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ALGEBRAIC WEBS INVARIANT UNDER

ENDOMORPHISMS

Marius Dabija and Mattias Jonsson

Abstract

We classify noninvertible, holomorphic selfmaps of the projective
plane that preserve an algebraic web. In doing so, we obtain in-
teresting examples of critically finite maps.

Introduction

In this paper we classify holomorphic selfmaps of the complex projective
plane P2 that are integrable in the quite specific sense that they preserve
an algebraic web.

Recall that an algebraic web is given by a reduced curve C ⊂ P̌2, where
P̌2 is the dual projective plane consisting of lines in P2. We say that the
web is irreducible if C is an irreducible curve. The web is invariant for a
holomorphic mapping f : P2 → P2 if every line in P2 belonging to C is
mapped to another such line. See Sections 1 and 3 for details. We will
assume f is noninvertible.

Theorem A. If C is irreducible, it is of one of the following types:

(i) a line;
(ii) a smooth conic;
(iii) a smooth cubic;
(iv) a nodal cubic.

The maps in (iii) and (iv) are always critically finite.

Theorem B. If C is reducible, it is of one of the following types:

(i) the union of two lines;
(ii) the union of three lines in general position;
(iii) the union of a conic and a line in general position.
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The maps appearing in Theorems A and B are quite rare among all
holomorphic selfmaps, but nevertheless interesting. Indeed, they provide
concrete examples of critically finite mappings. See [FS1], [FS2], [U1],
[U2], [U3], [J1], [R], [K] for examples and dynamics of critically finite
maps, and [S] for a survey of iterations of rational maps on projective
spaces.

There are several other notions of integrability for selfmaps of P2. In [DJ]
we classified invariant pencils of curves. Much more generally, Favre and
Pereira [FP] have classified invariant foliations for rational maps. The case
of birational maps was studied earlier by Cantat and Favre [CF]. Related
work includes the classification of totally invariant curves for holomorphic
endomorphisms of P2 [FS2], [CL], [D], [SSU] and for birational maps of
surfaces [DJS]; see also [BD].

This note is organized as follows. After some background in Sections 1
through 3 we describe in Section 4 the mappings appearing in Theorem A.
The proof takes place in Section 5 and Section 6 treats the case of a re-
ducible web.

Acknowledgments. We thank the referee for a careful reading of the
paper and many useful suggestions. The second author was supported by
the NSF. The work was partially completed during a visit to the Mittag-
Leffler Institute.

1. Algebraic webs and plane geometry

We start by reviewing some elementary facts of plane geometry. Let P2

denote the complex projective plane. The support of a divisor D on P2

is denoted by |D|. Let P̌2 the dual projective plane, that is, the set of
complex lines in P2. Then P̌2 is itself isomorphic to the projective plane.
Let D denote the involutive duality between lines (resp. points) in P2 and
points (resp. lines) in P̌2. Given a point p ∈ P2, Dp ⊂ P̌2 is the line of
lines passing through p. Given a line L ⊂ P̌2, DL =

⋂
l∈L l.

Consider a reduced, irreducible curve B ⊂ P2 (resp. B ⊂ P̌2) of de-
gree > 1. The dual curve B̌ ⊂ P̌2 (resp B̌ ⊂ P2) is the curve of tangents
to the local branches to B. If ψ : A → B is a normalization map, then
ψ̌ : A → B̌ defined by ψ̌(a) = DTaC, is also a normalization map. Here
TaC ⊂ P2 (resp. TaC ⊂ P̌2) is the tangent line to the irreducible curve

germ ψ(A, a) at ψ(a). The double dual ˇ̌B is isomorphic to B.
We shall need to compare the degree and singularities of a curve with

those of its dual. To this end, define the ramification divisor of ψ : A→ B
to be Rψ =

∑
a∈A(mψ(a) − 1)a. Here mψ(a) is the largest integer k such
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that ψ∗
mB,ψ(a) ⊂ m

k
A,a, where m denote the maximal ideals. We then have

the following Plücker-type formula:

(1.1) 2 degB − deg B̌ − degRψ = χ(A) = 2 deg B̌ − degB − degRψ̌,

where χ(A) is the topological Euler characteristic of A. This is proved
using the Riemann-Hurwitz formula as in [GH, pp. 277–280]; see also [Ho,
p. 289].

A web W on P2 of degree δ is locally defined by an unordered set of
δ holomorphic (possibly singular) foliations. In particular, through a gen-
eral point p ∈ P2 passes exactly δ leaves, and these intersect transversely
at p. Globally, the leaves may exhibit complicated behavior and even be
dense in P2. See e.g. [Pe], [Pi1], [GS] for general facts on webs.

We shall only consider the particular case of an algebraic web on P2.
By definition, this is a web W = WC given by a reduced curve C ⊂ P̌2 of
degree δ > 1. The leaves ofWC are exactly the lines in P2 corresponding to
the points on C. Through a generic point p ∈ P2 passes exactly δ distinct
lines of the web. See Figure 1 for a picture of the algebraic web associated
to a conic C.

Figure 1. The algebraic web associated to a conic.

Assume that C is irreducible and δ = degC > 1. The normalization
map ψ : A→ C then induces a symmetric rational map

π : A×A 99K P2

defined by π(a1, a2) = DL(ψ(a1), ψ(a2)), where L(c1, c2) ⊂ P̌2 is the line
passing through (distinct) points c1, c2 ∈ P̌2. Let us record some facts that
are easily established by direct computation. The indeterminacy locus Iπ
of π is exactly the set of pairs (a, a) with a ∈ Rψ and pairs (a, b) with a 6= b
but ψ(a) = ψ(b). In particular, C is smooth if and only if π is holomorphic.



140 M. Dabija, M. Jonsson

We have π(∆) = Č, where ∆ ⊂ A × A denotes the diagonal and Č ⊂ P2

the dual curve. More precisely, π(a, a) = ψ̌(a). Note that π has topological
degree δ(δ − 1). Further, π is locally biholomorphic outside ∆ ∪ Iπ .

2. Selfmaps of curves and of the plane

Consider a smooth algebraic curve A of genus g and a surjective holo-
morphic map φ : A → A of topological degree d > 1. The canonical di-
visor class KA has degree 2g − 2. The Riemann-Hurwitz formula asserts
KA = φ∗KA + Rφ, where Rφ is the ramification divisor. Taking degrees,
we find 0 ≤ degRφ = (d − 1)(2 − 2g). As d > 1, we have g = 0 or g = 1,
that is, A is a rational or elliptic curve.

A subset E ⊂ A is totally invariant if φ−1(E) ⊂ E. For finite subsets E,
this in fact implies φ−1(E) = E = φ(E). When A = C/Λ is an elliptic

curve, φ lifts to an affine map φ̃ : C → C and one easily sees that there is
no finite totally invariant set. When A is rational, it is not hard to prove
that a totally invariant set contains at most two points, see e.g. [CG,
Theorem 1.5, p. 56].

A holomorphic map f : P2 → P2 can be written in homogeneous coor-
dinates as f [x : y : z] = [P (x, y, z) : Q(x, y, z) : R(x, y, z)], where P , Q
and R are homogeneous polynomials on C3 of the same degree d ≥ 1, and
{P = Q = R = 0} = {0}. The number d is the algebraic degree of f ;
we shall assume d > 1. The topological degree of f is d2. The ramifica-
tion divisor Rf of f has degree 3(d − 1). It is known [FS2], [CL], [D],
[SSU] that if C ⊂ P2 is a (reduced, but possibly reducible) curve such
that f−1(C) ⊂ C, then f−1(C) = C = f(C) and C is the union of at most
three lines. Any such line L ⊂ C occurs with multiplicity d− 1 in Rf .

3. Invariant webs

Consider the algebraic webWC associated to a curve C ⊂ P̌2 of degree δ.
Assume for now that C is irreducible.

Let f : P2 → P2 be a holomorphic mapping of algebraic degree d ≥ 2.
We say that the web is invariant under f if the image under f of any line
in the web is again a line in the web. There is then an induced selfmap
g : C → C defined by g = D ◦ f ◦ D. The web is totally invariant if the
preimage of any line in the web is a union of lines in the web.

Proposition 3.1. A web is invariant if and only if it is totally invariant.
Moreover, if the web is invariant, then:

(i) the induced map g : C → C is regular, of topological degree d;
(ii) for any c ∈ C, we have f∗Dc = dDg(c) as divisors on P2.
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Proof: Clearly, the web is invariant if it is totally invariant. Also, (ii) is
clear, since f∗ multiplies the degree of any effective divisor by d.

For k ≥ 1, let Ak ≃ P
k(k+3)

2 denote the space of effective divisors of de-
gree k on P2. Then A1 = P̌2. Let ρd : A1 → Ad be the Veronese map given
by multiplication by d: ρd(L) = dL and f∗ : A1 → Ad the pushforward map
induced by f . Then f∗ is holomorphic, of topological degree d2, and ρd is
a holomorphic embedding. Suppose the web associated to C is invariant.
Then f∗ = σd ◦ g, so g is holomorphic. Now (f∗)

∗OAd
(1) = d2OA1(1)

and ρ∗dOAd
(1) ≃ dOA1(1). Restricting to C implies g∗OC(1) = dOC(1),

so g has topological degree d. In particular, the preimage of every line in
the web is the union of (at most) d lines in the web, so the web is totally
invariant.

The induced selfmap g : C → C preserves collinearity: if c1, c2, c3 ∈ C
are collinear in P̌2, then so are g(c1), g(c2), g(c3). Indeed,

⋂
iDg(ci) =

f(
⋂
iDci). Conversely, if g : C → C is a surjective holomorphic map pre-

serving collinearity, then there is a unique holomorphic mapping f : P2 →
P2 satisfying g = D ◦ f ◦ D.

Clearly, g : C → C lifts uniquely through the normalization map ψ : A→
C to a holomorphic selfmap φ : A → A of topological degree d > 1. In
particular, A is rational or elliptic. Moreover, f : P2 → P2 lifts through

the rational map π : A×A 99K P2 to the selfmap A×A
(φ,φ)
−→ A×A. This

implies f(Č) = Č.
For the proof of Theorem A we need to compare the ramification divi-

sors Rf ⊂ P2 and Rφ ⊂ A of f and φ, respectively. In general, Rf has

degree 3(d− 1). Since f preserves the algebraic web associated to C ⊂ P̌2,
we can write Rf = RCf +Rσf , where RCf is the part of Rf supported on the
lines of the web, and Rσf is the “sectional” part of Rf .

Lemma 3.2. If a ∈ A and ψ(a) /∈ singC, then the multiplicity of the
point a in Rφ equals the multiplicity of the line Dψ(a) in RCf .

Proof: If a, b ∈ A, ψ(a), ψ(b) 6∈ singC and ψ(a) 6= ψ(b), then π : A ×
A 99K P2 is a local biholomorphism at (a, b). Picking b generic gives the
result.

4. Examples

We now go through the examples appearing in Theorem A and briefly
discuss their dynamics.
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4.1. A line. The case when C is a line corresponds to a pencil of lines
through a point p ∈ P2. In other words, C = Dp. We have degRCf =

2(d− 1) and degRσf = (d− 1).

Pick homogeneous coordinates [x : y : z] on P2 such that p = [0 : 0 : 1].
Then f preserves C if and only if it takes the form f [x : y : z] = [P (x, y) :
Q(x, y) : R(x, y, z)].

Holomorphic selfmaps of P̌2 preserving a pencil of curves were classified
in [DJ]. Their dynamics is studied in [J2], [J3].

4.2. A conic. Suppose C ⊂ P̌2 is a smooth conic so that A ≃ C ≃
P1. Pick any holomorphic selfmap φ : P1 → P1 of degree d > 1. The
map π : P1 × P1 → P2 is then holomorphic, of topological degree 2, and

P1 ×P1 (φ,φ)
−→ P1 ×P1 induces a holomorphic selfmap f : P2 → P2 of alge-

braic degree d. Any holomorphic selfmap f of P2 preserving a conic C ⊂ P̌2

is of this form. We have degRCf = 2(d − 1) and degRσf = (d − 1). The

dual curve Č ⊂ P2 is an invariant smooth conic and f∗Č = Č + 2|Rσf |,
see Lemma 5.2. Selfmaps as above were first introduced in a dynamic
setting by Ueda [U1]. They can be used to provide simple examples of
critically finite maps, in particular maps whose Julia set is all of P2 [U1,
Proposition 4.1].

4.3. A smooth cubic. Let C ⊂ P̌2 be a smooth cubic. Then C ≃ C/Λ
is an elliptic curve and admits a group law: three points in C are collinear
if and only if their sum is zero. Choose the origin of the group law (C,+, 0)
at any flex of C and consider any holomorphic selfmap g : C → C. Then
g preserves collinearity if and only if its translation factor is a flex of C. In
this case, g induces a selfmap f : P2 → P2 preserving the web associated
to C, and any such f is of this form.

We have RCf = ∅ and degRσf = 3(d− 1). The dual curve Č ⊂ P2 is an

invariant sextic with nine cusps and f∗Č = Č + 2|Rσf |, see Lemma 5.2.

In particular, f is always critically finite, f(|Rf |) = Č = f(Č). It follows
from [U2, Theorem 5.9] that the Julia set of f is all of P2.

4.4. A nodal cubic. Let C ⊂ P̌2 be a nodal cubic, with the node at c∗.
There is a geometrically defined multiplicative group law on C∗ := C\{c∗},
given as follows: c1c2c3 = e in the group if and only if c1, c2 and c3 are
collinear in P̌2. Here the unit element e can be chosen as any of the three

flexes of C. Concretely, the unique normalization map P1 ≃ A
ψ
→ C such

that ψ(0) = ψ(∞) = c∗ and ψ(1) = e restricts to a group homomorphism
ψ : C∗ → C∗. We then see that g : C → C preserves collinearity if and
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only if φ : A → A takes the form φ(a) = τa±d, where τ3 = 1. In fact, by
changing the flex representing e, we obtain τ = 1.

We have degRCf = (d− 1) and degRσf = 2(d− 1). The dual curve Č ⊂

P2 is an invariant quartic with three cusps and one bitangent. We have
f∗Č = Č + 2|Rσf |, see Lemma 5.2. In particular, f is critically finite.

In suitable coordinates on P̌2 and P2, we have C = {u3 + v3 = uvw},
ψ(a) = [−a2 : a : a3 − 1], ψ̌(a) = [2a3 + 1 : 2a + a4 : a2] and π(a, b) =
[ab(a+ b) + 1 : a+ b + a2b2 : ab]. The selfmap of P2 associated to φ(a) =
ad is then a polynomial mapping fd : C2 → C2 of the form fd(x, y) =
(Ad(x, y, 1), Ad(y, x, 1)), where Ad(x+y+z, xy+yz+zx, xyz) = xd+yd+zd.
For example, f2(x, y) = (x2 − 2y, y2 − 2x).

5. Proof of Theorem A

Without loss of generality, assume that δ := degC ≥ 3 and that C is
not a smooth cubic. We shall prove, in a self-contained way, that C is a
nodal cubic. An alternative approach, suggested by the referee, is to use a
result in web theory to first show that degC ≤ 3: see Remark 6.1.

We need two results, the proofs of which are given below. Let mc(C)
denote the multiplicity of the curve C at a point c.

Lemma 5.1. The singular locus singC is totally invariant for g : C → C.
Moreover, if c ∈ singC, then mc(C) = δ − 1. As a consequence, the
set As := ψ−1(singC) is totally invariant for φ : A→ A.

For the second result, recall the notation RCf and Rσf for the fiber and
sectional parts of the ramification locus of f , respectively.

Lemma 5.2. We have deg Č ≤ 2
d−1 degRσf with equality if and only if

f∗Č = Č + 2|Rσf | as divisors.

Now let us prove Theorem A. The map φ : A → A has topological de-
gree d > 1, so A has to be a rational or elliptic curve. Since we have
assumed δ ≥ 3, C is singular. Lemma 5.1 implies that As = ψ−1(singC)
is a totally invariant set for φ : A → A. This is impossible if A is elliptic,
so C must be rational. Moreover, As consists of one or two points. Each
such point corresponds to a line in P2 that is totally invariant for f , and
hence contributes to RCf as a divisor of degree d− 1.

Case 1: #As = 1. The point in As contributes a line of multiplicity d− 1
to RCf . By Lemma 3.2, the critical points of φ in A \As contribute lines of
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total degree d− 1 in RCf . Thus degRσf = d− 1. Lemma 5.2 gives δ̌ ≤ 2, so

that Č, and hence C, is a conic. This contradicts the assumption δ ≥ 3.

Case 2: #As = 2. Then φ : A → A has no critical points outside As,
so degRσf = d − 1 or 2(d − 1), depending on whether # singC = 2 or

# singC = 1. If degRσf = d− 1, Lemma 5.2 implies δ̌ ≤ 2, so that Č, and
hence C is a smooth conic, contradicting δ ≥ 3. Hence suppose # singC =
1 and degRσf = 2(d − 1). Write As = {a, b} = |Rψ|. Then ψ(a) = ψ(b) =

singC. By Lemma 5.1, degRψ = (mψ(a) − 1) + (mψ(b) − 1) = δ − 3. It

follows from (1.1) applied to B = C that δ = δ̌−1. Now Lemma 5.2 shows
that δ̌ ≤ 4. We have assumed δ ≥ 3, hence δ = 3. Since # singC = 1 and
#As = 2, C is a nodal cubic.

Proof of Lemma 5.1: We may assume that δ ≥ 3 or else the irreducible
curve C is smooth, and there is nothing to prove.

Note that for any c ∈ C, a generic line l ⊂ P̌2 through c intersects C in
exactly δ+ 1−mc(C) points. Dually, through a generic point on Dc ⊂ P2

passes exactly δ + 1 − mc(C) distinct lines of the web. In particular,
c ∈ regC if and only if a generic point on the line Dc ⊂ P2 belongs to δ
distinct lines of the web.

Now consider c ∈ C and c′ := g(c) ∈ C. Let p ∈ Dc ⊂ P2 be a generic
point and write p′ := f(p). Assume that c′ ∈ singC. We will show that
c ∈ singC. This will prove that singC is totally invariant.

First assume Dc 6⊂ |Rf |. Then f is a local biholomorphism at p, so p
and p′ belong to the same number of lines of the web. Thus c ∈ singC.

Now assume Dc ⊂ |Rf |. Then the kernel of the differential Dfp is one-
dimensional. Thus there is at most one line L in P2 through p such that
the curve germ f(L, p) is transverse to the line Dc′ at p′. This implies that
δ + 1 −mc(C) ≤ 2, that is, mc(C) ≥ δ − 1. The reverse inequality always
holds (since C is irreducible and not a line), and so mc(C) = δ − 1. In
particular c ∈ singC.

Thus singC is totally invariant. This implies that Dc ⊂ |Rf | for every
c ∈ singC. The above argument then shows mc(C) = δ − 1 for every
c ∈ singC.

Proof of Lemma 5.2: The dual curve Č is the set of points in P2 belonging
to < δ lines of the web. It is therefore clear that f−1Č ⊂ Č ∪ |Rf |. In

fact, we have f−1Č ⊂ Č ∪ |Rσf | since no line in the web is mapped into the

irreducible curve Č.
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Write

f∗Č = aČ +
∑

j

mjXj ,

where a ≥ 0, mj > 1 and Xj are irreducible components of |Rσf |. Write

λj = degXj. Then (d− a)δ̌ =
∑
mjλj and

degRσf ≥ max{a− 1, 0}δ̌ +
∑

(mj − 1)λj

≥ max{a− 1, 0}δ̌ +
1

2

∑
mjλj

=
1

2
(2 max{a− 1, 0}δ̌ + (d− a)δ̌) ≥

1

2
(d− 1)δ̌.

Equality holds if and only if a = 1, mj = 2 for all j and |Rσf | =
∑
Xj .

6. The reducible case

We now prove Theorem B. Let Cj be the irreducible components of C
and write δj = degCj . Replacing f by an iterate, we may assume that the

web associated to each Cj is (totally) invariant for f . Write Rf = R
Cj

f +R
σj

f

for any j.
First assume δj > 1 for some j, say j = 1. From the analysis above

we have f(|Rσ1

f |) = Č1. For i > 1, this implies δi = 1 and Rσ1

f = Rσi

f ,

hence also RC1

f = RCi

f . Taking degrees and consulting Section 4 we see
that C1 must be a conic. It has to intersect each line Ci, i > 1, in two
distinct points c1, c2. Then RC1

f = (d− 1)(Dc1 + Dc2). In particular, the
line Ci is unique. Thus C = C1 ∪C2, where C1 is a conic, C2 is a line and
C1∩C2 = {c1, c2}. As f preserves the web WC1 , it comes from a selfmap of
C1 ≃ P1 for which c1 and c2 are totally invariant. Conversely, if g is such
a selfmap, the associated map f : P2 → P2 leaves the lines Dc1 and Dc2
totally invariant. One can then check that f preserves the linear pencil of
lines through Dc1 ∩ Dc2, that is, the web WC1 .

Now suppose all the irreducible components of C are lines. We cannot
have three concurrent lines, as then f would admit a totally invariant line l
such that the restriction of f to l would have three totally invariant points.
We also cannot have four lines, as f then would admit five totally invariant
lines.

If C is a union of two lines, f can be written in suitable coordinates as
a polynomial product map f(x, y) = (p(x), q(y)), where deg p = deg q = d.
If C is a union of three lines, then f(x, y) = (xd, yd).
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Remark 6.1. As the referee points out, one can use known results in web
geometry to directly show that degC ≤ 3 in Theorems A and B. Indeed, it
is known that if (W, 0) and (W ′, 0) are germs of linear webs of degree ≥ 4
on C2 (i.e. the leaves are lines and through a general point passes at least
four leaves) and Φ: (C2, 0) → (C2, 0) is a local biholomorphism mapping
leaves to leaves, then Φ extends to an automorphism of P2 ⊃ C2. If
degC ≥ 4, one can get a contradiction by taking Φ as the germ of f : P2 →
P2 at a generic point. The result above goes back to the Hamburg school
of web geometry: see [BB, Section 42] or [He, Corollaire 2, p. 535] for a
precise modern reference. See also [Pi2] for related results.
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