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L' AND L*-ESTIMATES WITH A
LOCAL WEIGHT FOR THE 6-EQUATION
ON CONVEX DOMAINS IN C"

FRANCESC TUGORES

Abstract

We construct a defining function for a convex domain in C™ that
we use to prove that the solution-operator of Henkin-Romanov
for the 8-equation is bounded in L! and L™-norms with a weight
which reflects not only how much near is the point to the boundary
of the domain but also how much convex is the domain near the
point. We refine and localize the weights that Polking uses in [Po]
for the same type of domains because they depend only on the
cuclidean distance to the boundary and don’t take into account of
the geometry of the domain. )

1. Introduction and statement of results

This paper deals with the L”-estimates for the solutions of the equa-
tion Ju = f, where f is a O-closed (0,1)-form, for a certain class of
pseudoconvex domains.

Let D be a bounded convex domain in C™ of class C* defined by a
function p and denote by @D its boundary.

For z € 9D, the Hessian of p in «, Hp(z), restricted to the tangent
space to the boundary in z, T,,(8D), is the second fundamental quadratic
form of the boundary. We write m for its convexity lower bound (c.1.b.),
that is,

@)= int FPRON
AETL (D) [A]2

We know that m is an intrinsic quantity, that is, it does’nt depend on
the defining function, but only depends on the boundary of the domain.

This c¢.l.b. “measures” for every point of the boundary how much
convex is the dormain in a neighborhood of the point; for example, where
the domain is flat, m is zero and, on the other hand, m is strictly positive
in a neighborhood of a strictly convexity point.
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We obtain L! and uniform estimates with a weight that is expressed
in two different ways: near the flat pieces it depends on the distance
of the point to the boundary and far of them, it is given in terms of
this c.l.b. evaluated in’ the projection of the point to the boundary. In
this way the local behavior of the boundary. of the domain appears in
weighted-estimates. : .

We denote by 7(.) and d(.) the projection and the distance, respec-
tively, of the point to the boundary. From now on, all not distinguished
positive constants will be denoted by ¢. We shall put diam(D) for the
diameter of the domain.

In this paper we prove the following three theorems:

Theorem 1. Let [ be a 5—clo§ed (0,1)-form in L®(D). Then, there
exists a solution of the equation Ou = f such that

Cifn=2, || ulloglm(x()d()]|™ o)< ¢ Il f lfzes ()

and forn > 2, || ulm(x())* +d()]""? ey < €| f llzeo(p) -

- Theorem 2. Forn = 2, let f be a 0-closed (0,1)-form such that
fllog[m(w(.))d(.)]| belongs to L*(D). Then, there ezists a solution of

the equation du = f such that
lulleipys ell flloglm(m(.)d(]l Iter (o) -
Ifn>2 and fim(x())3 + d()]~"*2 belongs to L'(D), then
I Loy < el flm(m()? + d(™™2 o) -

Observe that in the strictly convex case, m(n(.)) is bounded below in
D and our theorems give the well-known L! and L*-estimates without
weights. .

The following result is proved by Polking in [Po]:

Theorem 3. For n.= 2, let f be a 9-closed (0,1)-form in LP(D),
1 < p < co. Then, there exists a solution of the equation Ou = f such
that :
hullzey< cll £ lleoy -

If Q C C" is a weakly pseudoconvex domain with smooth boundary,
Bonneau and Diederich ([Bo Di]) have proved, recently, the existence of
solutions operators H,, for 0 on 2, such that

I Haf @< el fllogd()] [y o)
and for n > 2, || Hnf ”LI(Q)S ci fd(.)ﬂ ”LI(Q) with 8 < —n/2.
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The paper is organized as follows. Section two is devoted to construct
from p a defining function ¢ € C%(D), strictly convex in the interior of D
and such that, for every point of D and any vector in C™, the c.l.b. of its
Hessian depends on m and d. We remark that for a weakly pseudoconvex
domain our method does not apply to obtain similar results because it is
not true that there exists a defining function strictly plurisubharmonic in
the interior of the domain. In section three we decompose the solution-
operator of Henkin-Romanov as a finite sum of volume integral operators,
written in terms of g, and we do the necessary computations of every
addend-operator in order to obtain all the types of estimates.

2. Construction of the defining function ¢

In this section we situate ourselves in the real space R2".
First of all, for y € D fixed, let p, be defined by

py(z) :=inf {k > 0/z —y € kD},

where kD is calculated respect to y; py is the norm that has D as the
unit ball when y is the origin.

For z different from y, we put wy := y + (z — y)/k. Now p(wg) =0
defines implicitly p,(z).

We put z := y + (z — y)/py(z). Observe that z is the point of the
boundary obtained by continuing from z the straight line that joins z
and y.

If we differentiate implicitly in p(wi) = 0, it is a computation to obtain
the gradient and the Hessian of p, in terms of the gradient and Hessian
of p, respectively:

(1) Vpy(2)

1
(Vo(z)(z —y))
VA € R, where v = (A\Vp(2))(z — y) — ((z = y)Vp(2))A € T;(dD).

We have p, € C3(R?"\ {y}), py |sp =1 and D = {z/p,(z) < 1}.

Since Vp(z)(z —y) > 0, it follows from (1) that Vpy(z) # 0, for
z € 8D, and from (2) that Hp,(z)(A,A) >0, for z € 9D and A € R?™.
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But p, is not a candidate for ¢ because it is not strictly convex in the
interior; note that given a direction A, Hp,(z)(A, A) is zero on the line
z =y +tA t € R, because p, is linear on the straight lines through y.

Fixed a point z and a direction A, there are points y such that
Hp,(z)(\, A) is equal to zero (when z belongs to a flat piece) and others
that aren’t. So we think in obtaining ¢ as a convex combination of all
py (as an average in y).

We define ¢ in the following way
o) = [ wly,(@)imiy)

where w is a positive weight that we will determinate below.
Observe that Vg(z) # 0, for € 3D, because Vp,(z) # 0.

We need to choice w such that [, w(y)dm(y) = 1 for ¢ |5, = 1 and
D = {z/q(z) < 1}; on the other hand, w must be zero in the boundary
in a way that compensates the explosion of the second gradient of p,
when we approximate to the boundary, because we want g € C?(D).

Proposition 1.

2 . _ 1
Vpu(=)l = O (u P— d(y)3> '

Proof: Tt is a computation to obtain:

Opy(x) _ 9p(2) 1 9p(2)
Ozr07; 0w (Vpl2)(@ — 1)) PC W ogiom
Op(z) 1 9p(z) dp(2)
* dz; (Vp(z)(z —y))* Oz ;(ml - yz)(ﬂlr - yr)amraﬂvt *
1 8*p(2) 1 9p(2) .. 8*p(z)
* =7 Fuede (A0 0 2 T Waman,

The worst estimate corresponds to the second term, its numerator
is, clearly, O(| = — y [?) and Vp(2)(@ — y) = Vo()py(2)(z — v) =
py(2)dist(y, T,(8D)) > py(z)d(y). Now py(z) > c || 2~y || because
1=y |< diam(D). m

Lemma 1. For € > 0, if we put w(y) := Cd(y)**¢, where C :=
1/ fp d(y)**<dm(y), then q is a defining function of D and q € C*(D).
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More generally, it is possible to choose w( ) = C'd(y)?h(d(y)), where
the function h is such that the integral jo (t)/t)dt is finite.

Proof: We situate ourselves in R2 because it is the most unfavourable
case.
For E C D, let I(E) be defined by

, . © o dm(y)
)= | 2=y dg)

By proposition 1, |V2¢(z)| = O(I(D)).

Forallz € 8D, 1/ || z—y || d(y)'~¢ are uniformly integrative functions
on D because if we take local coordinates (u,v) with center z, where u
represents the distance d and v is taken on 8D, we reduce I(D) to the

area’s integral
dudv
/ / (u+ o])ul=¢’
which is finite.
For all z ¢ 9D, we prove now that ¥ > 0, 36 > 0 such that if the

measure of E, |F|, is smaller than 4, then I(E) <.
Given a region E, we put Eq := {y € E/d(y) >|| z — y ||}. Now,

I(By) < /E Iz -y <2 dmly) < |Bul?.

2
€

So, if | Ey| < 61 = (n/2)%, then I(Ey) < 1/2.

If y e E\ Ey, we put T € 0D for the point where d(z) is attained.
Now, [Z-yll<lz—y | +llz—2Z|=lz-y| +dz) <||z-y |
+dy)+ |z —y I€£3 || z —y ||. Then we may replace =z by Z and, so,
362 > 0 such that if |E\ E1| < &2, then I(E\ E}) < n/2.

Put 6§ = min(é;,47). B '

Proposition 2. For z € D fized, we choose for every point y € D
the coordinates r :=|| z —y || and z. Then, if cop(z) denotes the area’s
measure on 0D, we have : ‘

an—1]V0(2)(z — 2| '

dm(y) > er dT‘dUé)D( )-

- 2 -z

Proof: We denote by S the unit sphere of R?". If w € S, let A(w) be
such that p(z — Mw)w) = 0. Now, for j =1,---,2n, one has

Bp oA _ . Op N dp
8 <)\(w)6;w a’l.Uj:u}k> =0, that is, 5;;A(w)+fz—wk—0.
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From z; = z; — Mw)w;, it follows that

o _ Mg N 2o latll )
owj Y Fewi Yigm(ek—am) 10w Vp(z)(x = 2)]

We put dogp(z) in terms of dzy A -+ A J;z A - A dzy, and we use
that —dz; = Mw)dw; + d\(w)w; to write these products in terms of
duwy A+ Adwj A-- - A dwsy,. Hence, we obtain two types of coefficients,
Aw)? 1 and Mw)?*~22-w,. Then, if dos(w) represents the area’s
measure on S, one has

doap(z) < cllz— 2 [P (1 + Wﬁ'lﬁ;—_“z—)l) dos(w).

Now the second term absorbs the first and we must take now into account
that dm(y) = r*»~ldrdos(w). ®

Lemma 2. g is strictly convez in the interior of D. Moreover,’
Hq(z)(M\ A) > cld(z) 1 + m(n(2))]| M2, YA € R*™

Proof: Put T(\,z, 2) :=sin®(\, z —2) cos?(Vp(z), < A,z —z >), where
< A,z — z > denotes the plane generated by the vectors X and z — z.
We have, by the relation (2),

Ho(z)(\2) > C / m(z Iled((z;)QjZ;?;(y).

Using the explicit formula for v,
2 [ IV | 7=y I? TO, 2, 2)dy)* *dm(y)
Ho(@ N2 O0F [ oG = ) -
o [ @IV 3= 2 I T @, 2)d(y)*dmiy)
=on? | (VoG —-DP 12—y |

Now we use the proposition 2 and we integrate on the ball of center z
and radius d(z)/2 (then d(y) ~ d(z)),

Hq(z)(A\, A) 2

2) 2 2n—2
m(2)|Vp(2)|*T (N z, 2)r drdogp(z)

oD (Vp Z)(Z —o)Plle—z|>2 7
d(z)

> cd(z 2+el)‘|2/ / = T (), z, 2)r**~2drdoap(2)
oD

ERE

> cd(z)**e|A?
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Now || z — z || is bounded above by diam(D) and we integrate with
respect to 7,

Hq(z)(\, ) > cd(w)2"+l+6|/\|2/ m(2)T(\, z, 2)doap(2).
Jap

This last integral is a positive function of z because m(z) is equal to
zero on the flat pieces only (it is positive on a set of positive measure) and
T(A z,2) is equal to zero for z belonging to a set of zero measure only;
on the other hand, such function is continuous on D (< [, m(z) = c)
and so it is bounded below. This proves Hq(z)(\, A) > cd(z)?"Ti+e|)2

If z € 8D, then m(z) = m(w(z)) and -

| . 2+4€
Hg(z)(X,A) > Cm(n(x))[A? /D T(A’g:();((?— y‘im(y)

This integral is a positive function of z and continuous on D (

In ﬂ%ﬂ =.¢); so it is bounded below. This proves Hg(z)(A, A)

em(m(z)){M? when z € 8D.

For all z ¢ 0D, we define U := {2z € 0D/ || z — w(z) |< m(n(z))} and
also the cone L(z) := {y € D/z € U} (observe that L(z) increases when
x approaches to 9D). If z € U, then m(z) ~ m(w(x)). If we integrate
on L(z) only, we have:

<
>

> em(m(x)) AP,

T,z 2+
Hq(w)(/\,/\)zcm(w(;,;)”,\p/m )T(/\,v,p()j)((z;)_ y(;m( .

where the last inequality is proved as before. B

3. Estimates for the Henkin-Romanov solution-operator

We suppose D defined by the function ¢. Put w (() S (=1
/\j;él déj, w({) = dG A .. AdG, Pi(Q) = 0q(¢ )/6Cn P) =
(P1(), ..., Pp(¢)) and F((,2) :=< P({),{ — 2z >. Put

i-z P
C—2E T'FC 2

BG.A) = f —52) nulo).

n:=(1-1)

,0<t<1, and

Nl
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The Henkin-Romanov solution-operator ([He Ro]), call it T, is given by
Tf(2) =T1f(z) + T2f(z), where: ‘

Ty f(2) = ca / £(¢) A (n) Aw(C) and
8D x|[0,1]

T3 1(2) = —ca /D F(O) AB(C, 2).

Here ¢, is a constant that depends only on the dimension.
In [Ca] and [Br Ca] the following lemma is proved:

Lemma 3.
n—2
Tf@) =3 e / f(O)AGK(C,2), z€ D,
k=0 b

where cn k are constants and for a((, z) = —q(¢) + F(¢, 2),

(k+1—n)d|C — 2|2 (k + 1)8ca(C, 2)
Gk(C, z) = <|< — z|2"—2’°ac((, z)’““ - ¢ — zl2n—2-—2€ka(<,z)k+2) A

R8I — 2P A Bg(€) A (88g(Q))* A (BBIC — 2)" 7>+

e z|2("—1ik)a(c e 09O A (889(¢))* A (BOI¢ — 2™ * 1+

+8¢[¢ - 2I° A (99q(C)*+! A (BB — 2*)"7>7H.

It is well-known that the kernel of Bochner-Martinelli, B((, z), satisfies
|B(¢, 2)| = O(|¢ — 2|~2™*!) and so it is sufficient to prove both theorems
only for T7.

There exists ro and &y such that if |g(2)| < ro and 9q(z)/0z; # 0, say
j =1, then t; = g(¢) — q(2), t2 = Im F((, 2); t2;—1 = Re((; — 2;) and
to; = Im((; — 2;) for j = 2,--- ,n is a real coordinate system in the ball
B(z,680) such that t(2) =0, |t|? =~ |( — 2|* and dm({) = dt; - - - dtzn.

Put a;(¢) = 8%¢(¢)/0¢:0¢;. The coefficients of the kernels Gx((, z) are
functions of the type

h(Q)ai, (€) - - @i, (§)
IC - z‘ﬁa(c’z)’y ’

where h is a bounded function on B(z, ), @1, - - , i are different indexes
between 2 and n, and the pair (8,7) is (2n — 2k — 2,k + 1), (2n — 2k —
3,k+1)or 2n—2k—3,k+2). :
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We look for a lower bound for |a((,2)|. Put ¢(z) := d(z)?"+1+e +
m( (:1:)) We have 2Re F(¢,2) > q(¢) — q(2) + n(¢, 2)[¢ — 2|?, where
= Jo el¢+t(z = Q)1 — t)dt. So, 2Rea((,2) > la(¢)] + la(2)| +

”(C’ )|C - 2|2
If | — 2| < em(n(2)), then |7(() — 7(2)| < em(n(z)) and |m(n({)) -
m(n(2))] < cem(n(2)). So, m(n{{)) > em(n(2)) and ¢(¢) > em(n(2)).
On the other hand, |[( +t(2 — () — 2| = |(1 = t)({ — 2)| < em(n(2)), if
(1 —t)diam(D) < em(w(2)), that is, 1 — t < em(n(2))/diam(D). So,

em({m(z)
diam(D)

zdz > em(m(z))3.

(6,2) 2 em(n(2)) [
When | — z| < ed(z), we have, similarly, d({) > c¢d(z) and ¢(¢)

cd(z)*mt1*¢. By the same anterior argument, we obtain n((, z)
Cd(2)2n+3+e.

VIV

If we put
s(2) = c[m(m(2))* + d(2)*"*3+],

we obtain 2Rea((, z) > |q(¢)| + |g(2)| + s(2)|¢ — z|? and, finally,
la(¢, 2)| 2 1g(O)] + la(2)] + s(2)[¢ — 2* + [ Ima(¢, 2)]-
Lemma 4.

Put g (2) = [m(m(2))® + d(z)]—k, k=1, ,n—2
| log[m(r(2))d(2)]|, if k = 0.

Then /chk(c,zndm(o=0(gk(z)), k=01, n—2

Proof: We can suppose that |g(z)] < ro and estimate the integral only
on DN B(z,68). It is sufficient to consider, in terms of the coordinate

system,
dty - - dtay

/13(0,60) 18 (2la(2)] — t1 + 2l + s(2)[t]?)7
for the worst case (8,7) = (2n—-2k-3,k+2), k=0,1,--- ,n—2. We take

polar coordinates t; = rcos6, ty = rsinfcosy,--- and we distinguish
the cases kK > 1 and £ = 0.

If k > 1, after integrating respect to the angles, we arrive to

bo 72k dp

o (a2 +s(2)r2)x




998 : . F. TUGORES

Now we put 7 := |g(z)|2z/s(2)? and b(z) := 6ps(2)?/]q(2)|2, then the
integral is: .
la(2)1? /"(z) o d

s(z)k*32 (1+22)*

If b(z) < 1, it is O(|g(2)|~*) and if b(2) > 1, it is O(s(2)~%).
If £ = 0, after integrating respect to the angle ¢ and putting v =
—cos 8, we arrive to

%0 ! ravar )
/o /o 2|Q(Z)i+d7‘l/d+s(z)r2 s /0 |log[2]q(2)| + s(2)r?)|dr.

With the same anterior change, the integral is:

la(2)|2
s(2)2
If b(z) <1, it is O(|log|g{2)|]) and if b(2) > 1, it is

2)|% 1 b(2)
|Z§z;|% (/0 |l<‘3g|q(z)||d:z+/1 |1°g(l(J(Z)I:E2)|dx> <

_ la)l
s(2)z

b(z) ‘
/0 |log[lg(2)|(1 + z2)]|d=.

Wl

(Ilogla(2)l|+b(2)| log](60)*s(2)]| +2b(2)) =O({ log 5(2)|). m

Observe that the case of a strictly convex domain is obtained when
the function inf.¢ 5 n(¢, 2) is bounded below.

Proof of theorem 1: Observe that the worst estimate in lemma 4 is for
k =n — 2 and that for n = 2 we have only £ = 0.

Proof of theorem 2: Take also into account that lemma 4 gives
Ip |Gk(¢, 2)ldm(2z) = O(gk(¢)), k = 0,--- ,n — 2, by symmetry. Using
Fubini’s Theorem, we have .

[ ms@lan() chk [ 15601 [ 164t dmzpamic) <
< ]gcn,k [ 17(©lac(©dm(c). m

Proof of theorem 3: For 0 < € < 1, 1) [,1Go(¢, 2)llg(¢)|~¢dm(¢) =

O(lq(2)|~¢) and ii) [}, |Go((, 2)llg(2)|¢dm(z) = O(|¢(¢)|~¢) will give, as
it is well known, the LP-estimates, 1 < p < co.
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By symmetry, it is sufficient to prove i) only.
Using |Go(¢, 2)| = O(1/|¢ — 2||a(¢, 2)]?) and the coordinate system,
we must consider:

/ (lg(2)] —t1) " “dtrdty - - - dtan
B(0,60) [t1(2la(2)] — t1 + [t2| + s(2)[t]?)?

Now, taking polar coordinates t; = rcosf, to = rsinfcos,-- -, inte-
grating respect to the angle ¢ and putting v = — cos 8, we obtain:
bo —e bo
)| + rv) dudr rdvdr
/ [ e[ e <l m
2|q |+Tu-+-s (lg(2)| + rv)i+e
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