DUAL DIMENSION OF MODULES OVER NORMALIZING EXTENSIONS

Ahmad Shamsuddin

1	hetroct	
Δ	hetroet	

Let $S = \sum_{i=1}^n Ra_i$ be a finite normalizing extension of R and suppose that $_SM$ is a left S-module. Denote by $\mathrm{crk}(A)$ the dual Goldie dimension of the module A. We show that $\mathrm{crk}(_RM) \leq n \cdot \mathrm{crk}(_SM)$ if either $_SM$ is artinian or the group homomorphism $M \to a_iM$ given by $x \mapsto a_ix$ is an isomorphism.

- 1. Let R be a ring and let M be a left R-module. The Goldie dimension of M, defined as the cardinality of a maximal independent family of submodules of M, is denoted by $\operatorname{rk}(M)$. A family A_1,\ldots,A_n of proper submodules of M is said to be coindependent if for each index $i, 1 \leq i \leq n, A_i + \bigcap_{j \neq i} A_j = M$. A family $(A_i)_{i \in I}$ of submodules of M is said to be coindependent if each of its finite subfamilies is coindependent. The module M is said to be hollow if $M \neq 0$ and if every proper submodule of M is superfluous in M. Every family of submodules of M contains a maximal coindependent subfamily. The cardinality of a maximal coindependent family of submodules of M, denoted by $\operatorname{crk}(M)$, is called the dual Goldie dimension of M. We shall need the following results, which can be found in [2], [3], [6].
 - 1.1. If N is a proper submodule of M and if crk is finite then there exists a finite family of submodules $(A_i)_{i\in I}$ of M such that $\{N\} \cup \{A_i: i\in I\}$ is coindependent, M/A_i is hollow for each $i\in I$, and $N\cap\bigcap_{i\in I}A_i$ is superfluous in M.
 - 1.2. $\operatorname{crk}(M_1 \oplus M_2) = \operatorname{crk}(M_1) + \operatorname{crk}(M_2)$ for any modules M_1 and M_2 .
 - 1.3. If N is a submodule of M then

$$\operatorname{crk}(M/N) \le \operatorname{crk}(M) \le \operatorname{crk}(M/N) + \operatorname{crk}(N),$$

This work was done while I was spending my sabbatical year at Rutgers University. I would like to thank the Mathematics Department at Rutgers, especially Professor Carl Faith, for their hospitality.

and, when $\operatorname{crk}(M)$ is finite, $\operatorname{crk}(M/N) = \operatorname{crk}(M)$ if and only if N is superfluous in M.

1.4. It follows from 1.3 and the exact sequence

$$0 \to M/(N_1 \cap N_2) \to (M/N_1) \oplus (M/N_2) \to M/(N_1 + N_2) \to 0$$

for submodules N_1 and N_2 of M that if crk(M) is finite then

$$\operatorname{crk}(M) - \operatorname{crk}(M/(N_1 + N_2)) \le \sum_{i=1}^{2} (\operatorname{crk}(M) - \operatorname{crk}(M/N_i)).$$

Let now $R \subset S$ be a finite normalizing extension, write $S = \sum_{i=1}^{n} Ra_i$ where $a_iR = Ra_i$ for each $i, 1 \leq i \leq n$, and let $_sM$ be a left S-module. We fix this notation throughout this article. It was shown in Bit-David and Robson [1] that

$$\operatorname{rk}(_{s}M) \leq \operatorname{rk}(_{R}M) \leq n \cdot \operatorname{rk}(_{s}M).$$

Since the proof of the second inequality appeals to Zorn's lemma, it is not clear that a formal dual of this result holds true. The purpose of this note is to show that under certain conditions, the inequality

$$\operatorname{crk}(_{R}M) \le n \cdot \operatorname{crk}(_{S}M)$$

is valid.

2. If $a \in S$ is a normal element of S, that is, if Ra = aR, then for a submodule N of ${}_RM$, aN is a submodule of ${}_RM$. The map $K \mapsto a^{-1}K \cap N = \{x \in N \mid ax \in K\}$ is a one-to-one function that takes a family of coindependent submodules of ${}_R(aN)$ into a family of coindependent submodules of ${}_RN$, so $\operatorname{crk}(aN) \leq \operatorname{crk}(N)$. If aM = M and a is not a zero divisor on M then the map $K/N \mapsto aK/aN$ becomes a one-to-one function that takes a coindependent family of R-submodules of M/N to a coindependent family of submodules of M/aN. It follows that in this case, $\operatorname{crk}(M/aN) \geq \operatorname{crk}(M/N)$. We shall find it necessary to introduce the set N of all submodules ${}_RN$ of ${}_RM$ such that SN = M.

Lemma 2.1. If N_1, \ldots, N_k is a coindependent family of submodules of RM such that $SN_i \neq M$ for $i = 1, \ldots, k$ then SN_1, \ldots, SN_k is a coindependent family of submodules of SM.

Proof: This follows from the observation that $SN_i + \bigcap_{j \neq i} SN_j \supseteq S(N_i + \bigcap_{j \neq i} N_j)$.

Proposition 2.2. If N is a minimal member of N then

$$\operatorname{crk}(_R N) \le \operatorname{crk}(_S M) \le \operatorname{crk}(_R M) \le n \cdot \operatorname{crk}(_R N) \le n \cdot \operatorname{crk}(_S M).$$

In particular, (*) is true when either of the modules $_RM$ or $_SM$ is artinian.

Proof: The first inequality follows from Lemma 2.1 and the minimality of N. Since M is the homomorphic image of $\bigoplus_{i=1}^{n} a_i N$, we deduce from 1.3 and the remarks preceding Lemma 2.1 that $\operatorname{crk}_R M \leq n \cdot \operatorname{crk}_R N$. Note that by Lemanoire [4], RM is artinian if and only RM is artinian.

Corollary 2.3. If $_SM$ is a module such that $_RM$ has a submodule N with $S \otimes_R N \cong {}_S(SN)$ then $\operatorname{crk}({}_RN) \leq \operatorname{crk}({}_SM)$. In particular, we have

- (i) $\operatorname{crk}(_R R) \leq \operatorname{crk}(_S S);$
- (ii) if $S \otimes_R M \cong {}_S M$ then $\operatorname{crk}({}_R M) = \operatorname{crk}({}_S M)$.

Proof: If K is a submodule of ${}_RN$ then the hypothesis implies that $S \otimes_R (N/K) \cong SN/SK$. It follows from Shamsuddin [5] that $SK \neq M$ if $K \neq N$. Lemma 2.1 now gives the inequality $\operatorname{crk}({}_RN) \leq \operatorname{crk}({}_SM)$. Observe that $S \otimes_R R \cong {}_SS$ and we always have $\operatorname{crk}({}_SM) \leq \operatorname{crk}({}_RM)$, so the last two statements follow. ■

Proposition 2.4. Suppose that for each $i, 1 \le i \le n$ the group homomorphism $M \to a_i M$ given by $x \mapsto a_i x$ is an isomorphism. Then

$$\operatorname{crk}(_{S}M) \le \operatorname{crk}(_{R}M) \le n \cdot \operatorname{crk}(_{S}M).$$

Proof: We show first that if $\operatorname{crk}(sM)$ is finite then so is $\operatorname{crk}(RM)$. By induction on the integer $k, 1 \leq k \leq n$, we show that if RM has an infinite coindependent family of submodules then there exists an infinite coindependent family $(M_i)_{i\in\mathbb{N}}$ of submodules of RM such that the family $(\bigcap_{j=1}^k a_j^{-1} M_i)_{i\in\mathbb{N}}$ is coindependent. We may assume that $a_1 = 1$, so the base case of the induction is clear. Let $1 \leq k < n$ and assume that $(\bigcap_{j=1}^k a_j^{-1} M_i = T_i)_{i\in\mathbb{N}}$ is coindependent. Put $a = a_{k+1}$ and observe that $(a^{-1}M_i)_{i\in\mathbb{N}}$ is coindependent. If $a(\bigcap_{i=r}^\infty T_i) + \bigcap_{i=r}^\infty M_i = M$ for some $r \in \mathbb{N}$ then the family $(T_i \cap a^{-1}M_i)_{i\geq r}$ is coindependent and we are then done. Otherwise, \mathbb{N} partitions into disjoint non-empty finite subsets A_i such that for each $j \in \mathbb{N}$, $N_j = a(\bigcap_{i\in A_j} T_i) + \bigcap_{i\in A_j} M_i$ is a proper submodule of M and so the family $(N_j)_{j\in\mathbb{N}}$ is coindependent. But $\bigcap_{i\in A_j} T_i \subseteq \bigcap_{i=1}^{k+1} a_i^{-1} N_j$ and because $(\bigcap_{i\in A_j} T_i)_{i\in\mathbb{N}}$ is coindependent, we conclude that $(\bigcap_{i=1}^{k+1} a_i^{-1} N_j)_{j\in\mathbb{N}}$ is also coindependent. Since

the submodules $\bigcap_{i=1}^{n} a_i^{-1} M_j$ are actually S-submodules of SM, we deduce that SM has infinite dual Goldie dimension.

Next we show that

$$\operatorname{crk}(_R M) \le n \cdot \operatorname{crk}(_S M).$$

It is possible to choose a member $N \in \mathcal{N}$ such that $\operatorname{crk}(M/N)$ is as large as possible. By 1.1, there exists a family H_1,\ldots,H_r of submodules of M such that N,H_1,\ldots,H_r is coindependent, $N\cap H_1\cap\cdots\cap H_r$ is superfluous in ${}_RM$ and each M/H_i is hollow. Since $M/(N\cap H_i)\cong M/N\oplus M/H_i$, we have $\operatorname{crk}(M/(N\cap H_i))>\operatorname{crk}(M/N)$, hence $S(N\cap H_i)\neq (N\cap H_i)$. Lemma 2.1 now implies that $r\leq\operatorname{crk}(_SM)$. It follows from 1.1 and 1.3 that $\operatorname{crk}(_RM)=\operatorname{crk}(_R(M/N))+r$, so $\operatorname{crk}(_RM)-\operatorname{crk}(_R(M/N))\leq\operatorname{crk}(_SM)$. Using 1.4 and the observation that $\operatorname{crk}(M/a_iN)\geq\operatorname{crk}(M/N)$ we now conclude that

$$\operatorname{crk}(_R M) \le \sum_{i=1}^n \left(\operatorname{crk}(M) - \operatorname{crk}(M/(a_i N)) \right) \le n \cdot \operatorname{crk}(_S M). \quad \blacksquare$$

References

- 1. J. BIT-DAVID AND J. C. ROBSON, "Title book?," Lecture Notes in Mathematics 825, Springer-Verlag, Berlin, New York, pp. 1–5.
- 2. P. Grzeszczuck and E. R. Puczylowski, On Goldie and dual Goldie dimensions, J. Pure and Appl. Alg. 31 (1984), 47–54.
- 3. A. Hanna and A. Shamsuddin, Duality in the category of modules. Applications, *Algebra Berichte* **49** (1984).
- 4. B. Lemanoire, Dimension de Krull et codéviation. Application au théoreme d'Eakin, *Communications in Algebra* 6 (1978), 1647–1665.
- 5. A. Shamsuddin, Finite normalizing extensions, *Jour. Alg.* **151** (1992), 218–220.
- 6. K. Varadarajan, Dual Goldie dimension, Comm. Alg. 7 (1979), 565–610.

Department of Mathematics American University of Beirut Beirut LIBANO