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ON MUCKENHOUPT AND SAWYER
CONDITIONS FOR MAXIMAL OPERATORS

Y. RAKOTONDRATSIMBA

Abstract

Let M,(0 < s < n) be the maximal operator

(MoH)@) = sup { QI V£ 102 ap; @ & cube with @32

and u(z) and v(z) be weight functions on R™. For 1 < p < g < 00
and [p~! — ¢~1] < (s/n), we prove the equivalence of the Sawyer
condition

H(Msv~ 2P D15)10] e < S|1gllLe . for all cubes Q
w s—1/(p-1

to the Muckenhoupt condition

1/ 1—%
(L/u> q(i/v—u(p—n) <
@l Jo @l Jo

< A for all cubes @

B

QIF*%

whenever the measure do = v~1/(P—1) dz satisfies

Qe _ (121 ,
0l <C ( Q1 ) for all cubes Q, @

with Q' C Q and 1 - (s/n) < v.

This growth condition is weaker than the Aco condition usually
used to obtain such an equivalence.

0. Introduction
Let u, v weight functions on R, n > 1 (i.e. nonnegative locally in-
tegrable functions). The Hardy-Littlewood maximal operator is given

by

(M [)(z) =sup {|QI [ f1ollz1(ay); @ & cube with @ > z} .
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Throughout this paper @ will denote a cube with sides parallel to the
co-ordinate planes. It is fundamental in analysis to characterize the pairs
of nonnegative weights (u,v) for which

(1) IMfllz <Clflize
for all functions f(1 < p < 00, C = C{(n,p,u,v) > 0);

here ||g||z; denotes ( [fpn l9|"w dz) /7 and dz the Lebesgue measure on
R™. Muckenhoupt [Mu] showed that inequality (1) for v = v holds if
and only if

! YO )T
— | v — [ u7PT ) < A for all cubes Q.
@l (@l

We write v € A,. This condition can be viewed as a particular case of
(u,v) € A(p), i.e.

! e -0
— | u — | vT/PT < A for all cubes Q.
(@ fe) (e f)

It is clear that (u,v) € A(p) is a necessary condition for (1), but in
general it is not a sufficient condition (see [Mul] for a countrexample). A
special case of a Sawyer’s result [Sa?] shows that (1) is in fact equivalent
to (u,v) € S(p), ie.

||(Mv_1/(”_1)1Q)1Q||L£ < S||1Q||Lp_1/< L,y <00 for all cubes Q.

However for u = v, it is not obvious that (v,v) € A(p) implies (v,v) €
S(p). This point was solved by Hunt-Kurtz-Neugebauer [Hu-Ku-Ne].
More generally the two weight norm inequality

(2) IMsflles <clflz1<p<g<oo,0<s<n, p~'—g '] <(s/n)

for the fractional maximal operator
(M, f)(@) = sup {|QIF | f1q]113 s @ a cube with @ 5z}

was characterized by Sawyer [SaZ] by the condition (u,v) € S(s,p,q),
ie.

“(Msv—1/(p—1)1Q)1Q||Lg < S||1Q||L:_ , < for all cubes Q.

1/(p—
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A necessary condition for (2) is (u,v) € A(s,p,q), i.e.

a1 (1 Ve 1/(p—1) '
g1 f 1 u - v (= < A for all cubes Q.
@l (IQI /Q ) (IQI /Q ) : ¢

Although (u,v) € A(s,p, q) is not sufficient for (2), it is nevertheless a
more easily verifiable condition. So for do = v=/P~Vdzr € A, (ie.
do € A, for some r > 1) Perez [Pe] (see also Sawyer [Sa']) proved that
(u,v) € A(s,p,q) implies (2).

In this paper we give an analogous result (see Theorem I) for weights
v such that do € B, with [1 — (s/n)] <v, i.e.

IIQQl||: <C <I|gll)y for all cubes @, Q' with Q' C @;

here |Q|, denotes [, o dz.
If do € Ay then do € Bg for some 6 > 0 i.e.

El, s
: Q: <C G—g) for all cubes @ and all mesurable sets E with ' C Q.

But, as we will see, there are measures du such that du € Bs and du ¢
A First it is known [Ga-Fr| that do € A implies do € Dy i.e.

12Q|, < D|Q|, for all cubes Q, D = D{o) > 1;

2@ is the cube with the same center as Q but with lenghts expanded two
times. The condition do € Dy, is equivalent to do € D, for some € > 1
(see Proposition VIII below), i.e.

tQl, < Ct™|Q|, for all cubes @ and all t > 1.

Also do € D, implies do € RD, for some v €]0, 1] (see Proposition VIII
below), i.e.

t"™|Q|, < CltQ|o for all cubes @ and all t > 1.

The condition RD,, is weaker than the doubling condition D, (for exam-
ple if w(z) = el then wdz € RD, for some v €]0,1] but wdz ¢ Do)
Hence if do € A then do € Do, N RD, for some v €]0,1]. But we can
have do € Do with do ¢ A (see [Wi] for an example). As we will see
below, if do € B, then do € RD, and conversely do € D, N RD, im-
plies do € B,. The condition do € Do, N RD, is weaker than do € A
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and it is more verifiable than do € B,,. So if do € D, then do € B, for
v small enough, while do does not automatically belong to A

Contrary to the Perez’s approach [Pe] (which consists to obtain (2)
from A(s,p, q) by exploiting properties of Calderon-Zygmund cubes) our
method lies on the same philosophy as the Hunt-Kurtz-Neugebauer [Hu-
Ku-Ne]| results mentioned above. Using the condition do € B, we
directely derive the condition S(s,p,q) from A(s,p,q). For applications,
the nature of our result leads to the following: “Let do € D4. For what
reals £, v (with £ > 1 and v < 1) have we do € D, and do € RD,? Can
we choose € sufficiently small and v big?”.

In Section 1 we begin to state our main result (see Theorem I). Then we
give growth conditions (see Proposition II} which are more useful than
those used in our result. In Section 2 with the usual weights u(z) =
|z|®, v(z) = |z|* we recall how to realize the A(s,p,q) condition (see
Proposition IV). In order to answer the above questions we reviewed
how A, = Dy, and A, = RD, (see Proposition V), Dy, = RD, (see
Proposition VIII). By these, we bring out precise values of € and v (see
Section 4). Proofs of main results are in Section 3.

1. The main result

To include classical maximal functions, we work with the operator

(Ms f)(z) = sup {®(Q)|Q| 1 f1ollL1(ay); @ & cube with Q > z}

where @ is a map defined on the set of cubes, taking its values in 0, cof
and satisfying the following growth conditions H:
1) ®(Q1) < C®(Q3) for all cubes Qq, Q2 with Q1 C Qq; C =
C(®) > 0.
2) There are C1, Co > 0, A, € [0, 1] such that

C1t™®(Q) < B(tQ) < Cot™®(Q) for all cubes Q and all ¢ > 1.

When &(Q) = 1 we obtain the Hardy-Littlewood maximal operator. The
fractional maximal operator M;(0 < s < n) is given by ®(Q) = |Q|s/™.
Maximal operators connected to the Bessel potential (see [Ke-Sa]) are

defined by ®(Q) = OlQl ©(s) ds; and generally Mg arises in studies of
other potential operators (see [Ch-St-Wh)).

Let 1 < p < ¢ < oo and (u,v) be a pairwise of weights. We write
(u,v) € S(®,p, q) if for some constant S > 0

(Mg~ 10)||s < Sl1gllLr

< oo for all cubes Q.
w—1/(p—1})
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Also we write (u,v) € A(®,p, q) holds for some A > 0 if

11 1 /g 1 1—%
o|QIQs " F <@/ u) <—/ v_l/(p'l)) < A for all cubes Q.
Q |Q| Q

In this paper we always adopt the convention 0-oco = 0. From condition
A(®,p,q) and the Lebesgue theorem whenever u # 0, we see that it is
necessary to suppose

H3 lim (@ i7v) <e.
) lim (2(QIQI7F) <c
For instance H3) is satisfied if [p~! —¢~1] < A. For ®(Q) = 1 H3) implies
q < p, and for ®(Q) = |Q|*/™ it means [p~! — ¢~} < (s/n).

Let p > 0 and do = odx be a weight function. As in Section 0, we
write do € B, if there is B = B(o) > 0 such that

@l B(IQ’I
0. =7 \al

Also for a weight function u, then do € B,(u) when

p
) for all cubes Q, Q' with Q' C Q.

o <5 (121) tor st cubes @, @' with @' € @ B = Blow) >0

Now we can state our main result:

Theorem 1.
Let 1 < p<q<ooandlet ® be a function which satisfies H1)-2-3.
A) If (u,v) € S(®,p,q) for a constant S > 0, then (u,v) € A(®,p,q)
for the constant A= S.
B) If (u,v) € A(®,p,q) for a constant A > 0, then (u,v) € S(®,p,q)
whenever one of the following condition is satisfied:
i) do =v~ VP Vdy e B, withl—A<v
i) do = AN = B(p/q)(u).
If B is the constant in the condition on do then the constant in S(®,p, q)
takes the form S = ABc(®,n) in case of i), and S = ABYPc(®,n) in
case of ii), here c¢(®,n) > 0 depends only on ® and n.

Proposition II.

A) If do € B, for some v €]0,00], then do € RD,. Conversely if
do € Do N RD,, then do € B,,.

B) If do € B(q)(u) N Doo, there are € € [1,00[ and v €]0,1] such
that do € RD,,, du € D, and vq < ep. Conversely if do € RD,
and du € D, for some € € [1,00[ and v €]0,1] with ep < vq then
do € Bp/q)(u).
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Consequently, for the case of the fractional maximal operator, we can
state

Proposition III.

Let1 <p<qg<o0,0<s<mn, and [p~!—q7!] < (s/n). Then
(u,v) € S(s,p, q) is equivalent to (u,v) € A(s,p,q) if one of the following
holds:

i) do = v~ Y/P-Ydg € Doy N RD, with 1 — (s/n) <v
ii) do =v~Y/®-Vdz € RD,; du € D, with ep < vq.

2. Applications and furthers results

Assume the condition A(s,p,q) holds for a constant A > 0. It is also
equivalent to ask

®3) .
|B|i+l-l 1 / M / =1/(p-1) e < A; for all balls B
|B| BU lBi Bv =

with A; = Ac(s,n,p,q).
Let B be the ball B(zg, R) = {y € R"; |z — y| < R}.

If |zo| < 2R then B C B(0,3R) and hence the first member of (3) is
majorized by the quantity

1 1/q 1 1-2
c(s,n,p,q)R”%‘% <—n/ u) (_.;/ U—l/(p—l))
R Jiyi<r B Jiyi<r

which can be easily computed mainly if 4 and v are radial functions.

If 2R < |zo| then (1/2)|zo| < |y| < (3/2)|zo| for each y € B and hence
the first member of (3) is now majorized by

1/q 1_%
c(s?n)p7 Q)RS+%_% sup u(y) sup 'U(y)_l/(p_l)
ly|~27 R ly|~27 R
where j € N*.

Also if each of functions u, v~1/(®~1) satisfies a growth condition as:

c
< — w(y) dy
R" </clR<|y|§czR

su ux
(1/4)R<|z|<4R
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and if [p~! — ¢~ < (s/n) then condition (u,v) € A(s,p, q) is equivalent
to

1/q ' 1-1
RSTe— % i/ ) L/ p~ V(-1 < A,,
R Jiyi<r R Jiyi<r

A2 = AC(S,TL,p, Q)
Taking u(z) = |z|?, v(z) = |z|* we obtain

Proposition IV.
Assume
i)1<p<g<oo,0<s<n,[pt~qgt < (s/n);
i) n<a<n(p-1);
iii) ps—n < a;
iv) 8= (¢/p)(n+a)—gs—n;
and define u(z) = |z|P, v(z) = |z|*. Then (u,v) € A(s,p,q).

The condition ii) is equivalent to v € A,. Now we recall a known
result, yielding D, or RD, from the A, condition.

Proposition V.

A) Let1 <p < oo, and w € A, for a constant A > 0. Then w € D,
i.e.
[tQlw < Dt™P|Q|y for all cubes Q and allt > 1; here D = AP. |

B) Let1 <r < oo, and w € RH,/(r_1) t.e.

1-2
(l—cl‘?“l/Qw[r/(r_l)]) < R(!%l/cgw) for all cubes @, |

R=R(w)>0
then w € RDy, with the constant R.

If w € Ap then it is known ((Ga-Fr]) that w € RH;y, for some
p > 0 (which depends on n, p, w) and so w € RD,, for some v €]0,1].
Proposition V can be merely seen by the use of the Holder inequality.

Proposition VI.

Let 1 < r < 00,7 € R and w(z) = |z]7. If —n < min(y,~yr) then
w € RH, and so w € RDy_(1/7):

From Propositions III-IV-VI we get
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Proposition VII.
Assume
i) 1<p<g<oo,0<s<mn,[p~t—q7 < (s/n);
i) -n<a<s(p-1), :
iil) ps—n < a;
iv) B=(¢/p)(n+a)—gs—n;
and define u(z) = |z|®, v(z) = |z|*. Then there is ¢ > 0 such that

|Msfllre < cllflize for all nonnegative functions f.

Finally we end with the fact that the D, condition implies D, or RD,,
(for some € and v).

Proposition VIII.
A) Letw € Deo: ie. |2Q|w < D|Qly for all cubes Q, D D(w )
Then w € D,: i.e. [tQ|w < Dt™|Q|y for all cubes @ and all
t>1, withe = 11;‘22.
In particular if 2 < D thene > 1. -
B) Let w € D, with a constant D > 1.
Then w € RD,,: i.e. t™|Q|w 2”5D|tQ|w for all cubes Q and

12nED2
allt > 1, where v =v(e,D,n) = = In | g2 |-

In particular if 2 < 12" D? then v < 1.

Let @ > 0, then 6 > ¢ if and only if D < 2" and 6 < v if and only if
127 D? < [5;9— From this proposition we see that if w dx € Dy, with
a doubling constant D = D(w) > 1 then w € RD, with v = v(D,n) =
== In [De—il} where ¢ = 4 + 23,

Part A can be easily obtained by induction. The next part was proved

by Stromberg and Torchinsky [St-To], but here we include the proof
since we need the precise value of v.

3. Proofs of the main results

For each cube Q¢ we define the local maximal function

(Mg, q, f)(z) = sup {®(Q)|Q|~ 1||f1Q||L1(dy)> Q>3>z,QCQo}.

The proof of Theorem 1 is based on the following lemmas
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Lemma 1.
There is C = C(n,®) > 0 such that for each cube Qo and for each

function f locally integrable whose support is contained in Qg

(Mo, f)(z) < (Mo f)(z) < C(Ms,q, f)(z) for all z € Qo.

Lemma 2.
Suppose (u,v)A(P,p,q) and do satisfying one of i)-i1) as in part B
of Theorem 1. Let Qy be a cube with 0 < |Qgls < o0. Then

1/p
SUD e, (Ma,0010,0)(2) < A/lET: < oo.

Lemma 3.
With the same hypothesis as in Lemma 2, one can find a subcube G

of Qo such that (Mg g,19,0)(2) < 4 (%@ﬂo) for all z € Qg.

We postpone the proofs below, and we first show how Theorem I is
derived from these lemmas.

Proof of Theorem I:

Since
<<I>(QO) |Q0|a> lQo() S (M@,QolQoa) ()].Qo()
|Qol

it is clear that if (u,v) € S(®,p,q) for a constant S > 0, then (u,v) €
A(®,p,q) with the constant 4 = S.

Conversely let (u,v) € A(®,p,q) for a constant A > 0, and let Gy be
a cube. If |Qgl, = O then it is trivial to have (u,v) € S(®,p,q). Also
(since 0 - 0o = 0) if |Qolo = oo then (u,v) € S(®,p,q) because in this
case |Qoly, = 0. So we can assume 0 < |{Qo|s < c0. From Lemmas 1 and
3 we first have

[(Ms1g,0)1q.lls < Cll(Ms,0o1Q,0)1gelles € =C(n,®)

<4c (‘P(Ql) |Q1|o> 1Qol/e.
|@Q ]

Now suppose do = v~/ ®=1 dx € B, with 1 — A < v. Then we get

1(Malg,0)1g,]lzs < C(®,n) (@)*‘1<|Q1|0>(¢><Qo> |Q0,0> Qoll/?

|Qol |Qolo |Qol
@))\—1+u <¢'(QO) ) \/a
< C(®,n)B <|Qo| ol |Qols | |Qoly

< C(®,n)BA|Qo|y/? = C(@,n)BA|1g, |l 1z-
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Now suppose do = v~/ =1 dzx € B,/ (u). Then we obtain

1/
0100l < 40 (TP @l ) [l (52 q

Q1] Q1w
IQ1|0)1/” (|Q0|u)1/q Y
S ica (lQoia |Q1|u |Q0|a ’

<4CABV?|1q, |1z ®

Proof of Lemma 1:

Let Qg be a cube and let f be a function whose support is contained
in Qp. Firstly it is clear that

(Ma,of)(z) < (Mg f)(z) for all z.

For the converse we use the growth properties H)1-2 of . Let Q be
a cube which contains z, with x € Q9. We suppose that Qg does not
contain @) (otherwise there is nothing to prove). We distinguish two
cases.

1) For |Qo| < |Q!:
Let @, be a cube with the same center as ¢ but with the lengths
3|Q|*/™. Since n < 1 we first have

ol = lal 1Ql
1Qol\ ™" #(Q0)
SC((I”")(lcm) ol
<C(¢,n)%.

It results that

2(Qo)
|QO| ”f]'QO ”L1

< C(®,n)(Mes,g,f)(z).

23 I(7100) 14, < Ol
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2) For |Q| < [|Qol:
One can find a cube Q2 C Qg such that |Q}] = |Q2}, QN Qe C Q2 and
Q C 3Q3. Hence we get

(] ®(3
% 1(f1g,) 1ol < |(Q(22|2)”f1Q2”L1
<o@ )29 r1 1
Q2]
< C(®,n)(Ma,g,f)(z). ®

Proof of Lemma 2:

Let z € Q¢ and @ a subcube of Qg such that 3 z. Using one of
hypothesis in part B of Theorem I we have to show

2(Q) 1QolY/”

This implies: sup,¢q,(Me,Q,1,0)(2) < co. And so to obtain ($) it suf-

fices to consider (QI—(QQI—)|Q|(,> 1Qo/%/? and to estimate this with A|Qols’”

as we have done in the proof of Theorem I. B

Proof of Lemma 3:
Since sup,¢ g, (Mas,0,1Q,0)(2) < oo there is one y € Qo such that

(Mg,0,10,0) (%) < 2(Ms,Q,1Q,0)(y) for all z € Qo.

Again, there is a subcube Q1 of Qo which contains y such that

(M‘P,QolQoU)(y) <2 (IQ(Ql) lQlla)

1]

and so ®
sup (Ms 0,10,0)(2) < 4 < () |Q1|a) m
z€Qo |Ql|

Proof of Proposition II:
Part A
Let do € B, for some v €]0, 0] i.e.

:g;t <B (Ig;:) for all cubes Qo, Q1 with @1 C Qo.
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Let @ be a cube and ¢ > 1. Taking Q1 = @ and Qg = t() we obtain
| t™1Q|s < R|tQ|s, where R = B

which means do € RD,,.

Converserly let do € RD,, for a constant R > 0. Also if do € Dy, then
for Q1 C Qg we have

I@bsRGng%h

where Q2 has the same center as Q7 and |Qz| = |Q0|

- (5] .

|Q1|>
<RDQQ|'%V

where D depends on the constant which is in the doubling condition for
do. So it appears that do € B, with the constant B = RD.

Part B
Let do € B(p/q)(u), ie

Qo _ (@m
Gl =2 ok

Suppose also do € Dy,. Let Q be a cube and ¢t > 1. Taking Q1 = @
and Qo = tQ and using the fact that do € D, for some &’ > 1 (see
Proposition VIII) we obtain

1 _ lak (@nym
D™ B
tne’ |tQ|U = [tQ]..

p/q
) for all cubes Qg, @1 with @1 C Qq.

that is ,
tQl. < (DB)¥/Ptre'a/?|Q)|,

which means du € D, with e = £'(q/p) > 1. Also since udx € RD, for
some v’ €]0,1] (see Proposition VIII) we get

|Q|a 1 p/a
i <7 (")

th':D/Q|QIU < B(R)p/qthL,

that is
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which means do € RD,, with v = v/(p/q) < 1. On other hand we must
have for all £ > 1
1< DB(R)P/qt"[E/—V/(P/‘I)]

hence 0 < &’ —vV/(p/q), or vq < ep.
Conversely let do € RD,, du € D, for some ¢ € [1,00[ and v €]0, 1]
with ep < vq. For all cubes @y, Qo with Q; C Qg we have

1Q1ls <|Q0|u>p/q (@)V—s(p/q)
Qoo \@il) =P \[Qo]

<RD
which implies do € B, /q)(u) for constant B = (RD)(/?). m

4. Proofs of further results

Proof of Proposition IV:

Let R > 0. The condition ii) implies that v and v=/(P=1) are locally
integrable functions and

/ v=1/B=1) gy :/ |~/ ®=1) gy ~ grle/e=1],

lyl<R lyl<R

From iii) and iv) we have 8 = (¢/p)(n + a) — gs — n > —n, and so

/ udy = / lyl? dy ~ R )@/P)=¢)([(n + a)(g/p) - gs] > 0).
lyl<R ly|<R

Since [p~! — ¢71] < (s/n) we only have to estimate

. 1/q ) 1-3
Re+2-2 (__n/ u) <_n/ v—l/(P—l)) (see Section 2).
R™ Jiy<r R™ Jiyi<r

Using the two equivalences aboev this last quantity is equivalent to
Rls+(n/q)=(n/p)] (R[(n+a)(Q/p)—qs—n])l/q(R[—a/(p—l)])1—% =
= Rls+(n/a)—(n/p)+(n/p)+(a/p)—s—(n/O)—(a/P)] — 1 m

Proof of Proposition VI:
Let —n < min(vy,~r), and let B be the ball B(zg, R).
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1) If |zo| < 2R then B C B(0,3R) and B(0, R) C 3B. Hence

(ﬁ /B w’") : (% /Iy|<3R o dy) ~ R

and since —n < < then, by Propositions IV-V, wdz € D, and it follows

(1) =200 (1 /)
> D/(y) ( . Iyl"dy) ~R.

2) If 2R < |zo| then (1/2)|zo] < |y| < (3/2)|xo| for each y € B and it
results

(I—;I/Bw’> ~ (27R) with 7 € N*, and (|B|/ ) ~ (2jR)7'

In all cases, since wdx € D, we get

(rclzl/Qwr)r < D(n, ’y) (ré_[/Qw) for all cubes Q

and hence wdzx € RH,. i

Proof of Proposition VII:

Let o(z) = v ¥/P~1(z) = |z|7l¢/(P=1]. Note that do € A4, and so
do € Do, (see Proposition V). If & < 0, then —n <y = —a/(p—1) < yr
for all » > 1. Choose r > 1 with (n/s) < r then from Proposition VI
do € Doo N RDy_(1/ry with (1 = (s/n)] < v = [1 = (1/r)]. To obtain
the same conclusion for a > 0, we choose r > 1 such ’chat (n/s) <r<
[n{p —1)/a], and so —n < yr < 7.

Finally using Propositions IV-III and the Sawyer theorem [Sa2] then

|Msfllre < cl|f|le for all functions f. m

Proof of part B of Proposition VIII:
We need the following lemmas whose proofs will be given below.

Lemma 4.

Let wdx € D, for some e € [1,00] and with a constant D = D(w) > 1.
Then |3Q|, < 6D |Q\ (3Q)|,, for each cube Q.
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Lemma 5.

Letwdz € D, for somee € [1,00[ and with a constant D = D(w) > 1.
Then |%Q|w < B|Qlw for each cube Q, with 8 = %;—1, and so
B €]0,1[.

The part B can be derived from Lemma 5. Indeed if @ is a cube then
|Qlw < B™[2™Q). for each m € N*.

Let ¢ > 1. There is k = k(t) € N* such that 2¥~! < ¢t < 2% (so
[(Int)/(In2)] < k). It results

Qlw < B512*Qlw
< 2nEDﬂk|tQ|w
— 2nsDe[(lnﬂ)/ln2] mtthlw
< 2neDe[(lnﬁ)/ In 2] lntth|w

1 —(InB)/In2
=9"D [E] |tQ‘w
and
ln%
t"™|Qlw < 2™ D|tQ|,, with v = _
In 27

If 2 < 127 D? we get
(127’LED2 + 2n) S (2n—112neD2 + 2n—112n6D2) — 2n12n€D2

ni
or 127¢D? < 27(12"¢ D? — 1) which implies % <2"andsov = 1172% <1

Proof of Lemma 4:

In the proof of the Theorem I we have already used the following
geometric argument:

“Let Q1, Q2 two cubes such that Q1NQ2 # @ and |Q;|1/™ < |Qq|/;
then Q1 C 3Qs.” Let Q be a cube and Qg a subcube of (Q\(271Q)) with
lenghts (1/4)|Q|l'/™ and let @, = (271Q). Then (271Q) N2Qo # @
and [271Q)|/" < |2Qo|1/™. Using this argument we obtain (271Q) C
3(2Q0) = 6@ and then
5

<
2 = |6Q0|w

w

S 6n5D|QO|w
<6%D }Q\ (%Q)

w
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Proof of Lemma, 5:
Let @Q be a cube. By hypothesis

1
2—"51Q|WSD[§Q . D—Dw)>1.

w

So using Lemma 4 we get

2——ns|Q|w < 6nsD2

a\(30)

X% [l@iw - ]1

w

7@

J

It results that

5@

1
2

< BlQlw
w
with

IB _ 6nsD2 _9—ne B 12n£D2 -1
- 6ne D2 T 19ne2

, and so 8 €]0,1[. =
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