824 0.0 0.0 0.9629937
29 0.1369956 0.0565815 0.0 0.0 0.9673636
30 0.1085857 0.0297663 0.0 0.0 0.9685730
31 0.11312014 0.0373363 0.0 0.0 0.9704757
32 0.1052418 0.0316543 0.0 0.0 0.9718434
33 0.1002929 0.0275210 0.0 0.0 0.9728772
34 0.0983852 0.0275114 0.0 0.0 0.9739103
35 0.0994038 0.0282782 0.0 0.0 0.9750018
36 0.0970029 0.0281241 0.0 0.0 0.9760814
37 0.0943899 0.0285846 0.0 0.0 0.9771966
38 0.0899671 0.0227558 0.0 0.0 0.9779034
ag 0.0939781 0.0277208 0.0 0.0 0.9789523
40 0.0981009 0.0361862 0.0 0.0 0.9807396
41 0.0849502 0.0229136 0.0 0.0 (.9814562
42 0.0913289 0.0312059 0.0 0.0 d.9827854
43 0.0874473 0.0310268 0.0 0.0 0.9840994
44 0.0789995 0.0237194 0.0 0.0 0.9848673
45 0.0794491 0.0252786 0.0 0.0 0.9857395
46 0.0797144 0.0280362 0.0 0.0 0.9868124
a7 0.0744784 0.0253145 0.0 0.0 0.9876871
48 0.0706021 0.0226548 6.0 0.0 0.8883876
49 0.070036%5 0.0238034 0.0 0.0 0.9891610
50 0.0670485 0.0230686 0.0 0.0 0,.9898874
St 0.06339%8 0.0207739 0.0 0.0 0.9904764
52 0.0603163 0.0189447 0.0 0.0 0..9909662
53 0.0602901 0.0206640 0.0 0.0 0.9915490
54 0.05576E7 0.01721189 0.0 0.0 1 0.9919534
55 0.05457:4 0.0172729 0.0 0.0 0.9923606
56 0.053463" 0.0171439 0.9 0.0 0.9927617
57 0.0516932 0.0162010 0.0 0.0 0.9931200
58 0.0510590 0.0171760 0.0 0.0 0.9935226

Fig. 13. Correlations and cross-correlations of time series JOY1l and its

innovations. Last column is prediction variance horizon function.
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JoY2
LAG RYY (N REY (/) RYE(V) REE(V) PVH(V)
o] 1.000000 * 0.4829759 0.4829759 0.4829759 0.4828759

1 0.6747600 0.2148846 0.0 0.0 0.5785819
2 0.5941792 0.1709515 0.0 0.0 0.6390909
3 0.5314984 0.1341923 0.0 0.0 0.6763754
4 0.5120372 0.14723377 0.0 0.0 0.7213226
5 0.4531240 0.1018637 0.0 0.0 0.7428065
6 0.4374954 0.1019529 0.0 0.0 0.7643280
7 0.4114058 0.0789312 0.0 0.0 0.7772275
8 0.4142068 0.0960438 0.0 0.0 0.7963265
9 0.4060826 0.1014103 0.0 0.0 Q.8176196
10 0.3925930 0.1107870 0.0 0.0 0.8430369
tt 0.3698141 0.1164525 0.0 0.0 Q.8711153
12 0.3145271 0.0715572 0.0 0.0 0.8817171
13 0.3090729 0.0807641 0.0 0.0 0.8952226
14 0.2859113 0.0683612 0.0 0.0 0.9048985
15 0.2759603 0.0704698 0.0 0.0 0.9151806
16 0.2572452 0.0607879 0.0 0.0 0.9228314
17 0.2483598 0.0621295 0.0 0.0 0.9308236
18 0.2345242 0.056967 1 0.0 0.0 0.9375428
19 0.2263170 0.0598399 0.0 0.0 0.9449568
20 0.2116776 0.0547993 0.0 0.0 0.9514744
21 0.1994585 0.05253380 0.0 0.0 0.9568897
22 0.1859488 0.0471915 0.0 0.0 0.8615008
23 0.1746851 0.0428935 0.0 0.0 0.9653102
24 0.1670123 0.0425371 0.0 0.0 0.9690565
25 0.1570423 0.03904Q2 0.0 0.0 0.9722122
26 0.1494720 0.0379307 0.0 0.0 0.975191¢
27 0.1408362 0.0351630 0.0 0.0 0.9777511
28 0.1339873 0.0342218 0.0 0.0 0.9801759
29 0.1262708 0.0319888 0.0 0.0 0.982294S
30 0.1196540 0.0308438 0.0 0.0 0.9842642
31 0.11233€% 0.0283759 0.0 0.0 0.9859313
32 0.1062952 0.0270292 0.0 0.0 0.9874440
33 0.1001922 0.0251416 0.0 0.0 0.9887527
34 0.1)949577 0.0240069 0.0 0.0 0.9899460
35 0.,)8980:69 0.02272374 0.0 0.0 0.9910164
36 0.8485 30 0.0214458 0.0 0.0 0.9919686
37 0.0802849 0.0203648 0.0 0.0 0.9928273
38 0.07583<% 0.0192040 0.0 0.0 0.9935908
39 0.0717288 0.0182451 0.0 0.0 0.9942800
40 Q.0676939 0.0171597 0.0 0.0 0.9948897
41 0.0639889 0.0162537 0.0 0.0 Q.9954367
42 0.0603912 0.0152592 0.0 0.0 0.9959188
43 0.0571357 0.0144901 0.0 0.0 0.9963534
44 0.0539653 0.0136472 0.0 0.0, 0.9967380
45 0.0510500 0.0129597 0.0 0.0 Q.9970868
46 0.0482171 0.0122196 0.0 0.0 0.9973959
47 0.0455774 0.0115674 0.0 0.0 0.9976728
48 0.0430619 0.0109281 0.0 0.0 0.9979202
49 0.0406882 0.0103310 0.0 0.0 0.9981411
50 0.0384416 0.0087622 0.0 0.0 0.9983384
51 0.0363132 0.0092182 0.0 0.0 0.9985143
52 0.0343122 0.0087145 0.0 0.0 0.9986715
53 0.0324147 0.0082308 0.0 0.0 0.9988118
54 0.0306326 0.0077892 0.0 0.0 0.9989374
55 0.0289337 0.0073559 0.0 0.0 0.9990494
56 0.0273375 0.0069600 0.0 0.0 0.9991496
57 0.0258166 0.0065718 0.0 0.0 0.8992390
58 0.0243873 0.0062160 0.0 0.0 0.9993190

Fig. 14. Correlations and corss-correlations of time series JOY2 and its

innovations. Last column is prediction variance horizon function.
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ARSP1Q

The ARSPIQ Fortran Computer Program for Time

Series Model Identification by estimating in

formation and memory is used at Texas A&M in

a batch mode. It generates the following out

put for examination by the time series ana--

lyst.

1.

(1898) .

Quantile data analysis of original data:
I0(u)

Goodness of fit of normal distribution:
b(u) .

LNSQID, LNSGMO

Generates time series Y(t) with median

substracted.

Quantile data analysis of normalized pe-

riodogram: IQ(u)
Goodness of fit of exponential distribu-
tion: D(u)

Median periodogram, variance periodogram
Delta estimates at zero and seasonal fre-
guencies (based on periodogram, usually

no limit evident).

Quantile data analysis of correlations:
10 (w) ‘
Goodness of fit of normal distribution:
B(u)

Correlation mean square.

Quantile data analysis of partial correla
tions: Ia(u)

Goodness of fit of normal distribution:

D (u)

Partial correlation inter-quantile range,

numpber of outliers.
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[ex}

R}

AR Description of time series: AIC, CAT
orders

AR coefficients for best order m and 2nd
best order

AR spectral density and spectral distribu
tion plots.

AR spectral density delta estimators at
zero and seasonal frequencies

Parzen window spectral density delta es-
timators

MA(») estimation

AR coefficients for order 4%, computing
partial correlations by non-stationary AR
(Burg) method, or optionally by stationary
AR(Yule~Walker) method
Inverse correlations
Infinite MA coefficients, prediction va-

riance horizon.

ARMA model identification by select re-
gression
ARMA spectral density and spectral dis-

tribution plots.

Cepstral pseudo-correlation estimation

i0.Spectral local guantile estimation.

15. NOTE.
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APPENDIX

QUANTILE MEMORY ANALYSIS OF SIMULATED AR(1)

DATA CORR AIC CAT %Aﬂ PREDICTION

Im i LNSDIQ LNSGMO MEDIAN VAR MS ORDER ORDER ORDER HORIZON
020 .2 -1.06 -1.06 71 1.26  .004 1 1 0 2
047 3 - .96 - .9 .55 1.73  .007 1 1 1 2
087 4 -1.02 -1.02 .52 1.66  .006 1 1 1 2
64 s - .94 - 94 .46 1.91 007 2 2 1 2
223 6 - .92 - 92 .50 1.87 007 1 1 1 2
337 7 - .96 - .96 .30 3.10  .013 2 2 1 1
511 8 -1.06 -1.06 18 14.9 .065 1 1 1 10
830 9 -1.16 -1.16 .08 22.3 11 1 1 1 22
1.164 35 -1.07 -1.08 .06 264.7 11 10 10 1 73
2 .991 - .92 - .95 .02 46.8 .22 1 1 1 82
1.75 .985 -1.12 -1.13 014 48.7 .23 1 1 1 67
1.5 .975 - 77 - .79 .05 24.0 .09 2 2 1 22
1.25 .958 -1.14 -1.15 .02 32.21 .15 1 1 1 27
1.0 .93 - .98 - .98 .04 12:09 .05 1 1 1 11
.75 .88 -1.17 -1.17 .05 6.25 .03 2 2 1 9
.50 .795 -1.16 -1.16 .27 4.73 .02 2 2 1 3
.25 627 -1.00 -1.01 .33 3.36 .01 1 1 1 3




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

