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INTERPOLATION OF FAMILIES {L*7) v €T}

M. J. CARRO AND J. CERDA

Abstract

We identify the intermediate space of a complex interpolation fam-
ily - in the sense of Coifman, Cwikel, Rochberg, Sagher and Weiss-
of LP spaces with change of measure, for the complex interpolation
method associated to an analytic functional.

0. Introduction

Let {A(y) ; ¥ € T} be a complex interpolation family (c.i.f.) on
I' = {|z] = 1} in the sense of [3]. Let U be the containing space and
F = F(A(-),T) the space of analytic U-valued functions associated to
the family.

Let T be an analytic functional on the unit disc D and define the
interpolated space A[T] as

AlT)={zeU; 3f € F, T(f) =z}

with the usual norm ||z|| agr) = inf{|| fll= ; T(f) = z}. We shall say that
T is of finite support if T admits a representation of the type

n m(j)

(1) T=3 % ausV(z).

7=0 1=0

The set {zo," - ,2n} is said to be the support of T'.
The two following results are easily proved.
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Proposition 1. Let {A(y) ; v € T} and {B(y) ;v € T} be two
c.i.f. with contaninig spaces U, V and log-intersection space A and B
respectively. Let L : A — NyerB(7y) be a linear operator such that, for
each a € A and for almost every vy €T,

[ LallBiyy £ MM)llallacy

where log M(-) € LY(T).
Under theses conditions, if L : U —» V is continuous,

L : A[GT] — B[T)

with norm < 1, where

1 2m
6e) = exp (~5- [ og M) art. ),
T Jo
H, being the Herglotz kernel.

Proposition 2.

() If n>m, A[6(™)(29)] is continuously embedded in A[6™ (z)].
(b) If T is of the type (1), A[T] = 37_y Al6™)(2;)].

Let X be a measure space and u(7y,z) > 0 a measurable function on
I' x X such that, for almost every z € X,

Lﬂ%log (v, 2)dP,(v) < +oo,

with p(y) > 1 a measurable function on I and P, the Poisson kernel.

We shall denote by u(y) the measure u(y,z)dz with dz the o-finite
measure of X, and by LZ = LP(u(7)) the corresponding LP space.

Assume that the family {LZ((:’Y)) , v € T} is a cif. with containing

space U. Consider the function

u(z,x) = exp <p(Z)%/O ’ 1%7) log u(%x)de(’y)) :

It is known (see [6]) that if T" = 6(z0), [L, (())][T] =L ((ZZ‘:))), where

1 1 /2" 1
— = ——dP,(v).
p(z)  2mJy p(v) )
The aim of this paper is to identify the interpolated spaces [L? %

u(')][T]
when T is of finite support.




INTERPOLATION OF FAMILIES {L} ((:’1) yeTl} 451

1. Main results

From Proposition 2, we shall only need to identify a space
[LZ ((‘A))][(S(")(zo)] with 29 € D and n € N. We shall do an induction
with respect to n using the following result.

Lemma 3. Let F : D — U be an analytic function with non-
tangential limit a.e. v € T and such that, for almost every z € X,
the function F(z,x) € NT (D). Assume that, for almost every v € T,

F(y,") € LX) and

€85 sup||F(7y')||LP('y) =M < +oo.
yel ()
Then, if F(z0,") = 0, F'(z0,") is in [L2))[8(z0)) = LZ2).

Proof:

We shall prove it with the help of the Fundamental inequality (F.L)
of Herndndez (see [6]).

Under the hypothesis given, we can consider the function

F(z,z)}/z — 2o z# 2
F'(z9,z) z = Zp.

G(z,7) = {

From the F.I. and the fact that the function G(z,z)u(z, z)**), with
a(z) =1/p(z), is in Nt(D), we have

/ Gz, 2)PP (2, ) dp = / Gz 2) () POy <
X X

F.I

1 [2r I
< [ o (pa)e [ oglGEnIutr 0 POlaP.() ) i L
X T Jo

<ew (5 / 2 tog [ 160 alutr, )70 p0an) ap. () ) =
(p 2L 02 % g(/X (%)Mﬂ(ﬂ)d/‘) sz(7)> <
o (s [ 0w 1L penap.() =

o )= (s2e)

I/\
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Thus, the proof is finished from Fatou’s Lemma. Moreover,
M
F'(z, - oy <
” (ZOa )“LZ((Z(()))) = d(

ZOaF).

For each f € L (z"), we shall express by H; the function
f

#(zo)
w(z)p(zo)
Hy (2, ) = (2, 2) (20,2l oy ( /(@)

hem 17 (@)] 11700 ’

u(zg)

where w(z) = a(z) + &(z), with &(z) the conjugate function of a such
that G(zg) = 0. We shall assume, in the sequel, that w’(z) # 0.

Proposition 4. f ¢ [Lp ) ][5' (20)] if and only if there exist fo and fi
in LP{™) such that

u(zo)
3) f(x) = fo(z) + fi(z)(log |fi(z)| + Hp(z20,2)),
where ,
Hy(#0,2) = (M(%x)—a(z)#(zo,m)w(z)) (20)-
Moreover,

4 Iiss = inf + filo 2 20) + 20)
(4) ”f”[Lﬁ((.))”‘f (20)] {”fO filog ‘”fl”LZ((z(;))“L:((zg)) ”fl“[,z((zg))
f satisfies (3) }.

Proof:
To simplify notation, we shall denote by F(n) the space [LZ (())] [6(™ (29)]

p(20)
for every n € N. Thus, E(0) = L,z

Let f € E(1) and F € F(L*),T) with F'(z,") = f.

Consider A = {z € X ; F(2,z) = 0}. It is clear, from the previous
lemma, that f§{z) = f(z ) A(z) € E(0) and

Il

Il folle) < dzo.T)

If £ € A°, F(29,z) # 0 and we can consider the function H(z,z) =
HF(zo,z)XAc (-73)
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It is easy to see that H satisfies the hypothesis of the previous lemma
but H(z,-) = 0. So, the function G(z,z) = F(z,z)xac(z) — H(z,z)
satisfies the necessary hypothesis to ensure that if f; = F(zg, z)xa<(z),

G'(20,2) = f(@)xac(z) — f1(@)(p(20)w'(20) log | f1(x)])+
+p(20)w'(20) f1(z) log [l fillEo) + Hul20,7) f1(2)

is in E(0) with norm < 2||F||#/d(20,T).

Combinating the previous results and joining all the terms of F(0) in
a single function f, we obtain the desired results as well as one of the
inequalities of (4).

Conversely, let f = fo+ f1 (H,(20) + w'(20)p(20) log |f1]) = fo+g. If
we consider the function Hy,, we obtain, from the previous lemma, that

if Fe ]-"(LZ(('.)),F) satisfies F'(zo,z) = f1, then

f1(z) = F'(20,%) — Hy, (20, %) =
= F'(20,7) — f1(2) (p(20)w' (20) log | f1(z)|-

) (a0) 108 il g + Fl2) ) =
= F'(z0,z) + f1(x)p(20)w'(20)log || f1llE(0) — 9(x)

is in E(0) and, thus, g € E(1). E(0) being continuously embedded in
E(1) we obtain the desired algebraic equality. Moreover,

Wflleqy = Ilfo+glleq) =

= |lfo = fi + F'(20,2) + fip(2z0)w'(20) log | f1lleoyll ey <

< o + fir(zo)w'(20)log || fill ey lBy + I1f1 — F' (20, )1y <
< Cllfo + fip(zo)w'(20) log || f1ll gyl E@0)+

1
+ m(HFHf- + 1 f1llzy) + I1Fll=

Now, (4) follows easily. ®

Proposition 5. f € [LZ((',))][é(")(zo)] if and only if there exist fo, ..., fn
in LZ((ZZ‘;)) such that f(z) = fo(z) + H(20,7) + - -+ + H (20, ), where

= Hy..

7 .f]

Proof: _
E(n) still denotes the space [LZ ((‘.))][6(”) (z0)] as in the preceeding proof.
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It is already known that the result is true for n = 0 and n = 1. Assume
that it is true for n — 1 and let us see it for n > 1.
Let f € E(n) and F € F(LZ),T) with F™(zg,-) = f. Consider the
set
A={z e X ; F(z,z) =0}

and assume the following

Claim. If F satisfies the hypothesis of Lemma 3, then we get that
F(™(2,") € E(n—1).

It is clear then, that (F(z,)xa("))™(2) is in E(n — 1) and if f, =
F(zp, )xac and H, = Hy_, then G,(2,z) = F(z,z)xac(z) — Hn(2,%)
satisfies the hypothesis of the claim and therefore, Ggl")(zo, ) € E(n—1).

Consequently, if we call g(-) = (F(z,)xa(-))™(z) + Gsl")(zo,-) we
have, from the induction hypothesis, that there exist fy, - -, fn—1 in
E(0) such that

0@) = fole) + 3 B (20,2).

Jj=1

Finally, as f(z) = g(z) + H,(L")(zo,x), the desired result is obtained.
The converse is quite similar.
Proof of the claim:

We know that the claim is true for n = 1. Let us consider the set
B = {z € X ; F'(20,2) = 0}. Then, from the induction hypothesis,
(F(z,)xB(-))™(z) is in E(n—2).

Let now z ¢ B. One can consider the function

Gr(z,z) = —Fz(j—’:;)xgc(x) — Hp(z,z)

where Hr = Hp/ (44, )xge -

Because G satisfies the hypothesis of Lemma 3, Ggl_l)(zo, ) is in
E(n —2) and, thus, as

(F(z,2)x3) ™ (z0) = n (G5 (z0,2) + HE (a0, ))

and H}n_l)(zo, ) € E(n — 1), we get that F(")(zg,-) isin E(n —1). W
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Corollary 6. Let J(z,z) = (u(z0,)/p(z, m))l/p. Then, the space
[L‘;(‘)][é(")(zo)] is equivalent to

LP(p(20)) + LP(1(20) (' (20, %)) 77) + - -+ L (u(20)(J ™ (20,2)) 77) =
P(u(20)(Y_ 179 (20,2)) 7).
j=1

Proof:
Let us denote px = u(zo)J®) (29, 2) P for every k € N.
If p(v) = p, Hy(z,2) = J(2,2)f(2) and, as f € LP(uo),

H® (20,2) = £(@)J® (20,) € LP ().

Now we see the equivalence of the norms. Assume initially that n =1
and let f € (L} ][¢6"(0)]. Let F € F(Ly,T) with F'(20,2) = f()
and consider G(z,z) = F(z,x) — J(z,2)F(z0,z). It is satisfied that
G(29,-) = 0 and, therefore, G'(z,-) € LP(uo). Moreover,

a
(IFl5 + 1F (0,2 | ripy) < AENZ

1
'
Mippigy < e :
|G’ (20, 1iF3 (o) = d(zo,T ~ d(z,T)

20, )

Thus, F'(z0,z) = G'(20,2) + J'(20, ) F{20, ) = fo(z) + fi(z) with fo
in LP(uo) and f; in LP(u1). Moreover,

P + P < F - 5

that, a fortiori, yields the equivalence of the norms. Now, assume that
the result is true forn—1 and let f € [LZ(.)][6(")(z0)] and Fin f(Lﬁ(_), I

with F(")(zp, z) = f(z). The function G(™)(z,2)=F(z) — J ™20,z )F (20,2)

is in {LZ (.)][5("_1)(20)] and, from the induction hypothesis, there exist

fi € LP(uo) (0 < j < n —1) such that

F(@)=fo(@)+f1(2) T (20, )+ -+ far(8 " D20, 2)+J 20, 2) F (20, 7).
Moreover,

I foll 2o uoy ++ -+ | fr=tl Lo (un 1) < NG (20, Dllizz jise-n oy KNE N #-

Now, the proof is easily ended. ®
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Corollary 7. Let wg, w1 be two positive measurable functions on X.
Then f is in [LP°(wo), LP* (w1)]s/(g) if and only if there exist fo, fi in

LP(w), (1/p=(1—0)/po+0/p1 and w = wl~ /PP ) such that

(@) = fola) + (@) - g un(z) — - log w(z)) + fa(e) og |1(e)]

Proof:

Given 0 < 0 < 1, there exists a measurable set I'y C I' such that
le dP,,(v) = 8. So, if we consider A(y) = LP°(wg) for each vy € T'\ T
and A(y) = LP*(w;) for each y€T'y, we have A(7y) =[LP°(wq), L* (w1)]a(y)
with a(-) = xr, ().

It is known (see [11, 1.18.5]) that A(y) = L‘Z((:Yy),x)’ where, for each
yeT,

1 _1-a(), a()
p(7) Po P

p(y, @

and ’

) = WR(=e0)/po, Pt/ /p.

Moreover, o attains the values 0 and 1, and thus, as we have proved
in [2] in quite analogy with the reiteration results of [3], if T = 6(™) (2)
(n € N) and w'(29) # 0, then

A[T] = (L (wo), L7 (w)]s,

where S(p) = T(p o w) and [LP°(wq), L' (w)]s is defined like in the
interpolation method of {10]. So,

[LP (wo),LP* (w1)]s = [LP° (wo),LP* (w1)] 57 (a(z0)) = [LF° (w0),LP* (w1)] 5/ (9) -

Hence, the space we want to identify is a particular case of Proposition
5. But, in this case,

iz, x) = wg(z)(l—w(z))/Powjlo(z)w(z)/pl.

If we call B(z) = & [7" -L5dP,(y) and B(z) = B(z) + iB(2) with

B(zg) = 0, we have
(20, 2) 5z, ) B = (0= D+O=0pBEN 7o, (BB~ s

Now we can apply Proposition 4 to end the proof. W
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Remark. In view of the Corollary 6 and the above calculation, one
can easily obtain that

[LP(wo), LP (w1)]stm ) = LP (wp "] (1 + |log (wo/w1)]"™) ")

as it is said in [7].
Remark.

Let ¢(z,t) be a function that, for each z € M, is an increasing function
of tin 0 < t < oo, and ¢(x,0) = 0. Denote by ¢(X) the class of
measurable functions g on M such that there exist A > 0 and f € X
with || f||x < 1 and

lg(z)| < Ap(z, Al f(z)|) ae e M.

Define the “norm” of g, ||g|l,(x), as the infimun of the values A for
which such an inequality holds.

It is known (see [1]) that if ¢(z, t) is a concave function of ¢t and change
the previous norm by

lgll = inf{A >0 [g(z)| < Ap(z,|f(2)])  ae z €M},

then (¢(X), | - 1) is a Banach Lattice. In our case, we can only assure
that the space ¢(X) is a Frechet Lattice.

We say that a function f is equivalent to g in RT if and only if there
exist a, b > 0 such that

a fz) < g(z) < b flz) a.e € X.
It is also known that L7 ((1)) = ¢, (L"), where

oy, t) = pl, )~ V/PMt/p(n)

Consider the function

po(x,t) = exp (%/F log ¢ (z,t) de('y)) .

Then @, (z,t) = u(z, z) " /PE1(2),

Finally we assume that, for each 1 < k < n, the function @i(x,t) =
165 (20) (0, (z,t))| is equivalent to an increasing function that we shall
continue denoting by ¢y.
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Proposition 8. If T = §(")(z;), the space [Li (())][T] is equivalent to

ZZ:() Pk (Ll)-

Proof:

Let f € wx(L') and let h € L' with ||A]/z2 < 1 and A > 0 such that
|£(@)] < X or(z, Alh(z)])-
We have

er(z, Ah(z)]) = ‘|5(k)(20) (u(z,x)—l/p(z,) ()\|h(x)l)w(z)> .

It is easy to see that the function F(z,-) = u(z, )~ /PE) (\|h(z)])<*)
is in ]-'(LZ(.)), and hence, f is in [LZ(())][ ®) (20)).

Moreover, ||f||[Lff(',))][6(’“>(20)] < A|F|l#. So it is clear that if (fy)n
converges to zero in @i (L), (fn)n converges to zero in [Lp ][6("c (20))-

Conversely, from Proposition 5, one can obtain that if fE[LZ ((.)>][6(”)(z0)],
flz) =g(z) +H7(Ln)(zo,x) where |H,(Ln)(zo,:c)| = pn(z, |gn(z)]) with g, =

| £n|P*) u(2p) € L. An induction ends the proof. B

2. Applications

Example 1.
If b € BMO has a norm enough small s, then W = e? and W1 are

weight of Ap. Furthermore. for any Calderén Zygmund integral operator
(CZO), L
L:LP(W)— LP(W) and L:LP(W™')— LP(W™1).
(See [8]).
Proposition 9. Under the previous hypothesis, for each b€ BMO,

| @@ st < ol Voe

Proof:

It is a trivial consequence of the fact that

L: [LP(W), LP(W ™ Y] gy — [LP(W), LP(W )] s1(0)
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and that for 8 = 1/2,

(LP(W), LP(W D)3y = LP((1 + [6]) 7).

So, if f € LP((1 + [b])7P), LN Lecarippy-») K N flzeoa+is)-»)-
On the other hand, if g € L?, L{g) € L? and

LN et is)y-») < I1L(9)lp < cllgllp-

The combination of all these results ends the proof. B

Corollary 10. If L is a CZO,

1
1 P 1
L b —————d <L - X)
b:;‘EO(/ LA @DF T sl ‘”) s

for any Lebesgue measurable set X and |X| its measure.

Example 2
Consider 0 < v < n, 1 < p1 < (n/y) and 1/p; = 1/p1 —y/n. If
b€ BMO, it is proved in [9] that if L, = *|z|"~" (Riesz Potentials),
then
L., : LP'(e?) — LP2(e?) and
L, : LP (e7%) — LP2(e7?).

Thus, with an argument quite similar to the one of Proposition 9, we
get the following result.

Proposition 11. Under the previous conditions,

sup (/ | Ly |b(z)] |P? 1 dx> 7 < 1| f"l
ZIX|Pr.
veBmo \Jx (1ol + s[b(z)1)= s

Example 3.

Let 1 <p; <ps <ooandp=2(p;" +p;)"L If g € LP(R?) and g*
is the Maximal function of Hardy-Littlewood, there exists & such that
(g*)* are weights in the classes A, and 4,, ([4, Prop. 2]). Conse-
quently, if L is a CZO,

L:IP((g")*%) — IP((¢")*")  and
L IP(g")*%) — LP((g")*7).
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Proposition 12. Under the previous conditions, for each f € LP(R™)
(m <p<p2)

1
1 P 1
NP o _

Example 4. On the Hardy-Littlewood maximal operator.
Let M be the Hardy-Littlewood maximal operator. If 0 < o < 1, then

f(@) = M(|z]|~*")(1 + |log M(|lz|~*") )~ € L/*(R?).

If we take p = 1/ and u = 1, it will be a particular case of the following
result.

Proposition 13. Let u € Ay andp > 1. If f(1+ |log |f| |)7! €
LP(u™Y) and g = M(fu=)u, then g(1 +|log |g| |)~* € LP(u~1).

Proof: Let o : T — (0,1) a measurable function such that

1 1 /2” 1
S=— | ———dy.
p 2r)y l1+aly)

Then
(a) u*™ € Ay(yy41 (see [5]) and, therefore, if p(v) = 1 + a(7)

M : LPO) (@MY 5 [P0 (),

(b) By interpolation
M : [LPO(uO))[8'(0)] — [LPO(u*O))[6'(0)].

(c) If
u: [PO WO (0)] — Lg(u™)

is defined by u(f) = uf, then u is an isomorfism, where Ly(u™?) is the
Orlicz space associated to ¢(t) = p~1(t)?, and p(t) = t(1+|log ¢|). This
result is a consequence of Proposition 4 with H,(0,z) = pw’(0) log v and
from the fact that Ls(u™?) is the space of the measurable functions such
that f(1+ |log |f] )7t € LP(u™t).

Now the proof ends from (a), (b) and (c). H
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