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ON D
∗-EXTENSION PROPERTY OF THE HARTOGS

DOMAINS

Do Duc Thai and Pascal J. Thomas

Abstract
A complex analytic space is said to have the D∗-extension property
if and only if any holomorphic map from the punctured disk to the
given space extends to a holomorphic map from the whole disk to
the same space. A Hartogs domain H over the base X (a complex
space) is a subset of X × C where all the fibers over X are disks
centered at the origin, possibly of infinite radius. Denote by φ
the function giving the logarithm of the reciprocal of the radius of
the fibers, so that, when X is pseudoconvex, H is pseudoconvex
if and only if φ is plurisubharmonic.
We prove that H has the D∗-extension property if and only if
(i) X itself has the D∗-extension property, (ii) φ takes only fi-
nite values and (iii) φ is plurisubharmonic. This implies the exis-
tence of domains which have the D∗-extension property without
being (Kobayashi) hyperbolic, and simplifies and generalizes the
authors’ previous such example.

1. Introduction

The “big Picard” theorem states that any holomorphic map f from
the punctured unit disc D

∗ into the Riemann sphere P1(C) which omits
three points can be extended to a holomorphic map f : D −→ P1(C).
Kwack [Kw] extended this theorem to a higher dimensional context. If
f is a holomorphic map from D

∗ into a hyperbolic space X such that,
for a suitable sequence of points zk ∈ D

∗ converging to the origin, f(zk)
converges to a point p0 ∈ X, then f extends to a holomorphic map from
D into X.
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The above-mentioned theorem of Kwack has strongly motivated the
study of the extension problem of holomorphic maps through isolated
singularities. At the same time, this result has suggested the study of
the class of complex spaces having the following property.

Definition. Let X be a complex space. We say that X has the D
∗-ex-

tension property (D∗-EP) iff for any holomorphic map f from D
∗ =

{z ∈ C : 0 < |z| < 1} to X, there exists a map f̃ ∈ Hol(D, X) (where
D = {z ∈ C : |z| < 1}) such that f̃ |D∗ = f .

Much attention has been devoted to the D
∗-EP and various

theorems have been obtained by Kwack [Kw], Thai [Th], Thai and
Thomas [Th-Tho], and others, see the monograph [Ko].

The first aim of this note is to prove the following

Theorem 1. Let Xϕ := {(z, w) ∈ X ×C : |w| < e−ϕ(z)} where ϕ : X →
[−∞,+∞) is upper semi continuous.

Then Xϕ has the D
∗-EP iff:

X has the D
∗-EP, ϕ ∈ PSH(X) and ϕ(z) > −∞, ∀ z ∈ X.

Notice that this result admits as a corollary, when X = D and ϕ
is not locally bounded, the existence of a domain in C

2 which has the
D∗-EP without being Kobayashi hyperbolic. We thus simplify the proof
of that result given in [Th-Tho], and generalize somewhat the class of
counter-examples available.

The proof of this result can be carried out by elementary means.
However, use of more powerful theorems makes for shorter proofs and
more general results. We denote by Λd the Hausdorff measure in (real)
dimension d.

Definition. We say that X has the n-PEP (resp. n-PPEP, (n, d)-EP)
iff for any closed set A ⊂ D

n which is polar (resp. pluripolar, resp. of
locally finite Λd measure), for any holomorphic map f from D

n \ A to
X, there exists a map f̃ ∈ Hol(Dn, X) (where D = {z ∈ C : |z| < 1})
such that f̃ |Dn\A = f .

Re-using the notations of Theorem 1, we have, for any n ≥ 1, 2n−2 <
d < 2n− 1:

Theorem 2. Xϕ has the n-PEP (resp. n-PPEP, (n, d)-EP) iff:
X has the n-PEP (resp. n-PPEP, (n, d)-EP), ϕ ∈ PSH(X) and

ϕ(z) > −∞, ∀ z ∈ X.

We would like to thank Ahmed Zeriahi and Nguyen Van Khue for
their helpful suggestions.



On D
∗-Extension Property of the Hartogs Domains 423

2. Proof of Theorem 1

1) Sufficiency:

Let H ∈ Hol(D∗, Xϕ), H = (h1, h2). Since X has the D
∗-EP, h1

extends to a map h̃1, h̃1 : D → X. Let z0 = h̃1(0). We need the following
result on the local growth of (pluri-)subharmonic functions.

Theorem ([Ho1, Corollary 4.4.6, p. 98] or [Ho2, Corollary 4.2.10,
p. 261]). If ϕ ∈ PSH(Ω) \ {−∞}, where Ω is a connected pseudocon-
vex open set, then e−ϕ is locally integrable in a dense open subset G
containing all points z where ϕ(z) > −∞.

In particular, since ϕ(z0) is finite, e−2ϕ ∈ L1
loc in a neighborhood of

z0. But then h2 ∈ L2
loc, which implies that h2 extends holomorphically

across 0, as can easily be deduced from the Laurent series expansion.
Finally, to see that we actually have log |h̃2(0)| < −ϕ(h̃1(0)), we apply

the maximum principle to the subharmonic function log |h̃2|+ϕ(h̃1), as
was done in [Th-Tho].

A direct proof of the extendability of h2 may be given without recourse
to Hörmander’s result.

Since ϕ is u.s.c, there exists r0 > 0, M ∈ R such that ϕ(z) ≤ M ,
∀ z ∈ D(z0, r0). Without loss of generality, suppose M ≤ 0. Therefore
we have

log |h2(ξ)| ≤ −ϕ(h̃1(ξ))(1)

and since ϕ ≤ 0, log+ |h2(ξ)| ≤ −ϕ1(ξ), where ϕ1(ξ) := ϕ(h̃1(ξ)), there-
fore ϕ1 ∈ SH(D,R−).

By the mean value inequality for subharmonic functions, (1) implies:
∀ r ∈ (0, r0),

1
πr2

∫
D(0,r)

log+ |h2(ξ)|dλ2(ξ) ≤ −ϕ1(0) < +∞.

We want to show that this implies that h2 has a removable singularity
at the origin.

Expand h2 as a Laurent series

h2(ξ) =
∑
n∈Z

anξ
n.

Then for r small enough, ∣∣∣∣∣
∑
n>0

anξ
n

∣∣∣∣∣ ≤ e,
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so
log+ |h0(ξ)| ≤ 1 + log+ |h2(ξ)|,

where we set
h0(ξ) :=

∑
n≤0

anξ
n,

and we are reduced to ∀ r > 0

1
πr2

∫
D(0,r)

log+ |h0(ξ)|dλ2(ξ) ≤ C < +∞.

Set f(ξ) := h0(1/ξ). This is now an entire function. Under the change

of variable ψ =
1
ξ
, we get

1
πr2

∫
D(0,r)

log+ |h0(ξ)|dλ2(ξ) =
1
πr2

∫
C\D̄(0,1/r)

log+ |f(ψ)| 1
|ψ|4 dλ2(ψ).

Now log+ |f | ∈ SH(C), so

m(ρ) :=
∫ 2π

0

log+ |f(ρeiθ)| dθ
2π

is an increasing function of ρ.
Passing to polar coodinates, we get that

C ≥ 1
πr2

∫ ∞

1
r

(∫ 2π

0

log+ |f(ρeiθ)|dθ
)

1
ρ3

dρ

=
2
r2

∫ ∞

1
r

m(ρ)
ρ3

dρ

≥ 2
r2

m(1/r)
∫ ∞

1
r

dρ

ρ3
= m

(
1
r

)
.

Therefore m(ρ) is bounded as ρ → ∞. But then, since log+ |f | ∈ SH(C),
it must be bounded above on C, since by the Poisson formula

log+ |f(z0)| ≤
∫ 2π

0

1 −
∣∣∣ z0

ρ

∣∣∣2∣∣∣ z0
ρ − eiθ

∣∣∣2 log+ |f(ρeiθ)| dθ
2π

≤
1 +

∣∣∣ z0
ρ

∣∣∣
1 −

∣∣∣ z0
ρ

∣∣∣m(ρ) ≤ 3C,

for ρ ≥ 2|z0|, so f is constant by Liouville’s theorem.
Therefore h has a removable singularity at 0.
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2) Necessity:

To prove that X has the D
∗-EP, if h ∈ Hol(D∗, X), then the map H

given by H(ξ) := (h(ξ), 0) is holomorphic from D
∗ to Xϕ and must

therefore admit an extension H̃ such that (by continuity) H̃(D) ⊂ X ×
{0} ⊂ Xϕ. Writing H̃ = (h̃, 0), we obtain the required extension of h.

If there exists z0 ∈ X such that ϕ(z0) = −∞ then the complex
line {(z0, w) : w ∈ C} ⊂ Xϕ, so Xϕ does not have the D

∗-EP (take
h(ξ) = (z0, 1/ξ), see [Th]).

There remains to show that ϕ ∈ PSH(X). We first do this for the
case where X is an open set in C

n.

Lemma. Let Ω ⊂ C
n be a domain with the D

∗-EP. Then Ω is pseudo-
convex.

This lemma (which we alluded to in [Th-Tho]) is a consequence of a
theorem of Shiffman [Si] (see also [So-Th]): if for any sequence {fn} ⊂
Hol(D, X), convergence of {fn|D∗} in Hol(D∗, X) implies convergence of
{fn} (“weak disk condition”), then X has the Hartogs extension condi-
tion (which implies pseudoconvexity for open sets in C

n).
But a domain in C

n with the D
∗-EP verifies the weak disk condition

(simply extend the limit mapping and then apply the maximum principle
on all coordinates).

However, there is a direct and elementary proof which avoids the use
of Shiffman’s theorem. For the reader’s convenience, and since some
colleagues of ours seemed to find it nice, we include it here.

Direct Proof of the Lemma: Let Φ be a holomorphic embedding of the
closed unit bidisk D

2
into C

n. Call Hartogs figure the image under Φ of
the set H0 := {|z1| ≤ 1, z2 = 0} ∪ {|z1| = 1, |z2| ≤ 1}. Recall that Ω
is pseudoconvex if and only if for every Hartogs figure contained in Ω,
Φ(D2) is also contained in Ω [Ra].

Therefore, assuming Ω is not pseudoconvex, we obtain the following
situation: there exists a holomorphic embedding Φ such that Ω1 :=
Φ−1(Ω) ∩ D

2 is open, D
2 \ Ω1 �= ∅, and D2 \ Ω1 ∩H0 = ∅.

Let

r2 := inf{|z2| : (z1, z2) ∈ D
2 \ Ω1};

our hypotheses mean that 0 < r2 < 1, and they also imply that the set

K :=
(
D

2 \ Ω1

)
∩

{
|z2| ≤

1 + r2
2

}
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is compact in D
2, and therefore r1 := max(z1,z2)∈K |z1| < 1. Now set

δε(z) := ε|z1|2 − |z2|2.
There exists a point z0 = (z0

1 , z
0
2) so that δε(z0) = maxK δε. For ε small

enough (|ε|r2
1 − ( 1+r2

2 )2 < −r2
2), z

0 ∈ K \{|z2| = 1+r2
2 }, so there exists a

neighborhood V of z0 such that V ∩Ω1 = V \K. It is now enough to find
an analytic disk f with center f(0) ∈ K and f(D(0, r) \ {0}) ⊂ V \K,
for r > 0 small enough. We may in fact pick an affine disk, namely

f(ξ) := (z0
1 + z̄0

2ξ, z
0
2 + εz̄0

1ξ).

Observe that f(C) is a line tangent to the level hypersurface of δε cor-
responding to the value δε(z0), and in fact an elementary calculation
shows that

δε(f(ξ)) = δε(z0) + ε|ξ|2(|z0
2 |2 − ε|z0

1 |2) > δε(z0)

for ε > 0 and small enough (z0
1 and z0

2 do depend on ε, but we have
the condition as soon as r2

2 − εr2
1 > 0), which completes the proof of the

lemma.

We may remark that setting ft(ξ) := f(ξ) + t∇δε(z0), the map Φ ◦
f gives a disk violating the D∗-EP for the Ω which we had assumed
non-pseudoconvex, and the maps Φ ◦ ft provide a refined failure of the
Kontinuitätsatz for Ω (contact with the boundary occurs at one point
exactly).

Together with the above lemma, the following will complete the proof
of necessity.

Claim. If Xϕ has the D
∗-EP, and ϕ /∈ PSH(X) then there exists Ω ⊂

C
2, having the D

∗-EP and Ω not pseudoconvex.

We need the following characterization. Denote by Ha(D) the space
of harmonic functions on the disk.

Fact. ϕ ∈ PSH(X) iff ∀ f ∈ Hol(D, X), ∀u ∈ Ha(D) ∩ C0(D), such that
ϕ ◦ f(eiθ) ≤ u(eiθ) ∀ θ ∈ R, then ϕ ◦ f(0) ≤ u(0).

This follows immediately from the theorem of Fornaess and Nara-
simhan [Fo-Na] which characterizes plurisubharmonic functions on com-
plex spaces as those whose pullback under any analytic disk is subhar-
monic, and the characterization of subharmonicity by the mean value
inequality (see e.g. [Ho1, Theorem 1.6.3, p. 16]).

Now suppose ϕ /∈ PSH(X). Then ∃ f ∈ Hol(D, X), u ∈ Ha(D)∩C0(D),
such that ϕ(f(0)) > u(0), ϕ(f(eiθ)) ≤ u(eiθ), ∀ θ ∈ R.
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Let

Ω := {(z, w) ∈ D × C : (f(z), w) ∈ Xϕ}
= {(z, w) ∈ D × C : |w| < eϕ◦f(z)} =: Dϕ◦f .

Since ϕ ◦ f is not subharmonic, the classical result about Hartogs
domains implies that Ω is not pseudoconvex. The following claim then
completes our proof.

Claim. Ω has the D
∗-EP.

Proof of the Claim: Let h ∈ Hol(D∗,Ω), h(ξ) = (h1(ξ), h2(ξ)).
Now h1(ξ) ∈ D for all ξ, so h1(ξ) extends to h̃1 ∈ Hol(D,D). The

map ξ �→ (f◦h1(ξ), h2(ξ)) is holomorphic from D
∗ to Xϕ by construction,

so it extends to F ∈ Hol(D, Xϕ).
Let F (ξ) = (F1(ξ), F2(ξ)).
F2 provides an extension of h2. It remains to see that h̃ = (h̃1, F2) ∈

Hol(D,Ω), that is, that |f(h̃1(0))| < e−ϕ(F2(0)).
Since |f(h̃1(0))| = limξ→0 |f(h1(ξ))| = limξ→0 |F1(ξ)| = |F1(0)| <

e−ϕ(F2(0)) because F ∈ Hol(D, Xϕ), we are done.

3. Proof of Theorem 2

The direct implication proceeds as in the previous section, noticing
that each of the extension properties we have defined implies the D

∗-EP.
(In the case where n ≥ 2, given a map f ∈ Hol(D∗, X), simply consider
the map F ∈ Hol(Dn \ {z1 = 0}, X) given by F (z1, . . . , zn) := f(z1).)

To prove the converse implication, recall the following result of exten-
sion.

Theorem ([Ha-Po, Theorem 1, (d)]). Suppose A is a closed subset of
an open set Ω ⊂ C

n and that f ∈ Hol(Ω \ A). Let 2 ≤ p < ∞ and p′ be
the conjugate exponent ( 1

p + 1
p′ = 1). If f ∈ Lp

loc(Ω) and Λ2n−p′(A) is
locally finite, then f ∈ Hol(Ω).

Now given d as in the theorem, set p′ := 2n − d and p its conjugate
exponent. Given a map h = (h1, h2) ∈ Hol(Dn \ A,Xϕ), h1 extends to
h̃1 ∈ Hol(Dn, X) by the extension property for X which is included in
the hypothesis, and pϕ ◦ h̃1 is a finite-valued plurisubharmonic function,
so locally integrable, therefore |h2| ≤ e−ϕ◦̃h1 verifies all the hypotheses
of the Harvey-Polking theorem.
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If A is polar, it is a classical fact that Λd(A) = 0 for any d > 2n − 2
[La] and the same is true for pluri-polar sets [Kl].
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