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EXISTENCE AND UNIQUENESS OF
PERIODIC SOLUTIONS FOR A NONLINEAR

REACTION-DIFFUSION PROBLEM

Maurizio Badii

Abstract
We consider a class of degenerate reaction-diffusion equations on
a bounded domain with nonlinear flux on the boundary. These
problems arise in the mathematical modelling of flow through
porous media. We prove, under appropriate hypothesis, the exis-
tence and uniqueness of the nonnegative weak periodic solution.
To establish our result, we use the Schauder fixed point theorem
and some regularizing arguments.

1. Introduction

This paper deals with the existence and uniqueness of periodic solu-
tions for the following nonlinear reaction-diffusion problem

ut = div(∇ϕ(u)) + c(x, t, u), in Q := Ω × R(1)

−∂ϕ(u)/∂ν = g(ϕ(u)), on ∂Ω × R(2)

u(x, t+ ω) = u(x, t) and u ≥ 0 in Q(3)

where Ω is a bounded domain in R
N with smooth boundary ∂Ω and

ν denotes the outward unit normal to ∂Ω. Equation (1) models the
filtration of a fluid in a homogenous, isotropic, rigid and unsaturated
porous medium, with the lower order term c(x, t, u) ≥ 0 in Ω× R ×R+,
accounts for a reaction taking place in the medium. We consider the
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following assumptions on the data

(Hϕ)



ϕ∈C([0,∞)) ∩ C2+α

loc ((0,∞)), ϕ(0)=0 and ϕ′(s)>0 for s>0
and there exist r0 > 0, α0 > 0, α1 > 0, 0 ≤ m0 ≤ m1 < 1
such that α0ϕ(r)m0 ≤ ϕ′(r) ≤ α1ϕ(r)m1 , for any r ≥ r0.

(Hc)




i) c ∈ C(Ω × R × R+), c(x, t+ ω, s) = c(t, s),
cu ∈ C(Ω × R × R+\{0})

ii) cu ∈ L∞(Q× [−M,M ]) for every M > 0
iii) c(x, t, r) ≤ C0ϕ(r)β , C0 > 0, β ∈ [0, 1) and r ≥ r0.

(Hg)

{
a) g ∈ C(R+), g ≥ 0, g ∈ C1(R+), |g′(r)| <∞ for all r ≥ 0
b) there exists d0>0 such that g(ϕ(r))≥d0ϕ(r) for all r ≥ r0.

Remark. Hypotesis (Hc) iii) is enough to have the global existence result
for the associated initial-boundary value problem (see [2]).

In problem (1)-(3), u denotes the moisture content in the soil repre-
sented by the domain Ω, therefore we require the condition u ≥ 0. As-
sumption (Hϕ) includes the case of degenerate equation i.e. ϕ′(0) = 0,
thus classical solution doesn’t exist and a concept of weak solution has
to be introduced; the weak solution is continuous but not smooth.

In this paper we prove the existence and uniqueness of the periodic
weak solution to (1)-(3) under the above assumptions.

To prove the existence of periodic weak solutions we use as a prelim-
inear step the Schauder fixed point theorem for the Poincaré map of a
nondegenerate initial-boundary value problem associated to (1)-(3).

To this purpose, we will consider a sequence of approximated nonde-
generate problems which can be solved in a classical sense.

The uniqueness of the periodic weak solution will be established using
an adaptation of the method of [4] and the assumption that g(ϕ(u)) =
d0ϕ(u).

Initial and Dirichlet’s boundary value problems have been studied to
equation (1) by many authors; we quote for example [6], [7], [12] and
[13].

Recently, [2] and [1] have studied the asymptotic behavior and the
blow-up in finite time of solutions for equations of type (1) with various
boundary conditions.



Periodic solutions for a nonlinear problem 297

To the knowledge of the author, it seems that the topic considered in
the present paper has not been discussed previously. We only are aware
of the paper [8] which treats the periodic case for (1)-(3) but for g = 0,
ϕ(u) = um, m > 1 and a zero order term which is linear w.r.t.u.

Our assumptions, allows to consider more general ϕ and zero order
terms.

2. Existence of periodic solutions

Since our equation (1) may degenerates, we make the following defi-
nition of periodic solution

Definition 1. A function u ∈ C(I;L1(Ω))∩L∞(QI) (QI := Ω×(t0, t1))
is said to be a periodic weak solution of (1)-(3) if for any compact in-
terval I = [t0, t1] ∈ R, satisfies −∂ϕ(u(x, t))/∂ν = g(ϕ(u)) on ∂Ω × I,
u(x, t+ ω) = u(x, t), ϕ(u) ∈ L2((t0, t1); H1(Ω)) and

∫ t1

t0

∫
Ω

(uζt + ϕ(u)∆ζ + c(x, t, u)ζ(x, t)) dx dt

=
∫

Ω

(u(x, t1)ζ(x, t1) − u(x, t0)ζ(x, t0) dx

+
∫ t1

t0

∫
∂Ω

g(ϕ(u))ζ(x, t) dx dt

+
∫ t1

t0

∫
∂Ω

ϕ(u)∂ζ(x, t)/∂ν dσ dt,

for any ζ, ζt, ∆ζ ∈ L2(Ω × (t0, t1)), and ∂ζ/∂ν ∈ L2(∂Ω × (t0, t1)).

To show the existence of periodic weak solutions to (1)-(3), we begin
to show the existence of a periodic solution for the approximated problem

uεt = div(∇ϕε(uε)) + cε(x, t, uε), in Q(4)

−∂ϕε(uε)/∂ν = gε(ϕε(uε)), on ∂Ω × (0,∞)(5)

uε(x, t+ ω) = uε(x, t) and uε ≥ 0, in Q(6)

where ϕε, cε and gε are smooth approximations of ϕ, c and g, constructed
by convolutions with mollifiers functions.
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Construct ϕε(s), cε(x, t, s) and gε(s) such that

(Hε)



ϕε ∈ C2+α

loc ([0,∞)), ϕε(0) = 0, ϕε(s) = ϕ(s), for s ≥ ε/2
ϕ′

ε(s) ≥ ε, for all s ≥ 0,
ϕε → ϕ uniformly on compact subsets of R+.

(Hcε
)



cε ∈ C1(QT × R+), cε(x, t, 0) = 0, cε(x, t, s) = c(x, t, s),
for all (x, t) ∈ QT and s ≥ ε/2,
cε → c uniformly on compact subsets of QT × R+.

(Hgε
)
α) gε ∈ C∞(R+), gε → g uniformly on compact subsets of R+,
β) gε(ϕε(r)) ≥ d0ϕε(r) for all r ≥ r0,
γ) gε is uniformly Lipschitz continuous on R+.

We shall show for (4)-(6) the existence of periodic weak solutions as fixed
points for the Poincaré map of a suitable initial-boundary value problem.
Hence, we need construct a closed, convex and nonempty set where to
find these fixed points for the following sequence of nondegenerate initial-
boundary value problems.

uεt = div(∇ϕε(uε)) + cε(x, t, uε), in QT , T ≥ ω(7)

−∂ϕε(uε)/∂ν = gεϕε(uε), on ∂Ω × (0, T )(8)

uε(x, 0) = u0ε(x), on Ω(9)

where (H0ε) u0ε ∈ C2(Ω), such that 0 ≤ u0ε(x) for all x in Ω and
satisfying the compatibility condition

−∂ϕε(u0ε)/∂ν = gε(ϕε(u0ε)) on ∂Ω.

Problem (7)-(9) is an approximation of the following problem

ut = div(∇ϕ(u)) + c(x, t, u), in QT , T ≥ ω(10)

−∂ϕ(u)/∂ν = g(ϕ(u)), on ∂Ω × (0, T )(11)

u(x, 0) = u0(x), on Ω(12)

where {
u0 ∈ L∞(Ω), 0 ≤ u0(x), a.e. in Ω, ‖u0ε‖∞ ≤ ‖u0‖∞ and
u0ε → u0 in L2(Ω) as ε→ 0+.

(13)
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It is well known that there exists a unique classical solution uε of (7)-(9)
(see [9]). Moreover, by a result of [2], the following estimates hold

‖uε‖∞ ≤ C1(‖u0‖∞)(14) ∫ T

0

∫
Ω

|∇ϕε(uε)|2 dx dt ≤ C2(‖u0‖∞), for all ε > 0.(15)

In [2] is showed that the set of stationary solutions of (10)-(12) is bound-
ed in L∞(Ω) i.e. the solutions u(x) of{

div(∇ϕ(u)) + C0ϕ(u)β = 0 in Ω
−∂ϕ(u)/∂ν = g(ϕ(u)) on ∂Ω

(SP)

satisfy ‖u‖∞ = M . It is easy to verify that ε is a subsolution of (SP),
hence u(x) ≥ ε a.e. in Ω.

If u0ε is chosen in such way that besides satisfies

ε ≤ u0ε(x) ≤ u(x) ≤M, a.e. in Ω,

then u(x) is a supersolution and ε is a subsolution to (7)-(9). Thus we
have

ε ≤ uε(x, t) ≤ u(x) ≤M, for a.e. (x, t) ∈ QT .(16)

Applying the continuity result of [5], the following regularity property
for the solutions of (7)-(9) holds.

Proposition 1 ([5]). Since u0ε is continuous on Ω, the sequence {uε}
of the solutions to (7)-(9) is equicontinuous in QT i.e. there exists ω0 :
R+ → R+, ω0(0) = 0, continuous and nondecreasing such that

|uε(x1, t1) − uε(x2, t2)| ≤ ω0(|x1 − x2| + |t1 − t2|1/2)

for any (x1, t1), (x2, t2) ∈ Ω × [0, T ]. The function s → ω0(s), depends
on the essential bound of uε in QT .

If consider the Poincaré map associated to problem (7)-(9) and defined
by

F (u0ε(·)) = uε(·, ω)

where uε is the unique solution of (7)-(9) and introduce the closed, non-
empty, bounded and convex set

Kε := {w ∈ C(Ω) : ε ≤ w(x) ≤M, for any x ∈ Ω}
then, by (16) and Proposition 1, we get
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1. i) F (Kε) ⊂ Kε.
2. ii) F (Kε) is relatively compact in C(Ω).

Remains to prove that

1. iii) F | Kε is continuous.

To this purpose, we show

Proposition 2. If un
0ε, u0ε ∈ Kε and un

0ε → u0ε uniformly in Ω as
n→ ∞, then if un

ε and uε are solutions to (7)-(9) of initial data un
0ε and

u0ε respectively, we have that un
ε (·, t) converges to uε(·, t) uniformly as

n→ ∞, for any t ∈ [0, T ].

Proof: Multiplying (7) by sgn(un
ε − uε) and integrating on Qt one has

∫
Ω

|un
ε (x, t) − uε(x, t)| dx ≤

∫
Ω

|un
0ε(x) − u0ε(x)| dx

+ L

∫ t

0

∫
Ω

|un
ε (x, t) − uε(x, t)| dx dt,

because of the local Lipschitz continuity of cε(x, t, ·) with Lipschitz con-
stant L. Applying Gronwall’s lemma, it is easy to see that un

ε (x, t) con-
verges to uε(x, t) strongly in L1(Ω) as n goes to infinity. Consequently,
for a subsequence, we have that un

ε (x, t) converges to uε(x, t) for a.e.
x ∈ Ω. Since un

ε (x, t) ≤ M , by the Lebesgue theorem, we conclude
that un

ε (x, t) → uε(x, t) in Lp(Ω) for any 1 ≤ p ≤ ∞. Since un
ε (·, t),

uε(·, t) ∈ C(Ω) the uniform convergence holds.
Thus, by the Schauder fixed point theorem it follows that there exists

a fixed point for the Poincaré map, which is a periodic solution to (4)-(6).
From (16) we get, for a subsequence if necessary, that

uε ⇀ u, in L2(Ω).(17)

Since the set of ϕε(uε) is relatively compact in L2(QT ), we have that
uε strongly converges to u in L2(QT ). In fact set vε = ϕ(uε), vε is
bounded in L2(0, T ;H1(Ω)) ⊂ L2(0, T ;W s,2(Ω)), 0 < s < 1. If we
suppose that

ϕ−1 is Hölder continuous of order θ ∈ (0, 1)(18)
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for a classical result (see [3]) one has

‖uε(t)‖1/θ

wθs,2/θ(Ω)
≤ ‖vε(t)‖ws,2(Ω)‖ϕ−1‖1/θ

Hölder

that integrate with respect to t, gives

‖uε‖2/θ

L2/θ(0,T ;wθs,2/θ(Ω))
≤ ‖vε‖L2(0,T ;ws,2(Ω))‖ϕ−1‖2/θ

Hölder.

Moreover, (see [3])

W θs,2/θ(Ω) ⊂ L2(Ω)

with compact injection. Then,

uε → u, in L2(QT ) and a.e. .(19)

From (18) and the Lebesgue theorem one has

ϕε(uε) → ϕ(u), in L2(ΩT )(20)

thus, we get by (15) and (20) that ∇ϕε(uε) ⇀ ∇ϕ(u), in L2(QT ) and

ϕε(uε) ⇀ ϕ(u), in H1(Ω).(21)

Theorem 3.4.5 of [11] states that if (21) holds, then ϕε(uε) converges
to ϕ(u) in L2(0, T ;L1(∂Ω)). Now, by the uniform convergence of gε on
compact set of R+ and its uniformly Lipschitz continuity, it is easy to
see that

gε(ϕε(uε)) → g(ϕ(u)) in L2(0, T ;L2(∂Ω)).

In fact∫ T

0

∫
∂Ω

|gε(ϕε(uε)) − g(ϕ(u))|2 dσ dt

≤ L

(∫ T

0

∫
∂Ω

|ϕε(uε) − ϕ(u)|2 dσ dt

+
∫ T

0

∫
∂Ω

|gε(ϕ(u)) − g(ϕ(u))|2 dσ dt
)

→ 0 as ε→ 0.

Finally, in [2] is proven that u ∈ C([0, T ]; L1(Ω)), ϕ(u)∈L2(0, T ;H1(Ω))
thus, u is a periodic weak solution to (1)-(3).
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3. Uniqueness

To get the uniqueness result, suppose that uε and v are periodic so-
lutions of (4)-(6) with boundary data gε, respectively, g such that

ε ≤ max{uε(x, t), v(x, t)} ≤M

then∫ T

0

∫
Ω

[(uε − v)ζt+(ϕ(uε) − ϕ(v))∆ζ + (c(x, t, uε) − c(x, t, u))ζ] dx dt

=
∫

Ω

(uε(x, T ) − v(x, T ))ζ(x, T ) dx

−
∫

Ω

(uε(x, 0) − v(x, 0))ζ(x, 0) dx

+
∫ T

0

∫
∂Ω

(gε(ϕε(uε)) − g(ϕ(v)))ζ(x, t) dσ dt

+
∫ T

0

∫
∂Ω

(ϕ(uε) − ϕ(v))∂ζ(x, t)/∂ν dσ dt

(22)

for any ζ ∈ L2(QT ) such that ζt, ∆ζ ∈ L2(QT ) and ∂ζ/∂ν ∈ L2(∂Ω ×
(0, T )).

Proceeding as in [4], define

Φε(x, t) :=
∫ 1

0

ϕu(θuε(x, t) + (1 − θ)v(x, t)) dθ

and

Cε(x, t) :=
∫ 1

0

cu(x, t, θuε(x, t) + (1 − θ)v(x, t)) dθ

then

(uε − v)Φε(x, t) = ϕ(uε) − ϕ(v)

and

(uε − v)Cε(x, t) = c(x, t, uε) − c(x, t, v).
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Hence, ∫ T

0

∫
Ω

(uε − v)(ζt + Φε∆ζ + Cεζ) dx dt

=
∫

Ω

(uε(x, T ) − v(x, T ))ζ(x, T ) dx

−
∫

Ω

(uε(x, 0) − v(x, 0))ζ(x, 0) dx

+
∫ T

0

∫
∂Ω

(gε(ϕε(uε)) − g(ϕ(v)))ζ(x, t) dσ dt

+
∫ T

0

∫
∂Ω

(ϕ(uε) − ϕ(v))∂ζ(x, t)/∂ν dσ dt.

(23)

From [7], there exist some positive constants α1, α2 depending only on
ε and M , such that

α1(ε) ≤ Φε(x, t) ≤ α2(M), for any (x, t) ∈ QT

|Cε(x, t)| ≤ L1(M), for any (x, t) ∈ QT .

Let ζε,m denotes the solution of the backward linear parabolic problem
with smooth coefficients

ζε,mt + Φε,m∆ζε,m + Cε,mζε,m = f, in QT(24)

ζε,m(x, T ) = θ(x), in Ω(25)

∂ζε,m(x, t)/∂ν = −d0ζε,m, on ∂Ω × (0, T )(26)

with Φε,m, Cε,m, f ∈ C∞(QT ), Φε,m → Φε, Cε,m → Cε uniformly in QT

as m goes to infinity and θ ∈ C∞
0 (Ω), 0 ≤ θ(x) ≤ 1. Also for Φε,m and

Cε,m holds

α1(ε) ≤ Φε,m(x, t) ≤ α2(M), for any (x, t) ∈ QT

|Cε,m(x, t)| ≤ L1(M), for any (x, t) ∈ QT .

The existence, uniqueness and regularity of ζε,m(x, t) is proven in [8].
The following esimates will be need

Lemma 3 ([7]). Let ζ(x, t) := ζε,m(x, t) be the solution to (24)-(26).
Then, ∫ T

0

∫
Ω

|∇ζ(x, t)|2 dx dt ≤ k1;
∫ T

0

∫
Ω

|∆ζ(x, t)|2 dx dt ≤ k1.(27)
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If f ≤ 0 we have

0 ≤ ζ(x, t) ≤ k2, for any (x, t) ∈ QT ,(28)

where k1 := k1(ε, L1, ‖f‖2), k2 := k2(‖f‖∞).

The main result of this section is the following

Theorem 4. For any f ∈ C∞(QT ) and any θ ∈ C∞
0 (Ω), 0 ≤ θ(x) ≤ 1

we get ∫ T

0

∫
Ω

(uε(x, T ) − v(x, T ))θ(x) dx

−
∫ T

0

∫
Ω

(uε(x, t) − v(x, t))f(x, t) dx dt

≤ k2

∫
Ω

|uε(x, 0) − v(x, 0)| dx

+
∫ T

0

∫
∂Ω

(gε(ϕε(uε)) − g(ϕ(v)))ζ(x, t) dσ dx

− d0

∫ T

0

∫
∂Ω

(ϕ(uε) − ϕ(v))ζ(x, t) dσ dt.

(29)

Proof: Substituting ζ(x, t) in (23) this yields∫ T

0

∫
Ω

(uε(x, t) − v(x, t))(Φε(x, t) − Φε,m(x, t))∆ζ dx dt

+
∫ T

0

∫
Ω

(uε(x, t) − v(x, t))(Cε(x, t) − Cε,m(x, t))ζ(x, t) dx dt

+
∫ T

0

∫
Ω

(uε(x, t) − v(x, t))f(x, t) dx dt

=
∫

Ω

(uε(x, T ) − v(x, T ))θ(x) dx

−
∫

Ω

(uε(x, 0) − v(x, 0))ζ(x, 0) dx

+
∫ T

0

∫
∂Ω

(gε(ϕε(uε)) − g(ϕ(v)))ζ(x, t) dσ dt

− d0

∫ T

0

∫
∂Ω

(ϕ(uε) − ϕ(v))ζ(x, t) dσ dt.

(30)



Periodic solutions for a nonlinear problem 305

By Lemma 3, one concludes∫
Ω

(uε(x, T ) − v(x, T ))θ(x) dx

−
∫ T

0

∫
Ω

(uε(x, t) − v(x, t))f(x, t) dx dt

≤ k2

∫
Ω

|uε(x, 0) − v(x, 0)| dx

+
∫ T

0

∫
∂Ω

(gε(ϕε(uε)) − g(ϕ(v)))ζ(x, t) dσ dt

+ max
QT

|uε(x, t) − v(x, t)|[max
QT

|Φε(x, t) − Φε,m(x, t)|(T |Ω|k1)1/2

+ max
QT

|Cε(x, t) − Cε,m(x, t)|k2T |Ω|]

− d0

∫ T

0

∫
∂Ω

(ϕ(uε) − ϕ(v))ζ(x, t) dσ dt.

(31)

Going to the limit as m→ ∞ in (31), we obtain the desired result.

Corollary 5. Let v and u be any periodic weak solutions of (1)-(3).
Then, we have

∫ T

0

∫
Ω

|u(x, t) − v(x, t)|2 dx dt

≤ k2

∫
Ω

|u(x, 0) − v(x, 0)| dx

+
∫ T

0

∫
∂Ω

(g(ϕ(u)) − g(ϕ(v)))ζ(x, t) dσ dt

− d0

∫ T

0

∫
∂Ω

(ϕ(u) − ϕ(v))ζ(x, t) dσ dt.

(32)

Proof: If in (29) we choose θ(x) = 0 and f = fk ∈ C∞(QT ), fk →
−(uε − v) in L2(QT ) when k goes to infinity, one has
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∫ T

0

∫
Ω

|uε(x, t) − v(x, t)|2 dx dt

≤ k2

∫
Ω

|uε(x, 0) − v(x, 0)| dx

+
∫ T

0

∫
∂Ω

(gε(ϕε(uε)) − g(ϕ(v)))ζ(x, t) dσ dx

− d0

∫ T

0

∫
∂Ω

(ϕ(uε) − ϕ(v))ζ(x, t) dσ dt.

(33)

Letting ε→ 0+, since gε(ϕε(uε)) converges to g(ϕ(u)) in L2(0, T ;L2(∂Ω))
one obtains (32).

Corollary 6. Problem (1)-(3) with g(ϕ(u)) = d0ϕ(u), has a unique pe-
riodic weak solution.

Proof: Choosing T = nω in (32) because of the periodicity of u and v,
we get

n

∫ ω

0

∫
Ω

|u(x, t) − v(x, t)|2 dx dt ≤ k2

∫
Ω

|u(x, 0) − v(x, 0)| dx ≤ k3,

for any n ∈ N, hence u = v.
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