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This paper is dedicated to the memory of Professor Pere Menal

Abstract

An associative ring R with identity is said to be a left FTF ring
when the class of the submodules of flat left R-modules is closed
under injective hulls and direct products. We prove (Theorem 3.5)
that a strongly graded ring R by a locally finite group G is left FTF
if and only if R, is left FTF, where e is the neutral element of G.
This provides new examples of left FTF rings. Some consequences
of this Theorem are given.

1. Introduction

In the papers [5], [6] we started the study of the rings R with the
property that the class of the submodules of flat left modules, Fo, is
closed under direct products and injective hulls. For these rings, Fy is
the torsionfree class for some hereditary torsion theory on R-Mod. Thus
we can use techniques of localization relative to this torsion theory to
investigate these rings. This class of rings is large and we call them left
FTF rings. Clearly, QF and regular rings are left and right FTF rings. In
the commutative case, Enochs showed [3] that a noetherian commutative
ring R is FTF if and only if Rp is Gorestein for every minimal prime
ideal P of R. Noncommutative examples of left FTF rings can be found
in [5], [6].

The aim of this note is to construct new examples of left FTF rings.
The tool will be the strongly graded ring theory.

The paper is organized as follows. In Section 1 we record the funda-
mental results on left FTF rings showed in [5] and [6] which we will use
in the rest of the paper. We recall also the basic machinery from torsion
theories and graded rings that we will use.

The main result, Theorem 2.5, appear in Section 2.
Finally, we give some applications of this result in Section 3.
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2. Preliminaries and general notation

Let C be a Grothendieck category. Recall that a torsion theory [10,
Ch. VI] on C is a pair 7 = (T, F) of classes of objects of C complete
with respect to the relation Hom(T,F) = 0, for T € 7 and F € F.
The objects of 7 (resp. of F) are called the 7-torsion (resp. the 7-
torsionfree) objects. We will use also the notation 7(r) and F(7) for
the classes 7 and F . Every object C of C contains a largest subobject
7(C) belonging to 7, called the T-torsion of C. This gives an idempotent
radical 7 : C — C that determines uniquely the torsion theory because
T={CeC|7(C)=C}and F ={C € C|7(C) = 0}. A class F
of objects of C is a torsionfree class for some torsion theory 7 on C
if and only if F is closed under subobjects, products and extensions
[10, VI.2.2]. Dually, a class 7 of objects of C is a torsion class for s
ome torsion theory 7 on C if and only if 7 is closed under qu otients,
coproducts and extensions [10, VI.2.1]. The torsion theory is uniquely
determined by its torsion class or by its torsionfree class.

The torsion theory 7 is said to be hereditary if 7 is closed under
submodules or, equivalently, if F is closed under injective envelopes [10,
VI1.3.2]. A torsion theory on C is hereditary if and only if its associated
idempotent radical is left exact [10, VI.3.5].

We recall some ideas from torsion theories on categories of (graded)
modules. All rings considered are associative with identity element and
the (left or right) R-modules are unital. By R-Mod (resp. Mod-R) we
will denote the Grothendieck category of all the left (resp. right) R-
modules. Let G be a multiplicative group with identity element e. A
graded ring R is a ring with identity 1, together with a direct decom-
position R = @,cq R, as additive subgroups such that RgRy, C Ry, for
all g,h € G. Thus R is a subring of R,1 € R, and for every g € G, R,
is an R.-bimodule. A G-graded left R-module is a left R-module M
endowed with an internal decomposition M = ®4cc M, where each M,
is a subgroup of the additive group of M such that RjM;, C Mg, for all
€ G. Let M and N be graded left modules over the graded ring R. For
every g € G we set

HOMRg(M,N)q = {f € Homg(M, N)|f(M}) C Mgy, for allh € G}

HOMg(M, N), is an additive subgroup of the group Hompg(M, N) of
all R-linear maps from M to N. Observe that

HOMg(M, N) = 5 HOMg(M, N),
geG
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is a subgroup of Homg(M, N) and it is a graded abelian group of type
G. Clearly HOMg(M, N), is just Hompg_4(M, N), i.e. the group of
all morphisms from M to N in the category R — gr of all graded left
R-modules. Define for g € G the g-suspension M(g) of a graded left
R-module M as follows: M(g) is the left R-module M graded by G by
putting M (g)n = My, for all h € G. Observe that

HOMg(M, N), = Hompg_4 (M, N(g)) = Hompg_q(M(g™?),N).

It is well known that R—gr is a Grothendieck category (See [9]). Observe
that if G = {e} is the group of one element, then R — gr = R-Mod.
Therefore, we can consider R-Mod as a particular case of the concept of
category of graded modules.

We will denote by H the set of all homogeneous left ideals of R. In
other words, H is the set of all subobjects in R — gr of the graded left
R-module R. The left ideals in H are also called graded left ideals of R.
By h(R) we denote the set of all homogeneous elements of R, that is,
h(R) = \U{Ry : g € G}.

Following [9], an hereditary torsion theory 7 on R — gr is said to be
rigid if for any 7-torsion graded left R-module M and for every g in G,
M(g) is T-torsion. A rigid hereditary torsion theory is determined by
certain subset of H. Concretely, let £(7) = {I € H | R/I is T-torsion}.
Then L(7) is a left graded Gabriel topology (or a graded filter of left
ideals) on R, i.e., the following conditions are satisfied (see [9] or [8]).

(G1) If I € L(7) and r € h(R) then (I : 1) € L(T).
(G2) If I and J are homogeneous left ideals of R, J € L(7) and ({ : 1) €
L(r) for all r € J Nh(R), then I € L(T).

The 7-torsion graded submodule of a graded left R-module M can be
computed from L£(7) as

(1) 7(M) = {x € M|Iz =0 for some I € L(7)}.

Observe that if R is any ring, it can be considered as a G-graded ring by
G = {e} and all the hereditary torsion theories on R — gr = R-Mod are
rigid. However, if R is graded by any group G, there are some hereditary
torsion theories on R-Mod that induce nicely rigid torsion theories on
R — gr. These are the graded torsion theories and they are characterized
as the torsion theories on R-Mod whose associatted (ungraded) Gabriel
topology has a cofinal subset of homogeneous left ideals. For a graded
torsion theory 7 on R-Mod and M any graded left R-module, 7(M) is a
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graded subobject of M. This permits the induction of the rigid torsion
theory on R-gr.

If 7 is an hereditary torsion theory on R-Mod and M is a left R-
module, then we can construct the abelian group

Q- (M) = lim_ {Homp(I, M/r(M))|I € L(r)}.

It is well known [10, Ch. IX] that it is possible to give a canonical
structure of ring on Q- (R) such that the canonical map R — Q,(R) is
a ring morphism and Q,(M) is a left Q. (M)-module for every M € R-
Mod. Moreover, the canonical map M — @, (M) is an R-homomorphism
with kernel and cokernel 7-torsion. Therefore, every 7- torsionfree left
R-module M is isomorphic to an R-submodule of a left @, (R)-module,
namely, Q,(M). The converse is not true in general and a torsion theory
7 for which the class of 7-torsionfree left R-modules is precisely the
class of all R-submodules of left @, (R)-modules is said to be perfect [4,
Proposition 45.1]. The ring Q,(R) (together with the canonical ring
morphism R — Q,(R)) is called the quotient ring of R with respect to
T

The most useful quotient ring associated to an arbitrary ring R is
the left maximal quotient ring of R, denoted by @ . (R).. This ring is
the quotient ring Q,(R) of R with respect to the torsion theory A on
R-Mod cogenerated {10, Ch. VI] by the injective hull E(gR) of R in
R-Mod. This torsion theory A is called the Lambek torsion theory (on
the left). Analogously, it is possible to define the right maximal quotient
ring of R, deyoted by Qf..(R). If the canonical ring monomorphism
R — Q!...(R) provides a right maximal quotient ring for R then we will
say that Q@ = Q! . (R) is a twosided mazimal quotient ring for R.

max

For more information on torsion theories the reader is referred to [10],
[4] and [9].

Given left R- modules M and N we will say that M embeds in N
whenever there is a monomorphism of left R-modules from M to N. Let
FE (or Fo, if there is no risk of confusion) denote the class consisting of
the left R-modules that embed in some flat left R-module. We say usually
that Fq is the class of submodules of flat left modules. Our interest is
centered in the study of the rings R for which Fy is a torsionfree class
for some hereditary torsion theory 75 on R-Mod.

Definition. A ring R is said to be a left FTF ring (or, shortly, is left
FTF) if the class Fy of submodules of flat left R-modules is the class of
the 7y- torsionfree left R-modules for some hereditary torsion theory g
on R-Mod.

The class of left FTF rings includes the regular Von Neumann and QF
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rings, in fact every left IF ring (see [1]) is a left FTF ring with Fo = R-
Mod. On the other hand, every semiprime left and right Goldie ring is
left FTF.

We started the study of left FTF rings in [5], where the following basic
properties were proved. By 7r(X) we denote the right annihilator of a
subset X of R.

Proposition 2.1. ([5]) For a left FTF ring the following statements
hold:
(1) 7o is of finite type, that is, L(ro) contains a cofinal subset of
finitely generated left ideals.
(2) For each finitely presented left R -module P,

10(P) = Ker fiN...N Ker fy, for some f; € Homg(P, R).

(3) L(o) is the set of the left ideals I such that there are z1,... ,Zn €
I with rr({Z1,-..,2,}) =0.

The following result is essentially proved in [5, Theorem 4.6], but with
a slightly different presentation.

Theorem 2.2. ([5]) Let R be a ring for which X is of finite type. Then
R is left FTF if and only if every direct product of copies of E(rR) is a
flat left R-module. In such a case, To = A and Qo (R) = Qhya(R).

We will finish this section with some basic results on the behaviour
of the class of the submodules of flat modules with respect to a ring
monomorphism. Let p : § — T denote a ring monomorphism. We can
consider the class consisting of the left S-modules that are isomorphic
to an S-submodule of some left T-module. Denote this class by F(p). It
is not hard to see that a left S-module M is in F(p) if and only if the
canonical homomorphism of left S-modules 8y : M — T ®s M given by
Op(z) = 1 ®z for all z € M is injective. Using this observation, it is
easy to prove the following relationships among the classes F(p), F§ and
Fs. We advise that the class of left T-modules F§ will be considered
also as a class of left S-modules.

Lemma 2.3. (1) F5 C F(p).

(2) If P € S-Mod is S-flat, then T ®s P is T-flat.

(3) Assume that Ts is flat. If M € Fy then T®s M € F{ .

(4) Assume that T is flat. If M € T-Mod is T-flat then sM is S-flat.
(5) Assume that sT 1is flat. Then F& C F§.

(6) Assume that sT and Ts are flat. A left S-module M is in F5 if
and only if M is isomorphic to a left S-submodule of a flat left T-module.
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3. Strongly graded left FTF rings

Let R = ®4cqR, be a strongly graded ring by a group G with neu-
tral element e. - This means that R;R, = Ry for all g,h € G. For
a strongly graded ring, R, is a finitely generated projective left and
right R.-module. Moreover, the functors R®g, — and (—). establish an
equivalence between the categories R.-Mod and R — gr (see [2, Theorem
2.8)). L

The class of all left R-modules that embed in flat left R-modules is
denoted throughout this section by F{* and we reserve the notation Fp
for the class of the submodules of flat left R.-modules. If the ring R is
left FTF, we denote by 7 the hereditary torsion theory for which F&
is the class of the 7{t-torsionfree left R-modules. When R, is left FTF,
the analogous notation will be 7.

Proposition 3.1. If R is a left FTF ring, then R, is a left FTF ring.

Proof: We will proof first that Fy is the torsionfree class for some
torsion theory 79 on R.-Mod and then we will show that 7y is necessarily
hereditary. Note that Fy is closed by submodules. We will prove that
- JFp is stable under extensions and direct products. Consider

0O—N-—M-—L—0

an exact sequence of left R.-modules with N, L € Fy. Since Rpg, is flat,
the following sequence of left R-modules is exact

(2) 0— R®g, N — R®r, M — R®p, L — 0.

Since N,L € Fy; R®g, N and R ®g, L are in F (Lemma 2.3.(3)).
Therefore, (2) is an exact sequence of left R-modules with 7d-torsionfree
extreme points and this implies that R®g, M is 74*- torsionfree, that is,
R®g, M € Ff. By Lemma 2.3.(6),R®r, M € F;. The map

9M2M—>R®ReM

defined by 0x7(m) = 1 ® m for each m € M is a monomorphism of left
R.-modules. Hence, p, M € Fq and this proves that Fy is closed under
extensions. . .

Next, we prove that Fp is stable by. direct products. Let {M; :i € I'}
be a family of left R.-modules in 5y and put '

M=][{M;:ieT}
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According to Lemma 2.3, R®g, M; € F& for every i € L. Since R is left
FTF, .7-'53 is stable under direct products, and

[[{R&r M::ie I} e FF.
Again Lemma 2.3 assures that
[[{R®r. M::ic I} e F.
But there is an obvious monomorphism of left R.-modules
H{Mi ciel} — H{R®Re M, :iel}

that shows that [[{M; : ¢ € I} € Fy. Therefore Fy is closed by direct
products and it is the torsionfree class for some torsion theory 7o (at this
moment, possibly not hereditary) on R.-Mod.

We will finish by proving that 79 is in fact hereditary, that is, the class
of the 7o-torsion left R.-modules is stable by submodules. For, consider
M a 1p-torsion left R.-module and N a submodule of M. We claim
that R®g, M is a 7'~ torsion left R-module. To check this assertion, it
suffices to show that

Homg(R®g, M,P)=0
for every flat left R-module P. But

Homg(R ®p, M, P) = Homp, (M,r, P) =0,

since g, P is flat (Lemma 2.3.(6)) and, thus, 7o-torsionfree. Now we are
ready to show that N C M is a 7o-torsion left R.- module. We check that
Hompg, (N, F) = 0 for every flat left R.-module F. Since R is strongly
graded, one has’an isomorphim of abelian groups

Hompg, (N, F) = Homg_ ¢ (R®g, N,R®g, F).

On the other hand, since Rp, is flat, we have a monomorphism of left
R-modules

R®r, N — R®g, M.

Hence, R®p, N is 7f-torsion. According to Lemma, 2.3.(1), R®g, F is
a flat left R- module. Therefore

HomR(R RR, N,R®RE F) =0.
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Since

HomR_gT(R ®r, N,R®r, Py C HomR(R ®r. N,R®rg, F)

we obtain Hompg, (N, F') = 0. This concludes the prodf. B

In that follows, we will try an aproximation to the converse of Propo-
sition 3.1. If R, is a left FTF ring, then the inclusion R, — R allows the
construction of a torsion theory 7, on R-Mod with torsion class 7 (7)
consisting of those left R-modules that are 7g-torsion considered as left
Re-modules. Every graded left R-module decomposes, when it is consid-
ered as left R.-module, as a direct sum M = ©gea M, of R.-submodules
and every morphism f: M — N in R—gr is, after forgeting the R-linear
structure, a morphism of left R.-modules f : M — N that maps the g-th
component M, of M to the g-th component N, of N. This construction
defines an exact functor

(1): R—gr — R, — Mod.

This permits us to induce a rigid torsion theory 7§ on R — gr from 7y by
putting as torsion class

T("'g) ={X € R~ gr| X is 7o — torsion}.
The following result gives some information about 7.

Proposition 3.2. Assume that R. is a left FTF ring and let 7y be
the torston theory induced on R -Mod by 179. The following conditions
are satisfied. ‘

(1) 7o is G-stable, that is, for every To-torsion left R.- module T, the

left R.-module R®pg, T is 1g-torsion.

(2) T (7o) is the smallest torsion class on R-Mod containing the un-

derlying left R-modules of the objects in T (1§). Therefore, 7y is
a graded torsion theory.
(8) The Gabriel topology L(Ty) associated with Ty is

L(To) ={I <gp R|Fz1,... ,2n € INR,, withlg,({z1,...,2,}) =0}.

(4) A left R-module M is 7o~ torsionfree if and only if R, M € Fy.

Proof: (1) It suffices to prove that for every left ideal I in the filter
L(70), and for each g € G, the left R.-module Ry ®p, Re/I is 7o-torsion.
Since 7y is of finite type (Proposition 2.1) I contains a finitely generated
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left ideal Iy such that Iy is 7p-dense in R.. We will prové that R, Qg,
R./I, is To-torsion and therefore Ry ®r, R./I is To- torsion since it is
an epimorphic image of Ry ®g, Re/Ip. Observe that

Rg RR, Re/Io = Rg/RgI().

Since Ry is projective and finitely generated as left R.-module, and I
is finitely generated, it follows that Ry/Ryl is a finitely presented left
R.-module. According to Proposition 2.1.(2), Ry®g, Re/Io is 70- torsion
if and only if

HomRe (Rg ®R, Re/IO, Re) =0.
But

Hompg, (Ry ®r, Re/Io, Re) = Hompg, (Rc/Io, Hompg, (Ry, Re)) = 0,

since Homp, (R, Re) is a flat (in fact, projective) left Re- module.

(2) Let 7 be any torsion class containing the underlying left R-modules
of the objects in 7(7§) and take M a To-torsion left R-module. Then
r.M is To-torsion. By G-stability, R ®g, M is To-torsion. Observe that
R ®p, M is canonically G-graded and, so, it is 78-torsion. This implies
that R®g, M is in 7. Note that there exists a canonical epimorphism
of left R-modules from R ®r, M onto M. This shows that M is in 7.
Therefore, 7(7§) C 7.

The fact that 7 is a graded torsion theory on R-Mod follows from (8,
Proposition 1.1].

(3) By G-stability, it is clear that

T(r§)={XeR—gr|X.ism - torsion}.

Taking into account that .'Fo is graded, it is not hard to see that
L)y ={I <r R|INR. € L(0)}.

Now, apply Proposition 2.1.

(4) This is a consequence of the foregoing facts together with [8, Propo-
sition 2.1]. W

We know from Proposition 3.1 that if R is a left FTF ring, then R,
is a left FTF ring too. The following result analyzes the relationships
between the torsion theories 7 and 7&* on R-Mod. By H we denote the
set of all homogeneous left ideals of R.
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Proposition 3.3. If R is a left FTF ring then the following state-
ments hold:

(1) L(7 ) C L(my )

(2) L(7g )ZE( ) NH.

Therefore, T8 = 7o if and only if 78 is graded.

Proof: (1) Let I € L(%). To prove that 1 € £(7{) it suffices to find a

finitely generated left ideal Iy contained in ['such that Homg(R/Iy, R) =
0 (Proposition 2.1). Since I € £(7), there exists (Proposition 3.2.(3)) a
finitely generated left ideal J of R, such that J C I N R, and
Homp, (R./J,R.) = 0. Let Iy = RJ. It is clear that Iy is a finitely
generated left ideal of R contained in I. Observe that I is an homoge-
neous left ideal of R. Consider f € Homg(R/Iy, R). Since R/T is graded
and finitely generated, Homg(R/I,R) = HOMg(R/I, R) [2], that is, f
can be expressed as a sum of graded R-linear maps. Therefore, we can
assume without loss of generality that f is graded. Equivalently, f can
be considered as a morphism in the category R — gr from R/I to R(g)
for some g € G. If we denote by f| the restriction of f to the part of
degree e of R/I, it is clear the f| is an R.-homomorphism from R./J to
R,. Since R, is projective as left R.-module and R./J is 7p-torsion, it
follows that f; = 0. This assures that Imf N R, = 0. But R is strongly
graded and, so, Imf must be zero.

(2) Observe that, by Proposition 3.2.(2) and part (1) in this propo-
sition, £(7§) = L(F) NH C L(7&) N H. It remains to prove that
L) NH C L(7§). Given I € L(7g") N'H, let Iy C I be a finitely
generated left ideal satistying Hompg(R/Ij, R) = 0. Consider ay,... ,a,
a set of generators of Ip. For each ¢ = 1,... ,n, there is a decomposition
a; = . 9eG Gigs where a;, is the g-th homogeneous component of a;.
Define H as the homogeneous left ideal generated by the set of homoge-
neous elements {a;y : ¢ =1,...n,9 € G}. Because Iy C H, it is clear that
Hompg(R/H, R) = 0 and, in particular, Hompg_4-(R/H, R) = 0. Hence,

Hompg,_ (R./H N R., R.) = 0. Equivalently, 7g,(H N R,) = 0. In view of
Proposition 3.2.(3), if we prove that H N R, is a finitely generated left
ideal of R, then H is in £(7§) and, so, I € L(r§). Taking into account
that H is a finitely generated homogeneous left ideal, there is a graded
free left R-module F' and an epimorphism of graded left R-modules from
F onto H. Taking in this epimorphism components of degree e, an epi-
morphism of left R.-modules from F, onto H N R, is obtained. But
F. 2R, &...®R,, as left R.-modules, for some g,..., g, € G. In this
way, I, is a finitely generated projective left R.-module. This clearly
implies that H N R, is finitely generated as left R modules. Therefore
we have obtained that I € £(7). &
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Our next objective is to prove the converse of Proposition 3.1 for
strongly graded rings by locally finite groups. By a locally finite group we
understand a group G satisfying that all its finitely generated subgroups
are finite.

Lemma 3.4. Let R be a ring and consider {R; : i € I} a directed
family of subrings of R such that R = J{R; : i € I}. Let M be a left
R-module such that g, M 1is flat as left R;-module for every i € I. Then
rM is a flat left R-module.

Proof: We can apply [10, Proposition 10.7] to deduce that g M is flat
considering that, since R = | J{R; : i € I}, it follows that for every finite
set X of elements of R, there exists 7 € I such that R; contains X. W

Theorem 3.5. Assume that R is a strongly graded ring by a locally
finite group G. Then R is a left FTF ring if and only if R, is a left FTF
ring. Moreover, in such a case, T = 7.

Proof: According to Proposition 3.1 we only need to prove that if
R, is left FTF then R is a left FTF ring. Assume that R. is a left
FTF ring, that is, Fo is the class of the 7¢- torsionfree left R-modules
for an hereditary torsion theory 79 on R.-Mod. This torsion theory
induces canonically an hereditary torsion theory 7 on R- Mod. By
Proposition 3.2, F (%) consists precisely of the left R-modules M such
that g, M € Fo. This fact, together with Lemma 2.3, gives FE& C F(7)
without hypothesis on the group G. We will prove the equality in the case
that G is locally finite. In a first step, the group G is assumed to be finite.
Given M € F(%), Proposition 3.3 says that g, M € Fo. Thus, there
exist a flat left R-module P and a monomorphism of left R.-modules
M — P. Tensorizing by the flat right R.-module Rg_ , we obtain a
monomorphism of left B-modules R®g, M — RQ®g, P. It is clear that
R®p, P is a flat left R-module. To conclude that pM € F§ we will
exhibit a monomorphism of left R-modules from M to R®g, M. Since R
is strongly graded, RgRy-1 = R for every g € G. Then there exists, for

each g € G, a decomposition 1 = 379 r(g),s(g™")s, where 7(g); € Ry

and s(g~!); € R,-1 for each i = 1,... ,n(g). Define ¢ : M - RQgr, M

by ¢(m) =3 eq 59 r(g); ® s(g7);m. In an analogous way as in [7,
Lemma 2.1] it can be proved that ¢ is R-linear. It is easy to see that
¢ is injective. Therefore ¢ is a monomorphism of left R-modules from
M to R®g, M and this implies that M € F{. Therefore, in the case
that G is finite, & = F(7), that is, the class F¢ is the class of all the
To-torsionfree left R-modules.
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To work in the case that G is locally finite, we introduce some new
notation. Let H be a finite subgroup of G and put Ry = ®pregygRy. It
is clear that Ry is a subring of R and that Ry is a strongly H-graded
ring. We denote by 7& to the hereditary torsion theory induced by
To in Ry-Mod with torsion class consisting of those left Ry-modules
that are 7p-torsion as left R.-modules. Since H is finite, the foregoing
argument assures that the class of the 74-torsionfree left Ry-modules
is precisely the class 73! of the submodules of flat left Ry-modules. On
the other hand, Proposition 3.2.(4) says that a left Ry-module M is
& -torsionfree if and only if g, M € Fo. After all these observations, we
are ready to finish the proof. As in the finite case, we only need check
that F (7o) C F&. For M € F(%), let E = E(rM) be its injective
hull in R-Mod. It is immediate that E € F(7). By Proposition 3.2.(4),
r.E € Fo. But this implies that g, E € F&! for every finite subgroup
H of G. Since R is a projective right Rgy-module, it follows that g, F is
injective as left Ry-module and, therefore, g, F is a flat left Ry-module. -
Since G is locally finite, we have that ‘

R= U{RH : H is a finite subgroup of G}.

Thus, Lemma 3.4 applies and grFE is a flat left R- module. We have
proved that M embeds in a flat left R- module, namely, its injective
hull in R-Mod. This gives the equality F3* = F (%), that finishes the
proof. W »

4. Applications

Recall [1] that a ring R is said to be left IF if every injective left R-
module is flat or, in our notation, if 7 = R-Mod. Colby [1, Theorem
3] proved that a group ring AG is a left IF ring if and only if A is left IF
and G is locally finite. As a consequence of Theorem 3.5 we extend this
result to general strongly graded rings.

Theorem 4.1. Let R be a G-strongly graded ring, where G is a locally
finite group. Then R is a left IF ring if and only if R, is a left IF ring.

In (1, Proposition 5] it is showed that a left IF ring with finite global
weak dimension is regular. By combinning this result with Theorem 4.1
we obtain the following corollary.

Corollary 4.2. Let R be a G-strongly graded ring, where G is o locally
finite group. Then R is regular if and only if R, is regular and R has
finite global weak dimension.
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C. Nastasescu proved that if R is a strongly graded ring by a finite
group G, then R, has a QF maximal left quotient ring if and only if
R has a QF maximal left quotient ring [7, Theorem 5.1 and Corollary
2.10]. Here we will obtain an analogous result for QF twosided maximal
quotient rings. This result is deduced from Theorem 3.5 and some facts
on left FTF rings with finiteness conditions investigated in [6]. In [6,
Theorem 11] we obtained that the rings R that have a QF twosided
maximal quotient ring are exactly the 7f-artinian left FTF rings with
& perfect.

Theorem 4.3. Let R be a G-strongly graded ring by a finite group G.
R has a QF twosided mazimal quotient ring if and only if Re has a QF
twosided maximal quotient ring.

Proof: By [6, Theorem 11} and Theorem 3.5. we can assume that both
R, and R are left FTF rings and that 7f = 7. By (7, Proposition 2.2]
and Proposition 3.2 R is mp-artinian if and only if 7p-artinian. Again by
[6, Theorem 11], it remains only to prove that 7 is perfect if and only if
7y is perfect. Let Q. = @, (R) and Q = Q#,(R). Since T (1) € T (), Re
is A-artinian. Therefore, X is of finite type and, by Theorem 2.2., 79 = A.
An analogous argument can be constructed for 7f. This gives that Q. is
the left maximal quotient ring of R, and @ is the left maximal quotient
ring of R. By [7, Theorem 5.1], there is a ring monomorphism Q. — @,
such that the following square of ring morphisms commutes

R. —— R

Lo

Qe — Q
Assume that 7y is perfect and let M be a left @-module. Then M is a left
Qe.-module and, by [4, Proposition 45.1}, it is 7o-torsionfree. Proposition
3.2.(4) gives that M is T;-torsionfree and, again by [4, Proposition 45.1],
To is perfect.

Conversely, assume that 7, is perfect and consider M a left .-module.
Then Q ®q, M is a left Q-module and it follows from [4, Proposition
45.1] that it is 7p-torsionfree. Proposition 3.2.(4) assures that Q®q, M is
To-torsionfree. By [7, Theorem 5.1} Q. is a direct summad of @ as right
Q.-module. Therefore there is a canonical Q.-monomorphism § : M —
Q®g, M given by 8(z) = 1®«x for all z € M. Hence, M is 7o-torsionfree
and by [4, Proposition 45.1] 7q is perfect. m

As a consequence of Theorem 4.3 and Theorem 4.1, it is possible to
obtain the following known result ([7, Corollary 2.10]).
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Corollary 4.4. Assume that R is strongly graded by a finite group G.
R is QF if and only if Re is QF.

‘Some others results of this kind can be deduced from Theorem 3.5 and
characterizations of special types of left FTF rings. May be the most
interesting are the following.  For the definition of QF — 3 ring an the
basic properties of these rings, we refer to [11].

Theorem 4.5. Let R be a strongly graded ring by a finite group‘ G.
Then R has a semzpmmary QF — 3 twosided mammal quotient ring if
and only sz has.

Proof: By [6, Proposition 8 and Remark 9.(A)] we have that a ring R
is left FTF and 7{*-artinian if and only if it has a semiprimary QF — 3
twosided maximal quotient ring. This, together with Theorem 3.5 and
[8, Proposition 2.2], prove the result. W

Theorem 4.6. Assume that R is a strongly graded ring by a finite
group. R is left artinian QF — 3 if and only if R, is left artinian QF — 3.

Proof: By [6, Remark 9.(C)], if R is a left ‘artinian i ng, then R is
QF — 3 if and only if R is left FTF. Theorem 3.5 and |7, Theorem 1.2
complet the proof. W
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