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ON CANONICAL HOMOTOPY OPERATORS FOR ∂̄ IN
FOCK TYPE SPACES IN C

n

Jörgen Boo

Abstract
We show that a certain solution operator for ∂̄ in a space of forms

square integrable against e−|z|2 is canonical, i.e., that it gives the
minimal solution when applied to a ∂̄-closed form, and gives zero
when applied to a form orthogonal to Ker ∂̄.
As an application, we construct a canonical homotopy operator
for i∂∂̄.

0. Introduction

One way to solve ∂̄ equations is to use integral formulas, and well-
known methods have been developed to construct explicit solution oper-
ators. Properties of the solutions can be deduced, studying the integral
kernels of these operators. Even though the well-known methods in a
way seem natural, in some cases the operators obtained are in a certain
sense incompatible with the geometry. To make this statement precise,
first recall that a solution operator K is called canonical if u = Kf is
the minimal solution to ∂̄u = f when f ∈ Ker ∂̄ and Kf = 0 when f is
orthogonal to Ker ∂̄. It turns out, that certain solution operators are not
canonical with respect to the Euclidean metric; the solution operator in
strictly pseudoconvex domains, obtained by Henkin, Skoda and others,
see [H], [S], is not canonical with respect to the Euclidean metric. This
statement has to be interpreted with some care. First we note, that the
operator canonical with respect to the Euclidean metric, the Kohn oper-
ator KK is known (see, e.g., [Ha-P]). The Henkin-Skoda operator yields
boundary values of solutions, and that it not is canonical means that the
boundary values that it produces do not coincide with the boundary
values of the solutions produced by KK.
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In [ABO], we studied canonical solution operators in strictly pseudo-
convex domains. One major result was that, in the special case of the
ball, the Henkin-Skoda operator is canonical with respect to the met-
ric Ω = i (−ρ) ∂∂̄ log (1/− ρ), where −ρ is the distance to the boundary.
This means that the values given by the Henkin-Skoda operator coincide
with the boundary values given by the canonical operator.

There were additional advantages of using the non-Kähler metric Ω
instead of the Euclidean metric, for example the domain of the formal
adjoint operator ∂̄∗ contains all forms that are smooth up to the bound-
ary, contrary to the Euclidean case. This suggests that the Ω metric in
some sense is more natural than the Euclidean metric. (The metric Ω is
also related to the natural metric on the boundary.)

In a general strictly pseudoconvex domain, the Henkin-Skoda operator
is only approximately canonical with respect to Ω in a certain sense,
see [A-Boo].

In this paper, we study a space of forms in all of C
n with growth of in-

finite order. Using a technique described in [A-Be], a solution operator
is obtained. The main result of this paper is that the solution operator
is canonical with respect to the Euclidean metric. As an application, fol-
lowing the lines in [ABO], we construct a canonical homotopy operator
for i∂∂̄.

The paper is organized like this: In Section 1 we construct the so-
lution operator, and in Section 2 the operator is expressed in terms of
the metric, and we can see that the operator is canonical. Finally, in
Section 3, we obtain some simple regularity results and construct a ho-
motopy operator for i∂∂̄.

1. Construction of the operator

In this section, we construct a homotopy operator K for ∂̄. The
operator is essentially well known even in a much more general setting,
see for instance [A-Be], but nevertheless we sketch the construction in
our case.

We start with a general process of constructing homotopy operators.
Let η = ζ − z. Let Q and S be mappings from C

n × C
n to C

n. Define
forms q and s by q =

∑
Qjdηj and s =

∑
Sjdηj . For t ≥ 0 we let

Pt (ζ, z) = Cne
(Q+tS)·η (d (q + ts))n

,
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where C−1
n = (−1)n

n! (2πi)n, and S · η is defined by S · η (ζ, z) =∑
Sj (ζ, z) ηj (ζ, z), and so on. Define the kernel K by

K (ζ, z) =
∫ ∞

t=0

Pt (ζ, z) .

Note that d (q+ts)=dq+tds−s∧dt, so (d (q+ts))n =A−n (dq + tds)n−1∧
s ∧ dt, where A contains no differentials with respect to t. Hence

K (ζ, z) = −Cnn

∫ ∞

0

e(Q+tS)·ηs ∧ (dq + tds)n−1
dt.

Put

Ik (ζ, z)

= Cn

∫ ∞

0

(−1)k+1 n!
(n− k − 1)!

e(Q+tS)·η s ∧ (dq + tds)n−k−1 ∧ (ds)k

(S · η)k
dt

and

Tk (ζ, z) = Cn (−1)k+1 n!
(n− k)!

eQ·η s ∧ (dq)n−k ∧ (ds)k−1

(S · η)k
.

By formally integrating by parts, we see that if 1 ≤ k ≤ n − 1, then
K (ζ, z) = T1 (ζ, z)+ · · ·+Tk (ζ, z)+Ik (ζ, z). If we note that In−1 = Tn,
we get the formula

K (ζ, z) =
n∑

k=1

Tk (ζ, z) .

Change the summation variable and, to let the operator fit into our
situation, choose Q (ζ, z) = −ζ̄ and S (ζ, z) = η̄. Then:

(1.1) K (ζ, z) = Cn

n−1∑
k=0

n!
k!
ez·ζ̄−|ζ|2

×
(
ζ̄ − z̄

)
· (dζ − dz) ∧

(
(dζ − dz) · dζ̄

)k∧
(
(dζ − dz) ·

(
dζ̄ − dz̄

))n−k−1

|ζ − z|2n−2k
.

The kernelK is of total bidegree (n, n− 1). Denote byKq the component
of K which is of bidegree (0, q) in z, and hence (n, n− q − 1) in ζ. We
find Kq by expanding(

dζ ·
(
dζ̄ − dz̄

))n−k−1

=
n−k−1∑

q=0

(
n− k − 1

q

) (
dζ · dζ̄

)n−k−q−1 ∧ (−dζ · dz̄)q
.
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This gives the formula

Kq (ζ, z) = Cn

n−q−1∑
k=0

n!
k!

(
n− k − 1

q

)
(−1)q

ez·ζ̄−|ζ|2

×
(
ζ̄ − z̄

)
· dζ ∧

(
dζ · dζ̄

)n−q−1 ∧ (dζ · dz̄)q

|ζ − z|2n−2k
.

(In this formula, k only occurs in the constant and in the exponent of
the denominator.) Change the definition of K by letting K (ζ, z) =∑n−1

q=0 Kq (ζ, z). This is motivated by the fact that we will integrate K
against (0, q)-forms in ζ; we simply ignore the irrelevant parts of K.

The leading term in K (ζ, z), corresponding to k = 0, equals φ (ζ, z) =
ez·ζ̄−|ζ|2 times the Bochner-Martinelli kernel B (ζ, z), and K (ζ, z) =
φ (ζ, z)B (ζ, z) + K ′ (ζ, z), where the kernel K ′ as well as ∂̄K ′ are inte-
grable. It is well known that ∂̄B (ζ, z) = [∆], where ∆ = {ζ = z} is the
diagonal and [∆] denotes the current of integration over ∆. Thus (since
φ (z, z) = 1 and ∂̄zφ (ζ, z) = 0)

∂̄K (ζ, z) = ∂̄ζφ (ζ, z) ∧B (ζ, z) + ∂̄K ′ (ζ, z) + [∆] .

Let A′ = n (dq + tds)n−1∧s, so that Pt = CnφA−CnφA
′∧dt = a−a′∧dt

(with A = (dq + tds)n as before). Then, since Pt is a closed form,
0 = dPt = da− dζ,za

′ ∧ dt and hence the formula

∂̄K = dK =
∫ ∞

t=0

dζ,za
′dt =

∫ ∞

0

da

= −a|t=0 = −Cnφ (ζ, z) (dq)n = −P0 (ζ, z)

is valid off the diagonal. (Also note that P0 (ζ, z) = Cnφ (ζ, z)
(
∂̄q

)n.)
By this we will have that ∂̄K = [∆] − P0.

LetK and P also denote the operators associated to the kernelsK(ζ, z)
and P0 (ζ, z); Kf (z) =

∫
K (ζ, z) ∧ f (ζ) and similarily for P . Since the

kernel K is a form of total degree 2n− 1, we will have that

∂̄Kf = ∂̄

∫
K (ζ, z)∧f (ζ) =

∫
∂̄K (ζ, z)∧f (ζ)−

∫
K (ζ, z)∧ ∂̄f (ζ)

= ∂̄K.f −K∂̄f = [∆] .f − Pf −K∂̄f = f − Pf −K∂̄f.

Thus we have obtained the homotopy formula

∂̄K +K∂̄ = I − P,(1.2)
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that a priori is valid only for, say, C1-forms with compact support, but
as we will see in Section 2, by completeness (1.2) stays valid for all forms
square integrable against e−|z|2 .

2. Expressing the operator in the metric

Let β = i∂∂̄ |z|2 /2. Denote by 〈·, ·〉 the pointwise Euclidean metric
(for forms) generated by β, and let βk = βk/k!. The Lebesgue volume
form equals the form dV = βn. If f and g are (0, q)-forms, then

〈f, g〉 dV = cqf ∧ ḡ ∧ βn−q,(2.1)

where the constant cq equals 1 if q is even and −i if q is odd. Further,
we have that dζ · dζ̄ = −2iβ.

Let L2
q be the set of all (0, q)-forms with finite norm with respect to

the metric

(f, g) = c

∫
e−|z|2 〈f, g〉 dV,

where c = π−n, which gives the constant function 1 norm 1. Let Kq =
L2

q ∩ Ker ∂̄; in particular K0 = F 2 is the Fock space of entire functions,
square integrable against e|z|

2
.

The operator K can be expressed as inner multiplication by the ker-
nel k (ζ, z) =

∑
q kq (ζ, z), where

kq (ζ, z) =
n−q−1∑

k=0

Cn,q,ke
z·ζ̄

(
ζ̄ − z̄

)
· dζ ∧ (dζ · dz̄)q

|ζ − z|2n−2k

and

Cn,q,k =
Cn

cq+1

n!
k!

(
n− k − 1

q

)
(−1)n−1 2n−q−1in−q−1 (n− q − 1)!

=
(−1)n−1

2q+1πniq+1cq+1

(n− k − 1)! (n− q − 1)!
k! (n− k − q − 1)!q!

,

i.e. Kf (z) =
(
f, k (·, z)

)
. (Note, that the constant Cn,q,k is real.)

Proposition 2.1. The operator K is L2-bounded.

Proof: We have the estimate

|k (ζ, z)| � eRe z·ζ̄

|ζ − z|2n−1
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for the kernel. Use the Cauchy-Schwarz inequality to obtain

‖Kf‖2 =
(∫

e−|z|2 ∣∣(f, k̄)∣∣2 dV (z)
)2

=

(∫ ∣∣∣∣
∫
e−

|ζ−z|2
2 e−Re z·ζ̄e−

|ζ|2
2

〈
f (ζ) , k (ζ, z)

〉
dV (ζ)

∣∣∣∣
2

dV (z)

)2

≤
∫

I1 (z) I2 (z) dV (z) ,

where

I1 (z) =
∫

e−
|ζ−z|2

2

|ζ − z|2n−1 dV (ζ) = C < ∞

and

I2 (z) =
∫

e−
|ζ−z|2

2 |ζ − z|2n−1
e−2 Re z·ζ̄e−|ζ|2

∣∣∣〈f (ζ) , k (ζ, z)
〉∣∣∣2 dV (ζ)

≤
∫

e−
|ζ−z|2

2 |ζ − z|2n−1
e−2 Re z·ζ̄e−|ζ|2 |f (ζ)|2 |k (ζ, z)|2 dV (ζ)

�
∫

e−
|ζ−z|2

2 e−|ζ|2 |f (ζ)|2 1
|ζ − z|2n−1 dV (ζ) .

Hence

‖Kf‖2 �
∫

e−|ζ|2 |f (ζ)|2
∫

e−
|ζ−z|2

2

|ζ − z|2n−1 dV (z) dV (ζ) � ‖f‖2
.

Remark 1. In [A-Boo], we make extensive use of the fact that a certain
homotopy operator is compact. In this situation, however, the opera-
tor K is not compact. This can be seen as follows.

Consider one complex variable. The set of all

fk =
zk

√
k!
dz̄

is an orthonormal set in K1. Let uk = Kfk. Since the functions

uk =
|z|2 − k√

k!
zk−1

also constitute an orthonormal set, we have an example of a bounded
sequence (fk) such that the image sequence (Kfk) has no convergent
subsequence. Hence K is not compact on L2.
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By considering the kernel of the operator P defined in Section 1, P is
easily seen to be the orthogonal projection from L2

0 onto F 2.
Since C

n equipped with the β-metric is a complete manifold, the
smooth, compactly supported forms are dense in the graph norms (see
e.g. [B]). We already know that the homotopy formula (1.2) is valid for
smooth, compactly supported forms, hence the formula is valid for all
forms in Dom ∂̄.

Remark 2. The L2-boundedness of K helps to explain why (1.2) is valid
for all f ∈ Dom ∂̄, in the following way: If f is in the domain of ∂̄, and
in particular f itself is in L2, then the terms f , Pf and K∂̄f all are
in L2. By approximation with smooth, compactly supported forms, we
see that ∂̄Kf is in L2 as well and that (1.2) stays valid in the limit. In
particular, we conclude, that Kf ∈ Dom ∂̄ for all f ∈ Dom ∂̄, and that
∂̄K : Dom ∂̄ → K is a projection.

It is easily checked that k (ζ, z) = ∂ζh (ζ, z), where
h (ζ, z) =

∑n−1
q=0 hq (ζ, z),

hq (ζ, z) =
n−q−1∑

k=0

− Cn,q,k

n− k − 1
ez·ζ̄ (dζ · dz̄)q

|ζ − z|2n−2k−2

for q > 0 and

h0 (ζ, z) =
n−2∑
k=0

− Cn,0,k

n− k − 1
· ez·ζ̄

|ζ − z|2n−2k−2
+ Cn,0,n−1e

z·ζ̄ log |ζ − z|2 .

Since h is hermitean, i.e. hq (z, ζ) = (−1)q
hq (ζ, z), the operator H de-

fined by Hf (z) =
(
f, h (·, z)

)
is self-adjoint. Thus we have seen that

K = H∂̄∗, where ∂̄∗ is the formal adjoint of ∂̄ with respect to (·, ·).
As an immediate consequence, we get that ∂̄K is selfadjoint, and hence
is the orthogonal projection onto K. Thus the homotopy formula (1.2)
gives the orthogonal decomposition L2 = K ⊕K⊥.

Remark 3. By the method in the proof of Proposition 2.1, one can see
that the operator H is bounded on L2.

Remark 4. By the Kähler identities for vector bundles (see for instan-
ce [B]), ∂̄∗ = i [∂, β¬] + ∂ |z|2 ¬ = 1

2 [∂, dz̄ · dz¬] + z̄ · dz¬, where the
brackets denote the commutator and ¬ denotes interior multiplication
with respect to β. When we, as in this context, only let ∂̄∗ act on
(0, q)-forms, this expression reduces to ∂̄∗ = z̄ · dz¬ − 1

2dz̄ · dz¬∂.

We conclude:
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Theorem 2.2. K is the canonical operator with respect to (·, ·).
Proof: If f is orthogonal to Ker ∂̄, then ∂̄∗f = 0, so Kf = 0. If, on
the other hand, ∂̄f = 0, then f = ∂̄Kf , so Kf = K∂̄Kf = Kf −
∂̄KKf , and hence ∂̄K (Kf) = 0. Since ∂̄K is the orthogonal projection
onto the kernel, Kf is orthogonal to the kernel, and hence the minimal
solution.

3. Application to solving i∂∂̄ problems

Note, that the kernel K (ζ, z) from (1.1) almost is a convolution ker-
nel; K (ζ, z) = φ (ζ, z − ζ)A (z − ζ), where φ (ζ, z) = ez·ζ̄ and A (η) is an
(integrable) convolution kernel whose coefficients roughly are η̄k/ |η|∗,
where ∗ denotes an exponent not higher than 2n. By performing an
appropriate change of variables in the integral defining Kf and differ-
entiating under the integral sign, and then substituting back, we see
that Kf has partial derivatives with respect to zk and z̄k if f has, and
furthermore K commutes with the holomorphic derivatives in the sense
that

∂

∂zk
Kf = K

∂f

∂ζk
(3.1)

(where we let the derivative act as a Lie derivative on forms, i.e. so that
it only affects the coefficient functions). As a consequence, we have that
K preserves regularity. By similar arguments, P preserves regularity
and satisfies the same commuting rule (3.1) as K. In particular, the
homotopy formula (1.2) gives a C∞-smooth orthogonal decomposition
of L2 ∩ C∞.

Remark 5. For antiholomorphic derivatives, there is no rule as simple as
(3.1). Instead, we have the formula

∂

∂z̄k
Kf = K

∂f

∂ζ̄k
+ zkKf −K (ζkf) .

However, the main reason for using (3.1) is to prove Proposition 3.1
below. The corresponding commutation rule for ∂̄ would be hard to
prove using the above formula for the antiholomorphic derivatives, and
anyway the rule for ∂̄ is known; it is just the homotopy formula (1.2).

Recall that we restricted the operator K to operate on (0, q)-forms
only. Now we extend K to an operator operating on (p, q)-forms by
demanding that the (p, 0) part should be ignored; more precisely we let
K

(
aI,J̄dζ̄

J ∧ dζI
)

= K
(
aI,J̄dζ̄

J
)
∧ dzI . The homotopy formula (1.2)

and the commutation rule (3.1) still hold for this extendedK. If Φ(ζ, z)=
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∑
I dz

I∧dζ̄I , then the kernel for this extended K is k (ζ, z)∧Φ (ζ, z), and
thus the kernel for the corresponding operator H such that K = H∂̄∗ is
h (ζ, z) ∧ Φ (ζ, z). In particular, H is self-adjoint, which in turn implies
that the operator ∂̄K, acting on (p, q)-forms, is the orthogonal projection
onto the kernel of ∂̄.

The observation above concerning holomorphic derivatives yields the
following proposition.

Proposition 3.1. ∂K = −K∂ and ∂P = P∂.

Proof: If f is a q-form, then ∂f = (−1)q ∑
∂

∂zk
f ∧ dzk. Thus

∂K
(
αdζ̄J ∧ dζI

)
= ∂K

(
αdζ̄J

)
∧ dzI

= (−1)|J|−1
∑ ∂

∂zk
K

(
αdζ̄J

)
∧ dzk ∧ dzI

= (−1)|J|−1
∑

K

(
∂α

∂ζk
dζ̄J

)
∧ dzk ∧ dzI

= (−1)|J|−1
K

(∑ ∂α

∂ζk
dζ̄J ∧ dζk ∧ dζI

)

= −K
(
∂

(
αdζ̄J ∧ dζI

))
.

That proves the statement for K, and by using (1.2) twice we get that

∂Pf = ∂
(
f −K∂̄f

)
= ∂f +K∂∂̄f = ∂f −K∂̄∂f = P∂f,

which proves the statement for P .

Remark 6. This proposition and the homotopy formula (1.2) gives the
corresponding homotopy formula dK +Kd = I − P for d.

In addition, we define operators K̄ and P̄ by K̄f = Kf̄ and anal-
ogously for P̄ . The operator K̄ obviously takes (p+ 1, q)-forms into
(p, q)-forms. Note that the operator KK̄ solves the ∂∂̄ equation: If f is
a d-closed (q, q)-form, then f is both ∂- and ∂̄-closed. Hence v = K̄f
satisfies ∂v = f and (by Proposition 3.1) ∂̄v = 0. Let u = Kv. Then
∂̄u = v, hence ∂∂̄KK̄f = ∂∂̄u = ∂v = f . Thus, we can easily find an
operator that solves ∂∂̄ equations. However, to get a homotopy oper-
ator, we need a little extra effort. (Also note, that the solutions were
minimal in each step, but that the resulting solution will not necessarily
be minimal.)
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Definition 1. Define operators M , D and Π acting on smooth (q, q)-
forms by: Let M = i

2

(
K̄K −KK̄

)
, D = 1

2

(
∂K̄∂̄K + ∂̄K∂K̄

)
if q > 0,

and D = PP̄ on functions. Finally, let Π = ∂̄K + ∂K̄ −D if q > 0 and
Π = P + P̄ −D on functions.

Note that M lowers the degree by (1, 1), while D and Π preserve
degrees. All three operators map real forms to real forms. Some geo-
metrical interpretations of these operators are listed in the following
theorem.

Theorem 3.2. Consider D, Π and M as operators between L2-spaces
of smooth (q, q)-forms.

1. D is the orthogonal projection onto Ker d.
2. Π is the orthogonal projection onto Ker i∂∂̄.
3. M is a canonical homotopy operator for i∂∂̄ in the sense that

Mi∂∂̄u = u− Πu

and

i∂∂̄Mu = Du.

Proof: We begin with a proof of part 3 concerning M . Since, for q ≥ 2,

KK̄∂∂̄ = −KK̄∂̄∂ = K∂̄K̄∂ =
(
I − ∂̄K

) (
I − ∂K̄

)
= I − ∂K̄ − ∂̄K + ∂̄K∂K̄

and in the same way K̄K∂̄∂ = I − ∂̄K − ∂K̄ + ∂K̄∂̄K, we have that

1
2

(
KK̄∂∂̄ + K̄K∂̄∂

)
= I +

1
2

(
∂̄K∂K̄ + ∂K̄∂̄K

)
−

(
∂K̄ + ∂̄K

)
,

which is the first assertion of 3 for q ≥ 1; the case q = 0 is handled in the
same way. The second assertion of 3 is immediate from the definitions
and Proposition 3.1.

Part 1 follows from the observation that if du = 0, then ∂u = ∂̄u = 0
and hence

−∂∂̄K̄Ku = ∂K̄∂̄Ku = ∂K̄
(
I −K∂̄

)
u = ∂K̄u = u− K̄∂u = u;

in a similar way ∂∂̄KK̄u = u, and the claim that D is a projection is
proved (dD = 0). That it is orthogonal follows because it is self-adjoint.

That Π is a projection onto Ker i∂∂̄ is obvious from part 3, and it
follows immediately that it in fact is the orthogonal projection.
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