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ON THE EXISTENCE, UNIQUENESS AND
PARAMETRIC DEPENDENCE ON
THE COEFFICIENTS OF THE SOLUTION
PROCESSES IN McSHANE’S STOCHASTIC
INTEGRAL EQUATIONS

ADRIAN CONSTANTIN

Abstract

In this paper we use the Schauder fixed point theorem and meth-
ods of integral inequalities in order to prove a result on the exis-
tence, uniqueness and parametric dependence on the coefficients
of the solution processes in McShane stochastic integral equations

1. Introduction

In this paper we consider the problem of the existence and uniqueness
of the solution processes in the stochastic integral system

(1) @) =o'+ / di(s,2(s)) dzs(s)
j=10

Tt
+ Z/Ohj-k(s,x(s))dzj(s)dzk(s), 0<t<a, i=1,...,n,
J k=1

where the stochastic integrals involving dz; are interpreted as McShane
stochastic integrals.

Some previous results were given by McShane [13] in the special case
in which of is not depending on time and the processes z; are sam-
ple continuous and by Elworthy [8] which does not require these condi-
tions but considers stronger hypotheses on g; and hj. - Recently, Angulo
Ibanez and Gutiérrez Jaimez [1] proved {(under weaker requirements than
in [8] and [13]) an existence and uniqueness theorem for (1) assuming
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that the functions gJ and hz,c satisfy a Lipschitz condition and the pro-
cesses z; satisfy a K —condltlon using an adequate version of the Fomin-
Kolmogorov fixed point theorem. They considered in {2] the problem of
the convergence of the solution processes in McShane’s stochastic inte-
gral equation systems with coefficients depending on a parameter under
similar assumptions to [1]. :

Under the hypothesis of a weaker condition than the Lipschitz condi-
tion on g;- and h; . We prove an existence and uniqueness result for the
solution process of equation (1) applying Shauder’s fixed point theorem
[15] and methods of integro-differential inequalities (see [3], [4], [5], [7],
[9]). Under the same hypothesis we prove also the continuity with re-
spect to the initial condition and we consider the problem of parametric
dependence of the solution processes on the coefficients, generalizing the
results of [2].

2. Preliminaries

Let (R, F, P) be a complete probability space and let {F;, 0 <t < a}
be a family of complete o-subalgebras of F' such that if 0 < s <t <a
then F; C F;.

Let Lo be the space of all random variables y :  — R with finite
Lo-norm | -|| and let LY be the space of all random variables z :  — R"
with finite norm || - ||,

2|17 = leﬂczll2 z=(z1,..,2n) € L.

We say that the real valued second order stochastic process z on [0, a]
satisfies a K-condition if z is adapted to the Fy (i.e. z(t) is F;-measurable
for every t € [0,a]) and

|E[(2(t) — 2(s))"/ F5)| < K|t — ]

a.s. whenever 0 < s <t <a, p=1,2,4. An example of such a process
is a Wiener process with respect to the F;, 0 <{ <a.

Let us define also for each second order process z on [0, a] the norm

z|[l = sup {[lz(®)[|}-
te(0,a)

For the basic elements of the McShane stochastic calculus theory we
refer to McShane [13] and Elworthy [8]. Let us remind only that if f :
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[0,a] — Ly is a measurable process adapted to the Fy and if t — || f(t)||2
is Lebesgue integrable on [0,a], then ([8], [9]), if 21 and z; satisfy a
K-condition, the McShane integrals

/f dzi(s /f ) dz1 (s)dza(s)

exist, and the following estimates are true

/0 “fs)da(s)| < © { / ‘ Hf(S)IIZdS}m

a a 1/2
| rraa@ )] <o { / Ilf(s)llzds}
where C = (2 + 8Ka)'/2.

We will use in this paper the following result

Lemma (Bihari [3]). Let v, h be positive, continuous functions on
0 <t < a, and let ¢ be a nonnegative constant; further let w be a positive
nondecreasing function on [0,00). Then the inequality

v(t) < g+ /Ot h(s)w(v(s))ds, 0<t<a,

tmplies the inequality
t
v(t) <G7! (G(q) +/ h(s)) ds, 0<t<d,
0

where G(u) = [* 45w >0, and a’ is deﬁned so that G(q) + [y h(

w(s)”’

lies within the domain of definition of G™% for0 <t < a'.

For proofs of the lemma, see [3] and [5].

3. Existence and uniqueness of solutions

Let C[0,a] denote the space of all processes z : [0,a] — L which are
continuous and adapted to the F;. A solution to the equation (1) on
[0,a] is a process z € C[0, a] which satsifies (1) on [0, a].

Let us assume that

(H1) the noise processes z;, j = 1,...,r, satisfy on [0, a] a K-condition;
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(Hp) if f is any one of the functions g, A%, : [0,a] x L§ — Lo, i =
1,...,m; j, k=1,...,r, then f(s,z) is continuous in x on L3 for
every s € [0,a), and for any z € C[0, a], the process t — f(t,z(t))
is measurable and Fi-adapted with ¢t — || f(¢, z(¢))||> bounded on
[0, al;

(H3) there exists a continuous, nondecreasing function w : Ry — Ry
with w(0) =0, w(t) > 0 for ¢t > 0 and

. 1ods . tods
lim | —= =00, lim — =00
=0 J, w(s) t—oo J1 w(s)
such that
”f(tax) - f(t7 y)“2 < ’LU(HJ? - y“i)a te [O,CL], T,y € Lg;

(Hy) the initial condition & belongs to C[0, a).

Theorem 1. Let us suppose that the hypotheses (H1)-(H4) are satis-
fied. Then there exists an unique solution of the equation (1) on [0,a)].

Proof: Let us first prove the existence of a solution on [0, a].
We define the operator T : C[0,a] — C[0, a] by

Tz(t) = aft) + Z/o 9 (s, z(s)) dz;(s)
+ Z /Ot hjk(s, z(s)) dz;(s) dzk(s), 0<t<a.

Let M =2n sup ||a(t)||? +4nC%(r + r?)?Ka where

t€(0,a]ll
K = max sup g5, 0117, sup 1R (t, 0)]I?
t€[0,a] te(0,a]
i=1,...,n;j=1,...,7 i=1,...,n; ,k=1,...,r

and let us consider

G:(0,00) — R, G(u)=/u-d—s—
1

w(s)

(the hypotheses guarantee that G is a bijection from (0, 00) to R).
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We also consider the function
m(t) = GTHG(M) + 4nC?(r + r4)%t), 0<t<a.

This function has the property that
¢
m(t) = M + 4nC?(r + 7"2)2/ w(m(s))ds, 0<t<a,
0

being the solution of the differential equation
m'(t) = 4nC?(r + r¥)2w(m(t)), 0<t<a,

with initial condition m(0) = M.
We consider the set

B={zcC[0,q]: ||z(t)]|2 <m(t), 0<t<a}.

This is a closed, bounded and convex subset of the Banach space C[0, a]
and we will show that T(B) C B.

Let x € B. We have then that

H/ g] s,z(s)) dz;(s <C’{/ ||gJ s, z(s ||2ds}

<C{/ (lgi(s,2(5)) — gi(s,0)[| + gt (s, 0)])* d } "

/2

1/2

sC { / (2llg; (s, 2(s)) — g5(s,0)|1* + 2ug;i<s,0)||2>ds}

: 1/2
sc{z/ w(||w(s>||i)ds+2m} Co<t<a
0

and similarly

|[ sttt

1/2

SC’{2/()tw(||x(s)|li)ds+2Kt} , 0<t<a.

We deduce that
ITz(t)lln < vn sup [la(t)|ln
t€(0,a]

1/2

+V2n(r +73)C {/tw(uz(s)ni)ds + Kt} , 0<t<a,
0
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thus (since z € B)
I Tz ()7
¢ 1/2
< { sup v/nfle(t)[ln + v2n(r +1%)C {/ w(m(s))ds + Ka} }
te[0,a] 0

¢
<2n sup |la(t)||? + 4nC?%(r + r?)? / w(m(s)) ds + 4nC%(r + r*)*Ka
t€(0,a] 0

=M +4nC?%(r +r%)? /t w(m(s))ds=m(t), 0<t<a.
0

Hence T'(B) C B.

In a similar way we prove that if z € B, then

IT2(t) — Tao(s)|2 < 4nCr + r2)? / w(m(w)) du+ 2lalt) — a(s)|2

+4nC%(r +r?)%(t—s)K, 0<s<t<a,

from where we conclude that the set T(B) is equicontinuous.
On the other hand we have for z, y € B that

r t 1/2
.’L'i — g ¢ S,x{8)) — A S 2 S
ITz*(t) — Ty* (t)] SC;{/O lg;(s,2(s)) — g5(s,y(s)I*d }

. t 1/2
+0 > {/0 175k (s, 2(s)) —hﬁk(s,y(s))||2ds} L 0<t<a

Jik=1

From (Hs) and the continuity of g%(s, ) and h%; (s, z) in & we deduce by
the Lebesgue convergence theorem that T is continuous. An application
of Schauder’s fixed point theorem enables us to deduce that T has a fixed
point in B, thus equation (1) has a solution on [0, a].

Let us now prove the uniqueness of solutions for equation (1).

Suppose that there exist two different solutions z, y € C[0, a;] of equa-
tion (1) on some interval [0, a;] with 0 < a7 < a. Then there exist points
0 <t < ay with ||z(t) — y(t)|l» > 0. Let b be the lower bound of these
t. We have then that ||z(b) — y(d)ll» = 0, but ||z(¢) — y(¢)||» > O for
b <t < b+ [ with a certain number 8 > 0.
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We have that

r £ 1/2
Io4) = 01 < -0 { [ lato,2(9) - (o017 ds

r t A , 1/2
# 30 of [ Iuto o - Huts o as)
1/2

<@r+or{ [ ulleto) - velas)  ostsa,
thus
Jo(0) = YOI < (Cr + O [ wila(s) -y ds, 05t ar
Since w(0) = 0 and (t) — y(t)|l = O on [0, 6] we obtain that
o) w1 < n(Cr+ 07 [ ullate) ~v()ds, bSe<bep,

thus (denoting v(t) = [[z(¢) — y(¢)||2, b < t < b+ B) for every € > 0 we
have

t

v(t) <e+n(Cr+ Cr2)2/ w(v(s))ds, b<t<b+p.
b

Let Vi(t) = e+ n(Cr + Cr?)? [l w(v(s))ds, b < t < b+ 8. We have
then that

V() = n(Cr + Cr*)?w(v(t)) < n(Cr + Cr®)2w(V.(t)), b<t<b+ 8,
thus (since V,(t) > 0 on [b,b+ 8])

%% <n(Cr+Cr??, b<t<b+p.
An integration yields
G(Ve(t)) = G(Ve(b)) < n(Cr+ Cr¥)2(t —b), b<t<b+p,
thus

G(Ve(t)) < G(Ve(b)) +n(Cr + Cr?)*(t —b) ,
<GE)+n(Cr+Cri)?, b<t<b+p.
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Since 0 < v(t) < V(t) for b < t < b+ B, we deduce that
G(v(t)) < G(e) +n(Cr + Cr*)?B, b<t<b+p,

for every € > 0.
This leads to a contradiction since v(t) > 0 for t € (b,b + ] thus
G(v(t)) is a real number for b <t < b+ S, but lirr%]G(s) = —o00.
£—
Thus equation (1) has an unique solution on [0, a].
This completes the proof of Theorem 1. &

Remark 1. Theorem 1 is not only an existence and uniqueness result,
it provides also a bound for the solution z € C[0, a]:

lz@®)|2 <m(t), 0<t<a.

Remark 2. If the hypothesis (Hs) is satisfied with w(t) = Lt on Ry
(L > 0 being a real constant) we obtain the existence and uniqueness
theorem of Angulo Ibafiez and Gutiérrez Jaimez [1] and as a special case
(when « is not depending on time ¢ and the processes z; are sample con-
tinuous) of this we obtain the existence and uniqueness result of McShane
[13]. Our requirements are weaker in some aspects with respect to those
in [8] (Elworthy requires in [8] Lipschitz conditions on the functions gj-
and hi;).

4. Continuity with respect to the initial condition

We proved in the preceding section that if the conditions (H,)-(Hs)
are satisfied, the stochastic integral equations

r t
1) o) =on®)+ 3 [ sls.a()d50)
j=1"0
Tt
+ E / hjk(s,z(s)) dz;(s)dzx(s), 0<t<a,
jk=1"0
have an unique solution zx € C[0,a] if i, € C[0,a, k > 1.

Theorem 2. If the hypotheses (Hy)-(Hs) are satisfied and if oy, a2 €
CI0,a], then

ey = z2|llz < G"HG(EKnlller — azlll7) + K2)
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where K1 = 1+ 1+ 1r? and Kz = nK1(C?r + C?r?)a.

Proof: In a similar way to the proof of Theorem 1 we can state

EICRE Ik
r ¢ 1/2
o) = a0l + -0 [, 1(6) - (o, ma(s) P s

IA

2

+ Z C{/ 15k (s, z1(s)) — §k(s,xz(8))ll2d5}1/2

7,k=1

IA

(147 +72) 4 llog(t) — o5 (t ||2+ZC2/ (lzs(s) — z2(s)II7) ds

+ 3 [wllm(o) - m@iR)dsp, 0<tsa

J,k=1
thus (taking supremes on [0, a] to the initial condition term)

lz1(t) = 2215 < L+ 7 +72)llloa — |l

n(1+7 +12)(CPr + C%r?) /O w(llz1(s) - 22(s)|2)ds, 0<t<a.

By Bihari’s inequality we obtain that
l21(8) — z2()lI7 < GTHG((L + 7+ r)lllox — az|ll2
+n(l+r+72)(C%r + C*r*t), 0<t<a,
so that
ller = z2lll7 < GTHG(Killlon — cellf?) + K»). =

Theorem 3. If the hypotheses (H)-(Hs) are satisfied, ¢, o, € C[0, ]
and klim [llak — @||n = 0, we have that
—o0

lim |[fzx — 2||[» =0
k— o0

where 1 € C[0,a] is the solution of equation (1) and xy is the solution
of (2.k) with initial condition oy € C[0,a], k > 1.

Proof: By Theorem 2 we have that
|z — /[l < GTHG(Ellews — e|?) + K2)
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thus
G(|llex — 2lil7) < G(Elllow — alll*) + Ko
Since liI%G(u) = —o0 and klim |lax — @||2 = 0 we deduce that
u— —00

lim Gl - 2lI2) = o0

thus lim |||z — z|||ln =0. B
k—o0

Remark 3. It seems (see the Introduction to [2]) that the first who
considered the problem of the continuous dependence of the solution
process with respect to the initial condition in the context of McShane’s
stochastic integrals were Angulo Ibafiez and Gutiérrez Jaimez [2]. Our
hypotheses do require a weaker condition than the Lipschitz condition
on g and h%,. If w(z) = Lz on Ry (L > 0 being a real constant) we
obtain from Theorem 2 that

lllzy = 22|lI7 < Kie 2|lJax — aal|7.

This proves the Lipschitz character of the solutions with respect to the
initial condition in the case of a Lipschitz condition on g; and h%;.

5. Parametric dependence
of the solution processes on the coefficients

In this section we consider the problem of the convergence of the so-
lution processes in McShane’s stochastic integral equation systems with
coefficients depending on a parameter.

Let us consider families of stochastic integral equation systems

(BN a)=ext) + 3 / 937 (5,2(5)) dz5 (s)
j=1"0

+ ) /0 hie (s, 2(s)) dz;(s) dzi(s), 0<t<a,

Jrk=1
4

where for each A € A, A being an open and bounded subset of R™
(m € N), the hypotheses (H; )-(Hy) are satisfied. By Theorem 1 we have
that for every A € A, equation (3.)) has an unique solution z, € C[0, a].

Let Ag be a fixed point in A.
We assume that for every process z € C[0,a] we have

(Hs) At z(t) 5 fro b, 2(2))
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as A — Ag (P expresses the convergence in probability) if f) is any one
of the functions g} , and h%; ,.

By Lemma I and the remark of [2] we have that condition (Hs) implies
that for every z € C[0, a],

Jm [ 16 = aolosalslPds =0

Theorem 4. If the hypotheses (H;)-(Hs) are satisfied, then
)\lin}} [llax = axgllln = 0 implies /\lirrl\l [llza — Zx0llln = 0.
— A0 —A0

Proof: The conditions of the theorem allow to state that

123(8) = 23, (B> < A+ 7 +72) § ok () — ok, ()11

T t
3¢ /0 19 05 25(8)) — g 2y (5, 2o ()| ds
j=1

e / 1B (5, 25()) — B ng (5, 220 (8))] ds

7,k=1

< (474 160 - af, (O]
+2ZC2/ 1957(5,2()) = g (5,220 ()7 s
+ 2202 [ 1555230060 g 5,0 (7 s

2y ¢ / B (5, 2()) — B 2 (5, 22 (5)) 12 ds

7,k=1

+2 Z 02/ 1Rk, (8, 20 (s)) = h;k,,\o(57x/\o(5))||2d8} , 0<t<aq,

7,k=1
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since if fx is any one of the functions g? , A, ;5 We have
y k)

/0 1205, 22()) = Fo (5, 22 (5)) |12 ds
S/O (1Fr (s, 22 (8)) = Fa(8, Zag (SN 152 (8, Zao (8)) — Fro (8, Zao ())1)? ds
< [ @605~ r(5, 27 D21 5,220 (5) =l 2o D)

for0<t<a.

We denote by J§ ,(t), J3 ,(t), J5 5(t) and J§,(t), 0 < t < a, the last
four terms in the last member of the previous inequalities.
The hypothesis (Hs) enables us to state that

Io4(0) -2, O < (7477 {1a3(0) — a4, OIF + T30+ a0
12+ 7707 [ wllers) —or@IR) dsf, 0<t<a

Denoting

Mi(A) = (1+r+77) {IIIO!A —axlllz + D T3 a(a) + ZJE,A(G)}

=1
My =2n(1 + 7+ r?)(r +r*)C?
we see that by the hypothesis (Hs) we have
n . .
lim » (J3(a) + Jix(a)) =0

Ao A
_)oi=1

and so, since /\lini [|laa — axoll|2 = 0, we deduce that lim M;()\) = 0.
—A0

A— Ao

On the other hand, we have that

l2a(6) 220 (D2 < My(A)+ My / w(llza(s)—2xo($)2)ds, 0 <t<a.

Applying Bihari’s inequality, we obtain

lz7(t) = 2ao )7 < GTHG(M1(N) + Mat), 0<t<a,
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thus
llza — 2, ll12 < G™HG(ML(N) + Mza).

Since )\ling\l M1()) = 0 we deduce in a similar way to the proof of
—AQ

Theorem 3 that lim [lzx — 22 l||2 = 0. B
—A0

Remark 4. The problem of the parametric dependence of the solution
processes on the coefficients was studied in [2], in the case of a Lipschitz
condition on the functions g§ and hj.
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