ON MUCKENHOUPT AND SAWYER CONDITIONS FOR MAXIMAL OPERATORS

Y. RAKOTONDRATSIMBA

Abstract

Let $M_s(0 \le s < n)$ be the maximal operator

$$(M_sf)(x)=\sup\left\{|Q|^{\left[\frac{s}{n}-1\right]}\|f\mathbf{1}_Q\|_{L^1(dy)};\,Q\text{ a cube with }Q\ni x\right\},$$

and u(x) and v(x) be weight functions on \mathbb{R}^n . For $1 and <math>[p^{-1} - q^{-1}] \le (s/n)$, we prove the equivalence of the Sawyer condition

$$\|(M_s v^{-1/(p-1)} \mathbf{1}_Q) \mathbf{1}_Q\|_{L^q_u} \leq S \|\mathbf{1}_Q\|_{L^p_{u^{-1/(p-1)}}} \text{ for all cubes } Q$$

to the Muckenhoupt condition

$$|Q|^{\frac{s}{n}+\frac{1}{p}-\frac{1}{p}}\left(\frac{1}{|Q|}\int_{Q}u\right)^{1/q}\left(\frac{1}{|Q|}\int_{Q}v^{-1/(p-1)}\right)^{1-\frac{1}{p}}\leq A \text{ for all cubes } Q$$

whenever the measure $d\sigma = v^{-1/(p-1)} dx$ satisfies

$$\begin{split} \frac{|Q'|_{\sigma}}{|Q|_{\sigma}} &\leq C \left(\frac{|Q'|}{|Q|}\right)^{\nu} \text{ for all cubes } Q, \, Q' \\ & \text{with } Q' \subset Q \text{ and } 1 - (s/n) \leq \nu. \end{split}$$

This growth condition is weaker than the A_{∞} condition usually used to obtain such an equivalence.

0. Introduction

Let u, v weight functions on $\mathbb{R}^n, n \geq 1$ (i.e. nonnegative locally integrable functions). The Hardy-Littlewood maximal operator is given by

$$(Mf)(x) = \sup \{|Q|^{-1} ||f \mathbf{1}_Q||_{L^1(dy)}; Q \text{ a cube with } Q \ni x\}.$$

Throughout this paper Q will denote a cube with sides parallel to the co-ordinate planes. It is fundamental in analysis to characterize the pairs of nonnegative weights (u, v) for which

(1)
$$||Mf||_{L^p_u} \le C||f||_{L^p_v}$$
 for all functions $f(1 0)$;

here $||g||_{L^r_w}$ denotes $\left(\int_{\mathbb{R}^n} |g|^r w \, dx\right)^{1/r}$, and dx the Lebesgue measure on \mathbb{R}^n . Muckenhoupt [Mu] showed that inequality (1) for u = v holds if and only if

$$\left(\frac{1}{|Q|}\int_Q v\right)^{1/p} \left(\frac{1}{|Q|}\int_Q v^{-1/(p-1)}\right)^{1-\frac{1}{p}} \le A \text{ for all cubes } Q.$$

We write $v \in A_p$. This condition can be viewed as a particular case of $(u, v) \in A(p)$, i.e.

$$\left(\frac{1}{|Q|}\int_{Q}u\right)^{1/p}\left(\frac{1}{|Q|}\int_{Q}v^{-1/(p-1)}\right)^{1-\frac{1}{p}}\leq A \text{ for all cubes } Q.$$

It is clear that $(u, v) \in A(p)$ is a necessary condition for (1), but in general it is not a sufficient condition (see [Mu] for a countrexample). A special case of a Sawyer's result [Sa²] shows that (1) is in fact equivalent to $(u, v) \in S(p)$, i.e.

$$\|(Mv^{-1/(p-1)}\mathbf{1}_Q)\mathbf{1}_Q\|_{L^p_u} \leq S\|\mathbf{1}_Q\|_{L^p_{u^{-1/(p-1)}}} < \infty \text{ for all cubes } Q.$$

However for u = v, it is not obvious that $(v, v) \in A(p)$ implies $(v, v) \in S(p)$. This point was solved by Hunt-Kurtz-Neugebauer [**Hu-Ku-Ne**]. More generally the two weight norm inequality

(2)
$$||M_s f||_{L^q} \le c||f||_{L^p} \ 1$$

for the fractional maximal operator

$$(M_sf)(x)=\sup\left\{|Q|^{\left[\frac{s}{n}-1\right]}\|f\mathbf{1}_Q\|_{L^1(dy)};\,Q\text{ a cube with }Q\ni x\right\}$$

was characterized by Sawyer $[\mathbf{Sa}^2]$ by the condition $(u,v) \in S(s,p,q)$, i.e.

$$\|(M_s v^{-1/(p-1)} \mathbf{1}_Q) \mathbf{1}_Q\|_{L^q_u} \leq S \|\mathbf{1}_Q\|_{L^p_{v^{-1/(p-1)}}} < \infty \text{ for all cubes } Q.$$

A necessary condition for (2) is $(u, v) \in A(s, p, q)$, i.e.

$$|Q|^{\frac{s}{n}+\frac{1}{p}-\frac{1}{p}}\left(\frac{1}{|Q|}\int_{Q}u\right)^{1/q}\left(\frac{1}{|Q|}\int_{Q}v^{-1/(p-1)}\right)^{1-\frac{1}{p}}\leq A \text{ for all cubes } Q.$$

Although $(u,v) \in A(s,p,q)$ is not sufficient for (2), it is nevertheless a more easily verifiable condition. So for $d\sigma = v^{-1/(p-1)} dx \in A_{\infty}$ (i.e. $d\sigma \in A_r$ for some r>1) Perez [**Pe**] (see also Sawyer [**Sa**¹]) proved that $(u,v) \in A(s,p,q)$ implies (2).

In this paper we give an analogous result (see Theorem I) for weights v such that $d\sigma \in B_{\nu}$ with $[1-(s/n)] \leq \nu$, i.e.:

$$\frac{|Q'|_{\sigma}}{|Q|_{\sigma}} \leq C \left(\frac{|Q'|}{|Q|}\right)^{\nu} \text{ for all cubes } Q, Q' \text{ with } Q' \subset Q;$$

here $|Q|_{\sigma}$ denotes $\int_{Q} \sigma dx$.

If $d\sigma \in A_{\infty}$ then $d\sigma \in B_{\delta}$ for some $\delta > 0$ i.e.

$$\frac{|E|_{\sigma}}{|Q|_{\sigma}} \leq C \left(\frac{|E|}{|Q|}\right)^{\delta} \text{ for all cubes } Q \text{ and all mesurable sets } E \text{ with } E \subset Q.$$

But, as we will see, there are measures $d\mu$ such that $d\mu \in B_{\delta}$ and $d\mu \notin A_{\infty}$. First it is known [Ga-Fr] that $d\sigma \in A_{\infty}$ implies $d\sigma \in D_{\infty}$ i.e.

$$|2Q|_{\sigma} \leq D|Q|_{\sigma}$$
 for all cubes $Q, D = D(\sigma) > 1$;

2Q is the cube with the same center as Q but with lengths expanded two times. The condition $d\sigma \in D_{\infty}$ is equivalent to $d\sigma \in D_{\varepsilon}$ for some $\varepsilon \geq 1$ (see Proposition VIII below), i.e.

$$|tQ|_{\sigma} \leq Ct^{n\varepsilon}|Q|_{\sigma}$$
 for all cubes Q and all $t \geq 1$.

Also $d\sigma \in D_{\infty}$ implies $d\sigma \in RD_{\nu}$ for some $\nu \in]0,1]$ (see Proposition VIII below), i.e.

$$t^{n\nu}|Q|_{\sigma} \leq C|tQ|_{\sigma}$$
 for all cubes Q and all $t \geq 1$.

The condition RD_{ν} is weaker than the doubling condition D_{∞} (for example if $w(x) = e^{|x|}$ then $w \, dx \in RD_{\nu}$ for some $\nu \in]0,1]$ but $w \, dx \notin D_{\infty}$). Hence if $d\sigma \in A_{\infty}$ then $d\sigma \in D_{\infty} \cap RD_{\nu}$ for some $\nu \in]0,1]$. But we can have $d\sigma \in D_{\infty}$ with $d\sigma \notin A_{\infty}$ (see [Wi] for an example). As we will see below, if $d\sigma \in B_{\nu}$ then $d\sigma \in RD_{\nu}$ and conversely $d\sigma \in D_{\infty} \cap RD_{\nu}$ implies $d\sigma \in B_{\nu}$. The condition $d\sigma \in D_{\infty} \cap RD_{\nu}$ is weaker than $d\sigma \in A_{\infty}$

and it is more verifiable than $d\sigma \in B_{\nu}$. So if $d\sigma \in D_{\infty}$ then $d\sigma \in B_{\nu}$ for ν small enough, while $d\sigma$ does not automatically belong to A_{∞} .

Contrary to the Perez's approach [Pe] (which consists to obtain (2) from A(s,p,q) by exploiting properties of Calderon-Zygmund cubes) our method lies on the same philosophy as the Hunt-Kurtz-Neugebauer [Hu-Ku-Ne] results mentioned above. Using the condition $d\sigma \in B_{\nu}$ we directly derive the condition S(s,p,q) from A(s,p,q). For applications, the nature of our result leads to the following: "Let $d\sigma \in D_{\infty}$. For what reals ε , ν (with $\varepsilon \geq 1$ and $\nu \leq 1$) have we $d\sigma \in D_{\varepsilon}$ and $d\sigma \in RD_{\nu}$? Can we choose ε sufficiently small and ν big?".

In Section 1 we begin to state our main result (see Theorem I). Then we give growth conditions (see Proposition II) which are more useful than those used in our result. In Section 2 with the usual weights $u(x) = |x|^{\beta}$, $v(x) = |x|^{\alpha}$ we recall how to realize the A(s,p,q) condition (see Proposition IV). In order to answer the above questions we reviewed how $A_p \Rightarrow D_{\infty}$ and $A_p \Rightarrow RD_{\nu}$ (see Proposition V), $D_{\infty} \Rightarrow RD_{\nu}$ (see Proposition VIII). By these, we bring out precise values of ε and ν (see Section 4). Proofs of main results are in Section 3.

1. The main result

To include classical maximal functions, we work with the operator

$$(M_{\Phi}f)(x) = \sup \{\Phi(Q)|Q|^{-1} ||f\mathbf{1}_{Q}||_{L^{1}(dy)}; Q \text{ a cube with } Q \ni x\}$$

where Φ is a map defined on the set of cubes, taking its values in $]0,\infty[$ and satisfying the following growth conditions H:

- 1) $\Phi(Q_1) \leq C\Phi(Q_2)$ for all cubes Q_1, Q_2 with $Q_1 \subset Q_2$; $C = C(\Phi) > 0$.
- 2) There are C_1 , $C_2 > 0$, λ , $\eta \in [0, 1]$ such that

$$C_1 t^{n\lambda} \Phi(Q) \leq \Phi(tQ) \leq C_2 t^{n\eta} \Phi(Q)$$
 for all cubes Q and all $t \geq 1$.

When $\Phi(Q) = 1$ we obtain the Hardy-Littlewood maximal operator. The fractional maximal operator $M_s(0 < s < n)$ is given by $\Phi(Q) = |Q|^{s/n}$. Maximal operators connected to the Bessel potential (see [Ke-Sa]) are defined by $\Phi(Q) = \int_0^{|Q|^{1/n}} \varphi(s) ds$; and generally M_{Φ} arises in studies of other potential operators (see [Ch-St-Wh]).

Let 1 and <math>(u, v) be a pairwise of weights. We write $(u, v) \in S(\Phi, p, q)$ if for some constant S > 0

$$\|(M_\Phi v^{-1/(p-1)}\mathbf{1}_Q)\|_{L^q_u} \leq S\|\mathbf{1}_Q\|_{L^p_{v^{-1/(p-1)}}} < \infty \text{ for all cubes } Q.$$

Also we write $(u, v) \in A(\Phi, p, q)$ holds for some A > 0 if

$$\Phi|Q|Q^{\frac{1}{q}-\frac{1}{p}}\left(\frac{1}{|Q|}\int_{Q}u\right)^{1/q}\left(\frac{1}{|Q|}\int_{Q}v^{-1/(p-1)}\right)^{1-\frac{1}{p}}\leq A \text{ for all cubes } Q.$$

In this paper we always adopt the convention $0 \cdot \infty = 0$. From condition $A(\Phi, p, q)$ and the Lebesgue theorem whenever $u \neq 0$, we see that it is necessary to suppose

H3)
$$\lim_{|Q| \to 0} \left(\Phi(Q) |Q|^{\frac{1}{q} - \frac{1}{p}} \right) \le c.$$

For instance H3) is satisfied if $[p^{-1}-q^{-1}] \leq \lambda$. For $\Phi(Q)=1$ H3) implies $q \leq p$, and for $\Phi(Q)=|Q|^{s/n}$ it means $[p^{-1}-q^{-1}] \leq (s/n)$.

Let $\rho > 0$ and $d\sigma = \sigma dx$ be a weight function. As in Section 0, we write $d\sigma \in B_{\rho}$ if there is $B = B(\sigma) > 0$ such that

$$\frac{|Q'|_{\sigma}}{|Q|_{\sigma}} \leq B\left(\frac{|Q'|}{|Q|}\right)^{\rho} \text{ for all cubes } Q, \ Q' \text{ with } Q' \subset Q.$$

Also for a weight function u, then $d\sigma \in B_{\rho}(u)$ when

$$\frac{|Q'|_{\sigma}}{|Q|_{\sigma}} \leq B \left(\frac{|Q'|_{u}}{|Q|_{u}}\right)^{\rho} \text{ for all cubes } Q, \ Q' \text{ with } Q' \subset Q; \ B = B(\sigma, u) > 0.$$

Now we can state our main result:

Theorem I.

Let $1 and let <math>\Phi$ be a function which satisfies H1)-2-3.

- A) If $(u, v) \in S(\Phi, p, q)$ for a constant S > 0, then $(u, v) \in A(\Phi, p, q)$ for the constant A = S.
- B) If $(u, v) \in A(\Phi, p, q)$ for a constant A > 0, then $(u, v) \in S(\Phi, p, q)$ whenever one of the following condition is satisfied:

i)
$$d\sigma = v^{-1/(p-1)} dx \in B_{\nu}$$
 with $1 - \lambda \le \nu$

ii)
$$d\sigma = v^{-1/(p-1)} dx \in B_{(p/q)}(u)$$
.

If B is the constant in the condition on d σ then the constant in $S(\Phi, p, q)$ takes the form $S = ABc(\Phi, n)$ in case of i), and $S = AB^{1/p}c(\Phi, n)$ in case of ii), here $c(\Phi, n) > 0$ depends only on Φ and n.

Proposition II.

- A) If $d\sigma \in B_{\nu}$ for some $\nu \in]0,\infty[$, then $d\sigma \in RD_{\nu}$. Conversely if $d\sigma \in D_{\infty} \cap RD_{\nu}$ then $d\sigma \in B_{\nu}$.
- B) If $d\sigma \in B_{(p/q)}(u) \cap D_{\infty}$, there are $\varepsilon \in [1, \infty[$ and $\nu \in]0, 1]$ such that $d\sigma \in RD_{\nu}$, $du \in D_{\varepsilon}$ and $\nu \neq [1, \infty[$ and $\nu \in]0, 1]$ with $\varepsilon p \leq \nu q$ then $d\sigma \in B_{(p/q)}(u)$.

Consequently, for the case of the fractional maximal operator, we can state

Proposition III.

Let $1 , <math>0 \le s < n$, and $[p^{-1} - q^{-1}] \le (s/n)$. Then $(u, v) \in S(s, p, q)$ is equivalent to $(u, v) \in A(s, p, q)$ if one of the following holds:

- i) $d\sigma = v^{-1/(p-1)} dx \in D_{\infty} \cap RD_{\nu}$ with $1 (s/n) \le \nu$
- ii) $d\sigma = v^{-1/(p-1)} dx \in RD_{\nu}$; $du \in D_{\varepsilon}$ with $\varepsilon p \leq \nu q$.

2. Applications and furthers results

Assume the condition A(s, p, q) holds for a constant A > 0. It is also equivalent to ask

$$|B|^{\frac{s}{n}+\frac{1}{q}-\frac{1}{p}}\left(\frac{1}{|B|}\int_{B}u\right)^{1/q}\left(\frac{1}{|B|}\int_{B}v^{-1/(p-1)}\right)^{1-\frac{1}{p}}\leq A_{1} \text{ for all balls } B$$

with $A_1 = Ac(s, n, p, q)$.

Let B be the ball $B(x_0, R) = \{y \in \mathbb{R}^n; |x - y| < R\}.$

If $|x_0| \leq 2R$ then $B \subset B(0,3R)$ and hence the first member of (3) is majorized by the quantity

$$c(s,n,p,q)R^{s+\frac{n}{q}-\frac{n}{p}}\left(\frac{1}{R^n}\int_{|y|< R}u\right)^{1/q}\left(\frac{1}{R^n}\int_{|y|< R}v^{-1/(p-1)}\right)^{1-\frac{1}{p}}$$

which can be easily computed mainly if u and v are radial functions.

If $2R < |x_0|$ then $(1/2)|x_0| < |y| < (3/2)|x_0|$ for each $y \in B$ and hence the first member of (3) is now majorized by

$$c(s,n,p,q)R^{s+\frac{n}{q}-\frac{n}{p}}\left(\sup_{|y|\sim 2^{j}R}u(y)\right)^{1/q}\left(\sup_{|y|\sim 2^{j}R}v(y)^{-1/(p-1)}\right)^{1-\frac{1}{p}}$$
 where $j\in\mathbb{N}^*$.

Also if each of functions $u, v^{-1/(p-1)}$ satisfies a growth condition as:

$$\left[\sup_{(1/4)R < |x| \le 4R} w(x)\right] \le \frac{c}{R^n} \left(\int_{c_1 R < |y| \le c_2 R} w(y) \, dy \right)$$

and if $[p^{-1} - q^{-1} \le (s/n)$ then condition $(u, v) \in A(s, p, q)$ is equivalent to

$$R^{s+\frac{n}{q}-\frac{n}{p}} \left(\frac{1}{R^n} \int_{|y| < R} u \right)^{1/q} \left(\frac{1}{R^n} \int_{|y| < R} v^{-1/(p-1)} \right)^{1-\frac{1}{p}} \le A_2,$$

$$A_2 = Ac(s, n, p, q).$$

Taking $u(x) = |x|^{\beta}$, $v(x) = |x|^{\alpha}$ we obtain

Proposition IV.

Assume

i)
$$1$$

ii)
$$-n < \alpha < n(p-1);$$

iii)
$$ps - n < \alpha$$
;

iv)
$$\beta = (q/p)(n+\alpha) - qs - n;$$

and define $u(x) = |x|^{\beta}$, $v(x) = |x|^{\alpha}$. Then $(u,v) \in A(s,p,q)$.

The condition ii) is equivalent to $v \in A_p$. Now we recall a known result, yielding D_{ε} or RD_{ν} from the A_p condition.

Proposition V.

A) Let $1 , and <math>w \in A_p$ for a constant A > 0. Then $w \in D_p$ i.e.

$$|tQ|_w \leq Dt^{np}|Q|_w$$
 for all cubes Q and all $t \geq 1$; here $D = A^p$.

B) Let $1 < r < \infty$, and $w \in RH_{r/(r-1)}$ i.e.

$$\left(\frac{1}{|Q|} \int_Q w^{[r/(r-1)]} \right)^{1-\frac{1}{r}} \leq R \left(\frac{1}{|Q|} \int_Q w \right) \text{ for all cubes } Q,$$

$$R = R(w) > 0$$

then $w \in RD_{1/r}$ with the constant R.

If $w \in A_p$ then it is known ([Ga-Fr]) that $w \in RH_{1+\rho}$ for some $\rho > 0$ (which depends on n, p, w) and so $w \in RD_{\nu}$ for some $\nu \in]0,1[$. Proposition V can be merely seen by the use of the Hölder inequality.

Proposition VI.

Let $1 < r < \infty$, $\gamma \in \mathbb{R}$ and $w(x) = |x|^{\gamma}$. If $-n < \min(\gamma, \gamma r)$ then $w \in RH_r$ and so $w \in RD_{1-(1/r)}$.

From Propositions III-IV-VI we get

Proposition VII.

Assume

- i) 1
- ii) $-n < \alpha < s(p-1);$
- iii) $ps n < \alpha$;
- iv) $\beta = (q/p)(n+\alpha) qs n;$

and define $u(x) = |x|^{\beta}$, $v(x) = |x|^{\alpha}$. Then there is c > 0 such that

 $||M_s f||_{L^q} \le c||f||_{L^p}$ for all nonnegative functions f.

Finally we end with the fact that the D_{∞} condition implies D_{ε} or RD_{ν} (for some ε and ν).

Proposition VIII.

A) Let $w \in D_{\infty}$: i.e. $|2Q|_w \leq D|Q|_w$ for all cubes Q, D = D(w) > 1. Then $w \in D_{\varepsilon}$: i.e. $|tQ|_w \leq Dt^{n\varepsilon}|Q|_w$ for all cubes Q and all t > 1, with $\varepsilon = \frac{\ln D}{\ln 2^n}$.

In particular if $2^n \leq D$ then $\varepsilon \geq 1$.

B) Let $w \in D_{\varepsilon}$ with a constant D > 1.

Then $w \in RD_{\nu}$: i.e. $t^{n\nu}|Q|_{w} \leq 2^{n\varepsilon}D|tQ|_{w}$ for all cubes Q and all t > 1, where $\nu = \nu(\varepsilon, D, n) = \frac{1}{\ln 2^{n}} \ln \left[\frac{12^{n\varepsilon}D^{2}}{12^{n\varepsilon}D^{2}-1}\right]$.

In particular if $2 \le 12^{n\varepsilon}D^2$ then $\nu \le 1$.

Let $\theta > 0$, then $\theta \ge \varepsilon$ if and only if $D \le 2^{n\theta}$ and $\theta \le \nu$ if and only if $12^{n\varepsilon}D^2 \le \left[\frac{2^{n\theta}}{2^{n\theta}-1}\right]$. From this proposition we see that if $w\,dx \in D_\infty$ with a doubling constant D = D(w) > 1 then $w \in RD_\nu$ with $\nu = \nu(D,n) = \frac{1}{\ln 2^n} \ln \left[\frac{D^c}{D^c-1}\right]$ where $c = 4 + \frac{\ln 3}{\ln 2}$.

Part A can be easily obtained by induction. The next part was proved by Strömberg and Torchinsky [St-To], but here we include the proof since we need the precise value of ν .

3. Proofs of the main results

For each cube Q_0 we define the local maximal function

$$(M_{\Phi,Q_0}f)(x) = \sup \left\{ \Phi(Q)|Q|^{-1} \|f\mathbf{1}_Q\|_{L^1(dy)}; \ Q \ni x, \ Q \subset Q_0 \right\}.$$

The proof of Theorem I is based on the following lemmas

Lemma 1.

There is $C = C(n, \Phi) > 0$ such that for each cube Q_0 and for each function f locally integrable whose support is contained in Q_0

$$(M_{\Phi,Q_0}f)(x) \le (M_{\Phi}f)(x) \le C(M_{\Phi,Q_0}f)(x)$$
 for all $x \in Q_0$.

Lemma 2.

Suppose $(u,v)A(\Phi,p,q)$ and do satisfying one of i)-ii) as in part B of Theorem 1. Let Q_0 be a cube with $0<|Q_0|_\sigma<\infty$. Then $\sup_{z\in Q_0}(M_{\Phi,Q_0}\mathbf{1}_{Q_0}\sigma)(z)< A\frac{|Q_0|_\sigma^{1/p}}{|Q_0|_u^{1/q}}<\infty$.

Lemma 3.

With the same hypothesis as in Lemma 2, one can find a subcube Q_1 of Q_0 such that $(M_{\Phi,Q_0}\mathbf{1}_{Q_0}\sigma)(z) < 4\left(\frac{\Phi(Q_1)}{|Q_1|}|Q_1|_{\sigma}\right)$ for all $z \in Q_0$.

We postpone the proofs below, and we first show how Theorem I is derived from these lemmas.

Proof of Theorem I:

Since

$$\left(\frac{\Phi(Q_0)}{|Q_0|}|Q_0|_{\sigma}\right)\mathbf{1}_{Q_0}(\cdot) \leq \left(M_{\Phi,Q_0}\mathbf{1}_{Q_0}\sigma\right)(\cdot)\mathbf{1}_{Q_0}(\cdot)$$

it is clear that if $(u, v) \in S(\Phi, p, q)$ for a constant S > 0, then $(u, v) \in A(\Phi, p, q)$ with the constant A = S.

Conversely let $(u,v) \in A(\Phi,p,q)$ for a constant A>0, and let Q_0 be a cube. If $|Q_0|_{\sigma}=0$ then it is trivial to have $(u,v) \in S(\Phi,p,q)$. Also (since $0\cdot \infty=0$) if $|Q_0|_{\sigma}=\infty$ then $(u,v) \in S(\Phi,p,q)$ because in this case $|Q_0|_u=0$. So we can assume $0<|Q_0|_{\sigma}<\infty$. From Lemmas 1 and 3 we first have

$$\begin{split} \|(M_{\Phi}\mathbf{1}_{Q_0}\sigma)\mathbf{1}_{Q_0}\|_{L^q_u} &\leq C\|(M_{\Phi,Q_0}\mathbf{1}_{Q_0}\sigma)\mathbf{1}_{Q_0}\|_{L^q_u} \qquad C = C(n,\Phi) \\ &\leq 4C\left(\frac{\Phi(Q_1)}{|Q_1|}|Q_1|_{\sigma}\right)|Q_0|_u^{1/q}. \end{split}$$

Now suppose $d\sigma = v^{-1/(p-1)} dx \in B_{\nu}$ with $1 - \lambda \leq \nu$. Then we get

$$\begin{split} \|(M_{\Phi}\mathbf{1}_{Q_{0}}\sigma)\mathbf{1}_{Q_{0}}\|_{L_{u}^{q}} &\leq C(\Phi, n) \bigg(\frac{|Q_{1}|}{|Q_{0}|}\bigg)^{\lambda-1} \bigg(\frac{|Q_{1}|_{\sigma}}{|Q_{0}|_{\sigma}}\bigg) \bigg(\frac{\Phi(Q_{0})}{|Q_{0}|}|Q_{0}|_{\sigma}\bigg) |Q_{0}|_{u}^{1/q} \\ &\leq C(\Phi, n) B \left(\frac{|Q_{1}|}{|Q_{0}|}\right)^{\lambda-1+\nu} \bigg(\frac{\Phi(Q_{0})}{|Q_{0}|}|Q_{0}|_{\sigma}\bigg) |Q_{0}|_{u}^{1/q} \\ &\leq C(\Phi, n) B A |Q_{0}|_{\sigma}^{1/p} = C(\Phi, n) B A \|\mathbf{1}_{Q_{0}}\|_{L_{v}^{p}}. \end{split}$$

Now suppose $d\sigma = v^{-1/(p-1)} dx \in B_{(p/q)}(u)$. Then we obtain

$$\begin{split} \|(M_{\Phi}\mathbf{1}_{Q_{0}}\sigma)\mathbf{1}_{Q_{0}}\|_{L_{u}^{q}} &\leq 4C\left(\frac{\Phi(Q_{1})}{|Q_{1}|}|Q_{1}|_{\sigma}\right)|Q_{1}|_{u}^{1/q}\left(\frac{|Q_{0}|_{u}}{|Q_{1}|_{u}}\right)^{1/q} \\ &\leq 4CA\left(\frac{|Q_{1}|_{\sigma}}{|Q_{0}|_{\sigma}}\right)^{1/p}\left(\frac{|Q_{0}|_{u}}{|Q_{1}|_{u}}\right)^{1/q}|Q_{0}|_{\sigma}^{1/p} \\ &\leq 4CAB^{1/p}\|\mathbf{1}_{Q_{0}}\|_{L_{x}^{p}}. \quad \blacksquare \end{split}$$

Proof of Lemma 1:

Let Q_0 be a cube and let f be a function whose support is contained in Q_0 . Firstly it is clear that

$$(M_{\Phi,Q_0}f)(x) \leq (M_{\Phi}f)(x)$$
 for all x .

For the converse we use the growth properties H)1-2 of Φ . Let Q be a cube which contains x, with $x \in Q_0$. We suppose that Q_0 does not contain Q (otherwise there is nothing to prove). We distinguish two cases.

1) For $|Q_0| \le |Q|$:

Let Q_1 be a cube with the same center as Q_0 but with the lengths $3|Q|^{1/n}$. Since $\eta \leq 1$ we first have

$$\begin{split} \frac{\Phi(Q)}{|Q|} &\leq \frac{|Q_0|}{|Q|} \frac{\Phi(Q_1)}{|Q_0|} \\ &\leq C(\Phi, n) \left(\frac{|Q_0|}{|Q|}\right)^{1-\eta} \frac{\Phi(Q_0)}{|Q_0|} \\ &\leq C(\Phi, n) \frac{\Phi(Q_0)}{|Q_0|}. \end{split}$$

It results that

$$\frac{\Phi(Q)}{|Q|} \| (f\mathbf{1}_{Q_0}) \, \mathbf{1}_{Q} \|_{L^1} \le C(\Phi, n) \frac{\Phi(Q_0)}{|Q_0|} \| f\mathbf{1}_{Q_0} \|_{L^1}
< C(\Phi, n) (M_{\Phi, Q_0} f)(x).$$

2) For $|Q| \leq |Q_0|$:

One can find a cube $Q_2 \subset Q_0$ such that $|Q| = |Q_2|$, $Q \cap Q_0 \subset Q_2$ and $Q \subset 3Q_2$. Hence we get

$$\begin{split} \frac{\Phi(Q)}{|Q|} & \| (f\mathbf{1}_{Q_0}) \, \mathbf{1}_Q \|_{L^1} \leq \frac{\Phi(3Q_2)}{|Q_2|} \| f\mathbf{1}_{Q_2} \|_{L^1} \\ & \leq C(\Phi, n) \frac{\Phi(Q_2)}{|Q_2|} \| f\mathbf{1}_{Q_2} \|_{L^1} \\ & \leq C(\Phi, n) (M_{\Phi, Q_0} f)(x). \ \blacksquare \end{split}$$

Proof of Lemma 2:

Let $z \in Q_0$ and Q a subcube of Q_0 such that $Q \ni z$. Using one of hypothesis in part B of Theorem I we have to show

(\$)
$$\left(\frac{\Phi(Q)}{|Q|}|Q|_{\sigma}\right) \le A \frac{|Q_0|_{\sigma}^{1/p}}{|Q_0|_{\eta}^{1/q}}.$$

This implies: $\sup_{z\in Q_0}(M_{\Phi,Q_0}\mathbf{1}_{Q_0}\sigma)(z)<\infty$. And so to obtain (\$) it suffices to consider $\left(\frac{\Phi(Q)}{|Q|}|Q|_{\sigma}\right)|Q_0|_u^{1/q}$ and to estimate this with $A|Q_0|_{\sigma}^{1/p}$ as we have done in the proof of Theorem I.

Proof of Lemma 3:

Since $\sup_{z\in Q_0}(M_{\Phi,Q_0}\mathbf{1}_{Q_0}\sigma)(z)<\infty$ there is one $y\in Q_0$ such that

$$(M_{\Phi,Q_0}\mathbf{1}_{Q_0}\sigma)(x) < 2(M_{\Phi,Q_0}\mathbf{1}_{Q_0}\sigma)(y)$$
 for all $x \in Q_0$.

Again, there is a subcube Q_1 of Q_0 which contains y such that

$$(M_{\Phi,Q_0} \mathbf{1}_{Q_0} \sigma)(y) < 2\left(\frac{|\Phi(Q_1)|}{|Q_1|}|Q_1|_{\sigma}\right)$$

and so

$$\sup_{z\in Q_0}(M_{\Phi,Q_0}\mathbf{1}_{Q_0}\sigma)(z)\leq 4\left(\frac{\Phi(Q_1)}{|Q_1|}|Q_1|_\sigma\right).\quad\blacksquare$$

Proof of Proposition II:

Part A

Let $d\sigma \in B_{\nu}$ for some $\nu \in]0, \infty[$ i.e.

$$\frac{|Q_1|_{\sigma}}{|Q_0|_{\sigma}} \leq B \left(\frac{|Q_1|}{|Q_0|}\right)^{\nu} \text{ for all cubes } Q_0, Q_1 \text{ with } Q_1 \subset Q_0.$$

Let Q be a cube and $t \ge 1$. Taking $Q_1 = Q$ and $Q_0 = tQ$ we obtain

$$t^{n\nu}|Q|_{\sigma} \leq R|tQ|_{\sigma}$$
, where $R = B$

which means $d\sigma \in RD_{\nu}$.

Converserly let $d\sigma \in RD_{\nu}$ for a constant R > 0. Also if $d\sigma \in D_{\infty}$ then for $Q_1 \subset Q_0$ we have

$$\begin{split} |Q_1|_{\sigma} & \leq R \left(\frac{|Q_1|}{|Q_0|}\right)^{\nu} |Q_2|_{\sigma} \\ & \text{where } Q_2 \text{ has the same center as } Q_1 \text{ and } |Q_2| = |Q_0| \\ & \leq \left(\frac{|Q_1|}{|Q_0|}\right)^{\nu} |3Q_0|_{\sigma} \\ & \leq RD \left(\frac{|Q_1|}{|Q_0|}\right)^{\nu} |Q_0|_{\sigma} \end{split}$$

where D depends on the constant which is in the doubling condition for $d\sigma$. So it appears that $d\sigma \in B_{\nu}$ with the constant B = RD.

Part B

Let $d\sigma \in B_{(p/q)}(u)$, i.e.

$$\frac{|Q_1|_{\sigma}}{|Q_0|_{\sigma}} \leq B \left(\frac{|Q_1|_u}{|Q_0|_u}\right)^{p/q} \text{ for all cubes } Q_0, \ Q_1 \text{ with } Q_1 \subset Q_0.$$

Suppose also $d\sigma \in D_{\infty}$. Let Q be a cube and $t \geq 1$. Taking $Q_1 = Q$ and $Q_0 = tQ$ and using the fact that $d\sigma \in D_{\varepsilon'}$ for some $\varepsilon' \geq 1$ (see Proposition VIII) we obtain

$$\frac{1}{t^{n\varepsilon'}}D^{-1} \le \frac{|Q|_{\sigma}}{|tQ|_{\sigma}} \le B\left(\frac{|Q|_{u}}{|tQ|_{u}}\right)^{p/q}$$

that is

$$|tQ|_u \le (DB)^{q/p} t^{n\varepsilon'q/p} |Q|_u$$

which means $du \in D_{\varepsilon}$ with $\varepsilon = \varepsilon'(q/p) \ge 1$. Also since $u dx \in RD_{\nu'}$ for some $\nu' \in]0,1]$ (see Proposition VIII) we get

$$\frac{|Q|_{\sigma}}{|tQ|_{\sigma}} \le B \left(R \frac{1}{t^{n\nu'}} \right)^{p/q}$$

that is

$$t^{n\nu'p/q}|Q|_{\sigma} \leq B(R)^{p/q}|tQ|_{\sigma}$$

which means $d\sigma \in RD_{\nu}$ with $\nu = \nu'(p/q) \le 1$. On other hand we must have for all $t \ge 1$

$$1 \le DB(R)^{p/q} t^{n[\varepsilon' - \nu'(p/q)]}$$

hence $0 \le \varepsilon' - \nu'(p/q)$, or $\nu q \le \varepsilon p$.

Conversely let $d\sigma \in RD_{\nu}$, $du \in D_{\varepsilon}$ for some $\varepsilon \in [1, \infty[$ and $\nu \in]0, 1]$ with $\varepsilon p \leq \nu q$. For all cubes Q_1 , Q_0 with $Q_1 \subset Q_0$ we have

$$\frac{|Q_1|_{\sigma}}{|Q_0|_{\sigma}} \left(\frac{|Q_0|_u}{|Q_1|_u}\right)^{p/q} \le RD \left(\frac{|Q_1|}{|Q_0|}\right)^{\nu-\varepsilon(p/q)} \le RD$$

which implies $d\sigma \in B_{(p/q)}(u)$ for constant $B = (RD)^{(q/p)}$.

4. Proofs of further results

Proof of Proposition IV:

Let R > 0. The condition ii) implies that v and $v^{-1/(p-1)}$ are locally integrable functions and

$$\int_{|y| < R} v^{-1/(p-1)} \, dy = \int_{|y| < R} |y|^{-\alpha/(p-1)} \, dy \sim R^{n - [\alpha/(p-1)]}.$$

From iii) and iv) we have $\beta = (q/p)(n+\alpha) - qs - n > -n$, and so

$$\int_{|y| < R} u \, dy = \int_{|y| < R} |y|^{\beta} \, dy \sim R^{[(n+\alpha)(q/p) - qs]}([(n+\alpha)(q/p) - qs] > 0).$$

Since $[p^{-1} - q^{-1}] \le (s/n)$ we only have to estimate

$$R^{s+\frac{n}{q}-\frac{n}{p}} \left(\frac{1}{R^n} \int_{|y| < R} u \right)^{1/q} \left(\frac{1}{R^n} \int_{|y| < R} v^{-1/(p-1)} \right)^{1-\frac{1}{p}} \text{ (see Section 2)}.$$

Using the two equivalences above this last quantity is equivalent to

$$\begin{split} R^{[s+(n/q)-(n/p)]} (R^{[(n+\alpha)(q/p)-qs-n]})^{1/q} (R^{[-\alpha/(p-1)]})^{1-\frac{1}{p}} &= \\ &= R^{[s+(n/q)-(n/p)+(n/p)+(\alpha/p)-s-(n/q)-(\alpha/p)]} &= 1. \ \blacksquare \end{split}$$

Proof of Proposition VI:

Let $-n < \min(\gamma, \gamma r)$, and let B be the ball $B(x_0, R)$.

1) If $|x_0| \leq 2R$ then $B \subset B(0,3R)$ and $B(0,R) \subset 3B$. Hence

$$\left(\frac{1}{|B|}\int_B w^r\right) \leq \left(\frac{c(n)}{R^n}\int_{|y|<3R} |y|^{\gamma r}\,dy\right) \sim R^{\gamma r}$$

and since $-n < \gamma$ then, by Propositions IV-V, $w dx \in D_{\infty}$ and it follows

$$\begin{split} \left(\frac{1}{|B|} \int_B w\right) &\geq D(\gamma) \left(\frac{1}{|B|} \int_{3B} w\right) \\ &\geq D'(\gamma) \left(\frac{c(n)}{R^n} \int_{|y| < R} |y|^{\gamma} \, dy\right) \sim R^{\gamma}. \end{split}$$

2) If $2R < |x_0|$ then $(1/2)|x_0| < |y| < (3/2)|x_0|$ for each $y \in B$ and it results

$$\left(\frac{1}{|B|}\int_B w^r\right) \sim (2^jR)^{\gamma r} \text{ with } j \in \mathbb{N}^*, \text{ and } \left(\frac{1}{|B|}\int_B w\right) \sim (2^jR)^{\gamma}.$$

In all cases, since $w dx \in D_{\infty}$, we get

$$\left(\frac{1}{|Q|}\int_{Q}w^{r}\right)^{r}\leq D(n,\gamma)\left(\frac{1}{|Q|}\int_{Q}w\right)$$
 for all cubes Q

and hence $w dx \in RH_r$.

Proof of Proposition VII:

Let $\sigma(x) = v^{-1/(p-1)}(x) = |x|^{-[\alpha/(p-1)]}$. Note that $d\sigma \in A_p$ and so $d\sigma \in D_\infty$ (see Proposition V). If $\alpha \leq 0$, then $-n < \gamma = -\alpha/(p-1) < \gamma r$ for all r > 1. Choose r > 1 with $(n/s) \leq r$ then from Proposition VI: $d\sigma \in D_\infty \cap RD_{1-(1/r)}$ with $[1-(s/n)] \leq \nu = [1-(1/r)]$. To obtain the same conclusion for $\alpha > 0$, we choose r > 1 such that $(n/s) \leq r < [n(p-1)/\alpha]$, and so $-n < \gamma r \leq \gamma$.

Finally using Propositions IV-III and the Sawyer theorem [Sa²] then

$$||M_s f||_{L^q_u} \le c||f||_{L^p_v}$$
 for all functions f .

Proof of part B of Proposition VIII:

We need the following lemmas whose proofs will be given below.

Lemma 4.

Let $w dx \in D_{\varepsilon}$ for some $\varepsilon \in [1, \infty[$ and with a constant D = D(w) > 1. Then $\left|\frac{1}{2}Q\right|_{w} \leq 6^{n\varepsilon}D\left|Q\setminus\left(\frac{1}{2}Q\right)\right|_{w}$ for each cube Q.

Lemma 5.

Let $w dx \in D_{\varepsilon}$ for some $\varepsilon \in [1, \infty[$ and with a constant D = D(w) > 1. Then $\left|\frac{1}{2}Q\right|_{w} \leq \beta |Q|_{w}$ for each cube Q, with $\beta = \frac{12^{n\varepsilon}D^{2}-1}{12^{n\varepsilon}D^{2}}$, and so $\beta \in]0,1[$.

The part B can be derived from Lemma 5. Indeed if Q is a cube then

$$|Q|_w \leq \beta^m |2^m Q|_w$$
 for each $m \in \mathbb{N}^*$.

Let t>1. There is $k=k(t)\in\mathbb{N}^*$ such that $2^{k-1}< t\le 2^k$ (so $[(\ln t)/(\ln 2)]\le k$). It results

$$\begin{split} |Q|_w & \leq \beta^k |2^k Q|_w \\ & \leq 2^{n\varepsilon} D\beta^k |tQ|_w \\ & = 2^{n\varepsilon} De^{[(\ln\beta)/\ln2]\ln t} |tQ|_w \\ & \leq 2^{n\varepsilon} De^{[(\ln\beta)/\ln2]\ln t} |tQ|_w \\ & = 2^{n\varepsilon} D \left[\frac{1}{t}\right]^{-(\ln\beta)/\ln2} |tQ|_w \end{split}$$

and

$$t^{n\nu}|Q|_w \le 2^{n\varepsilon}D|tQ|_w \text{ with } \nu = \frac{\ln\frac{1}{\beta}}{\ln 2^n}.$$

If $2 < 12^{n\varepsilon}D^2$ we get

$$(12^{n\varepsilon}D^2 + 2^n) \le (2^{n-1}12^{n\varepsilon}D^2 + 2^{n-1}12^{n\varepsilon}D^2) = 2^n12^{n\varepsilon}D^2$$

or $12^{n\varepsilon}D^2 \leq 2^n(12^{n\varepsilon}D^2-1)$ which implies $\frac{1}{\beta} \leq 2^n$ and so $\nu = \frac{\ln \frac{1}{\beta}}{\ln 2^n} \leq 1$.

Proof of Lemma 4:

In the proof of the Theorem I we have already used the following geometric argument:

"Let Q_1, Q_2 two cubes such that $Q_1 \cap Q_2 \neq \emptyset$ and $|Q_1|^{[1/n]} \leq |Q_2|^{[1/n]}$; then $Q_1 \subset 3Q_2$." Let Q be a cube and Q_0 a subcube of $(Q \setminus (2^{-1}Q))$ with lenghts $(1/4)|Q|^{[1/n]}$ and let $Q_1 = (2^{-1}Q)$. Then $(2^{-1}Q) \cap 2Q_0 \neq \emptyset$ and $|2^{-1}Q|^{[1/n]} \leq |2Q_0|^{[1/n]}$. Using this argument we obtain $(2^{-1}Q) \subset 3(2Q_0) = 6Q_0$ and then

$$\begin{split} \left| \frac{1}{2} Q \right|_{w} &\leq |6Q_{0}|_{w} \\ &\leq 6^{n\varepsilon} D |Q_{0}|_{w} \\ &\leq 6^{n\varepsilon} D \left| Q \backslash \left(\frac{1}{2} Q \right) \right|_{w} . \quad \blacksquare \end{split}$$

Proof of Lemma 5:

Let Q be a cube. By hypothesis

$$2^{-n\varepsilon}|Q|_w \le D\left|\frac{1}{2}Q\right|_w, \qquad D = D(w) > 1.$$

So using Lemma 4 we get

$$\begin{split} 2^{-n\varepsilon}|Q|_w &\leq 6^{n\varepsilon}D^2 \left| Q \backslash \left(\frac{1}{2}Q\right) \right|_w \\ &\leq 6^{n\varepsilon}D^2 \left[|Q|_w - \left|\frac{1}{2}Q\right|_w \right]. \end{split}$$

It results that

$$\left|\frac{1}{2}Q\right|_{w} \leq \beta|Q|_{w}$$

with

$$\beta = \frac{6^{n\varepsilon}D^2 - 2^{-n\varepsilon}}{6^{n\varepsilon}D^2} = \frac{12^{n\varepsilon}D^2 - 1}{12^{n\varepsilon}D^2}, \text{ and so } \beta \in]0,1[. \quad \blacksquare$$

Acknowledgement. I would like to thank the referee for his helpful comments and suggestions.

References

- [Ch-St-Wh] S. CHANILLO, J. O. STRÖMBERG AND R. L. WHEE-DEN, Norm inequalities for potential type operators, *Revista Mat. Iberoamericana* 3, no. 3, 4 (1987), 311–335.
- [Ga-Fr] J. GARCIA-CUERVA AND J. R. DE FRANCIA, "Weighted norm inequalities and related topics," North Holland Math. Studies 116, North Holland, Amsterdam, 1985.
- [Hu-Ku-Ne] R. A. Hunt, D. S. Kurtz and C. J. Neugebauer, A note on the equivalence of A_p and Sawyer's condition for equal weights, Conf. Harmonic Analysis in honor of A. Zygmund, Wadsworth Inc. (1981), 156–158.
- [Ke-Sa] R. Kerman and E. Sawyer, Weighted norm inequalities for potentials with applications to Schrödinger operators, Fourier transforms and Carleson measures, *Ann. Inst. Fourier* **36** (1986), 207–228.

- [Mu] B. MUCKENHOUPT, Weighted norm inequalities for the Hardy maximal function, *Trans. A.M.S.* **165** (1972), 207–227.
- [Pe] C. PEREZ, Two weighted norm inequalities for Riesz potential and uniform L^p -weighted Sobolev inequalities, *Indiana Univ. Math.* J. **39**, no. 1 (1990), 31–44.
- [Sa¹] E. SAWYER, Weighted norm inequalities for fractional maximal operators, *Proc. C.M.S.* 1 (1981), 283–309.
- [Sa²] E. SAWYER, A characterization of a two weight norm inequality for maximal operators, *Studia Math.* **75** (1982), 1–11.
- [St-To] J. O. STRÖMBERG AND A. TORCHINSKY, "Weighted Hardy spaces," Lecture notes in Math. 1385, Springer Verlag, 1989.
- [Wi] I. Wik, On Muckenhoupt's classes of weight functions, Studia Math. XCIV (1989), 245–255.

Centre Polytechnique S^t Louis Ecole de Physique et de Mathématiques industrielles 13, Boulevard de l'Hautil 95 092 Cergy-Pontoise cedex FRANCE

Primera versió rebuda el 17 de Desembre de 1991, darrera versió rebuda el 6 d'Abril de 1992