INTERPOLATION OF FAMILIES $\{L_{\mu(\gamma)}^{p(\gamma)}, \gamma \in \Gamma\}$

M. J. CARRO AND J. CERDÀ

Abstract _

We identify the intermediate space of a complex interpolation family - in the sense of Coifman, Cwikel, Rochberg, Sagher and Weissof L^p spaces with change of measure, for the complex interpolation method associated to an analytic functional.

0. Introduction

Let $\{A(\gamma) : \gamma \in \Gamma\}$ be a complex interpolation family (c.i.f.) on $\Gamma = \{|z| = 1\}$ in the sense of [3]. Let U be the containing space and $\mathcal{F} = \mathcal{F}(A(\cdot), \Gamma)$ the space of analytic U-valued functions associated to the family.

Let T be an analytic functional on the unit disc D and define the interpolated space A[T] as

$$A[T] = \{x \in U ; \exists f \in \mathcal{F}, T(f) = x\}$$

with the usual norm $||x||_{A[T]} = \inf\{||f||_{\mathcal{F}}; T(f) = x\}$. We shall say that T is of finite support if T admits a representation of the type

(1)
$$T = \sum_{j=0}^{n} \sum_{l=0}^{m(j)} a_{jl} \delta^{(l)}(z_j).$$

The set $\{z_0, \dots, z_n\}$ is said to be the support of T. The two following results are easily proved.

¹⁹⁸⁰ Mathematics Subject Clasification (1985 Revision) 46M35, 46E30. Partially supported by DGICYT grant PB91-0259.

Proposition 1. Let $\{A(\gamma) : \gamma \in \Gamma\}$ and $\{B(\gamma) : \gamma \in \Gamma\}$ be two c.i.f. with containing spaces U, V and log-intersection space A and B respectively. Let $L : A \longrightarrow \bigcap_{\gamma \in \Gamma} B(\gamma)$ be a linear operator such that, for each $a \in A$ and for almost every $\gamma \in \Gamma$,

$$||La||_{B(\gamma)} \leq M(\gamma)||a||_{A(\gamma)}$$

where $\log M(\cdot) \in L^1(\Gamma)$.

Under theses conditions, if $L: U \longrightarrow V$ is continuous,

$$L: A[GT] \longrightarrow B[T]$$

with $norm \leq 1$, where

$$G(z) = \exp\left(-\frac{1}{2\pi} \int_0^{2\pi} \log M(\gamma) dH_z(\gamma)\right),$$

 H_z being the Herglotz kernel.

Proposition 2.

- (a) If n > m, $A[\delta^{(m)}(z_0)]$ is continuously embedded in $A[\delta^{(n)}(z_0)]$.
- (b) If T is of the type (1), $A[T] \equiv \sum_{j=0}^{n} A[\delta^{(m(j))}(z_j)]$.

Let X be a measure space and $\mu(\gamma, x) \geq 0$ a measurable function on $\Gamma \times X$ such that, for almost every $x \in X$,

$$\int_{\Gamma} \frac{1}{p(\gamma)} \log \mu(\gamma, x) dP_z(\gamma) < +\infty,$$

with $p(\gamma) \geq 1$ a measurable function on Γ and P_z the Poisson kernel.

We shall denote by $\mu(\gamma)$ the measure $\mu(\gamma, x)dx$ with dx the σ -finite measure of X, and by $L^p_{\mu(\gamma)} = L^p(\mu(\gamma))$ the corresponding L^p space.

Assume that the family $\{L_{\mu(\gamma)}^{p(\gamma)}, \gamma \in \Gamma\}$ is a c.i.f. with containing space $\mathcal U$. Consider the function

$$\mu(z,x) = \exp\left(p(z)\frac{1}{2\pi} \int_0^{2\pi} \frac{1}{p(\gamma)} \log \mu(\gamma,x) dH_z(\gamma)\right).$$

It is known (see [6]) that if $T = \delta(z_0)$, $[L_{\mu(\cdot)}^{p(\cdot)}][T] \equiv L_{\mu(z_0)}^{p(z_0)}$, where

$$\frac{1}{p(z)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{p(\gamma)} dP_z(\gamma).$$

The aim of this paper is to identify the interpolated spaces $[L_{\mu(\cdot)}^{p(\cdot)}][T]$ when T is of finite support.

1. Main results

From Proposition 2, we shall only need to identify a space $[L_{\mu(\cdot)}^{p(\cdot)}][\delta^{(n)}(z_0)]$ with $z_0 \in D$ and $n \in N$. We shall do an induction with respect to n using the following result.

Lemma 3. Let $F:D\longrightarrow \mathcal{U}$ be an analytic function with non-tangential limit a.e. $\gamma\in\Gamma$ and such that, for almost every $x\in X$, the function $F(z,x)\in N^+(D)$. Assume that, for almost every $\gamma\in\Gamma$, $F(\gamma,\cdot)\in L^{p(\gamma)}_{\mu(\gamma)}$ and

ess
$$\sup_{\gamma \in \Gamma} \|F(\gamma, \cdot)\|_{L^{p(\gamma)}_{\mu(\gamma)}} = M < +\infty.$$

Then, if
$$F(z_0,\cdot)=0$$
, $F'(z_0,\cdot)$ is in $[L_{\mu(\cdot)}^{p(\cdot)}][\delta(z_0)]=L_{\mu(z_0)}^{p(z_0)}$.

Proof:

We shall prove it with the help of the Fundamental inequality (F.I.) of Hernández (see [6]).

Under the hypothesis given, we can consider the function

$$G(z,x) = \begin{cases} F(z,x)/z - z_0 & z \neq z_0 \\ F'(z_0,x) & z = z_0. \end{cases}$$

From the F.I. and the fact that the function $G(z,x)\mu(z,x)^{\alpha(z)}$, with $\alpha(z)=1/p(z)$, is in $N^+(D)$, we have

$$\begin{split} &\int_X |G(z,x)|^{p(z)} |\mu(z,x)| d\mu = \int_X |G(z,x)\mu(z,x)^{\alpha(z)}|^{p(z)} d\mu \leq \\ &\leq \int_X \exp\left(p(z)\frac{1}{2\pi}\int_0^{2\pi} \log |G(\gamma,x)\mu(\gamma,x)^{1/p(\gamma)}| dP_z(\gamma)\right) d\mu \overset{F.I.}{\leq} \\ &\leq \exp\left(\frac{1}{2\pi}\int_0^{2\pi} \frac{p(z)}{p(\gamma)} \log\left(\int_X |G(\gamma,x)\mu(\gamma,x)^{1/p(\gamma)}|^{p(\gamma)} d\mu\right) dP_z(\gamma)\right) = \\ &= \exp\left(p(z)\frac{1}{2\pi}\int_0^{2\pi} \frac{1}{p(\gamma)} \log\left(\int_X \left(\frac{|F(\gamma,x)|}{|e^{i\gamma}-z_0|}\right)^{p(\gamma)} \mu(\gamma,x) d\mu\right) dP_z(\gamma)\right) \leq \\ &\leq \exp\left(p(z)\frac{1}{2\pi}\int_0^{2\pi} \log \ \|\frac{F(\gamma,\cdot)}{e^{i\gamma}-z_0}\|_{L^{p(\gamma)}_{\mu(\gamma)}} dP_z(\gamma)\right) = \\ &= \exp\left(p(z)\log\frac{M}{d(z_0,\Gamma)}\right) = \left(\frac{M}{d(z_0,\Gamma)}\right)^{p(z)}. \end{split}$$

Thus, the proof is finished from Fatou's Lemma. Moreover,

$$||F'(z_0,\cdot)||_{L^{p(z_0)}_{\mu(z_0)}} \le \frac{M}{d(z_0,\Gamma)}.$$

For each $f \in L^{p(z_0)}_{\mu(z_0)}$, we shall express by H_f the function

$$H_f(z,x) = \mu(z,x)^{-\alpha(z)} \mu(z_0,x)^{w(z)} \|f\|_{L^{p(z_0)}_{\mu(z_0)}} \frac{f(x)}{|f(x)|} \left(\frac{|f(x)|}{\|f\|_{L^{p(z_0)}_{\mu(z_0)}}} \right)^{w(z)p(z_0)},$$

where $\omega(z) = \alpha(z) + \tilde{\alpha}(z)$, with $\tilde{\alpha}(z)$ the conjugate function of α such that $\tilde{\alpha}(z_0) = 0$. We shall assume, in the sequel, that $\omega'(z_0) \neq 0$.

Proposition 4. $f \in [L^{p(\cdot)}_{\mu(\cdot)}][\delta'(z_0)]$ if and only if there exist f_0 and f_1 in $L^{p(z_0)}_{\mu(z_0)}$ such that

(3)
$$f(x) = f_0(x) + f_1(x)(\log |f_1(x)| + H_{\mu}(z_0, x)),$$

where

$$H_{\mu}(z_0, x) = \left(\mu(z, x)^{-\alpha(z)} \mu(z_0, x)^{w(z)}\right)'(z_0).$$

Moreover,

(4)
$$||f||_{[L^{p(\cdot)}_{\mu(\cdot)}][\delta'(z_0)]} \equiv \inf\{||f_0 + f_1 \log ||f_1||_{L^{p(z_0)}_{\mu(z_0)}}||_{L^{p(z_0)}_{\mu(z_0)}} + ||f_1||_{L^{p(z_0)}_{\mu(z_0)}};$$

 $f \text{ satisfies (3) }\}.$

Proof:

To simplify notation, we shall denote by E(n) the space $[L_{\mu(\cdot)}^{p(\cdot)}][\delta^{(n)}(z_0)]$ for every $n \in \mathbb{N}$. Thus, $E(0) = L_{\mu(z_0)}^{p(z_0)}$.

Let $f \in E(1)$ and $F \in \mathcal{F}(L^{p(\cdot)}_{\mu(\cdot)}, \Gamma)$ with $F'(z_0, \cdot) = f$.

Consider $A = \{x \in X ; F(z_0, x) = 0\}$. It is clear, from the previous lemma, that $f_0^*(x) = f(x)\chi_A(x) \in E(0)$ and

$$||f_0^*||_{E(0)} \le \frac{||F||_{\mathcal{F}}}{d(z_0, \Gamma)}.$$

If $x \in A^c$, $F(z_0, x) \neq 0$ and we can consider the function $H(z, x) = H_{F(z_0, x)} \chi_{A^c}(x)$.

It is easy to see that H satisfies the hypothesis of the previous lemma but $H(z_0,\cdot)=0$. So, the function $G(z,x)=F(z,x)\chi_{A^c}(x)-H(z,x)$ satisfies the necessary hypothesis to ensure that if $f_1=F(z_0,x)\chi_{A^c}(x)$,

$$G'(z_0, x) = f(x)\chi_{A^c}(x) - f_1(x)(p(z_0)w'(z_0)\log |f_1(x)|) + p(z_0)w'(z_0)f_1(x)\log ||f_1||_{E(0)} + H_{\mu}(z_0, x)f_1(x)$$

is in E(0) with norm $\leq 2||F||_{\mathcal{F}}/d(z_0,\Gamma)$.

Combinating the previous results and joining all the terms of E(0) in a single function f_0 , we obtain the desired results as well as one of the inequalities of (4).

Conversely, let $f=f_0+f_1\left(H_\mu(z_0)+w'(z_0)p(z_0)\log |f_1|\right)=f_0+g$. If we consider the function H_{f_1} , we obtain, from the previous lemma, that if $F\in \mathcal{F}(L_{\mu(\cdot)}^{p(\cdot)},\Gamma)$ satisfies $F(z_0,x)=f_1$, then

$$\begin{split} f_1^*(x) &= F'(z_0, x) - H'_{f_1}(z_0, x) = \\ &= F'(z_0, x) - f_1(x) \left(p(z_0) w'(z_0) \log |f_1(x)| - \right. \\ &\left. - p(z_0) w'(z_0) \log ||f_1||_{L^{p(z_0)}_{\mu(z_0)}} + H_{\mu}(z_0, x) \right) = \\ &= F'(z_0, x) + f_1(x) p(z_0) w'(z_0) \log ||f_1||_{E(0)} - g(x) \end{split}$$

is in E(0) and, thus, $g \in E(1)$. E(0) being continuously embedded in E(1) we obtain the desired algebraic equality. Moreover,

$$||f||_{E(1)} = ||f_0 + g||_{E(1)} =$$

$$= ||f_0 - f_1^* + F'(z_0, x) + f_1 p(z_0) w'(z_0) \log ||f_1||_{E(0)}||_{E(1)} \le$$

$$\le ||f_0 + f_1 p(z_0) w'(z_0) \log ||f_1||_{E(0)}||_{E(1)} + ||f_1^* - F'(z_0, \cdot)||_{E(1)} \le$$

$$\le C||f_0 + f_1 p(z_0) w'(z_0) \log ||f_1||_{E(0)}||_{E(0)} +$$

$$+ \frac{1}{d(z_0, \Gamma)} (||F||_{\mathcal{F}} + ||f_1||_{E(0)}) + ||F||_{\mathcal{F}}.$$

Now, (4) follows easily.

Proposition 5. $f \in [L_{\mu(\cdot)}^{p(\cdot)}][\delta^{(n)}(z_0)]$ if and only if there exist $f_0, ..., f_n$ in $L_{\mu(z_0)}^{p(z_0)}$ such that $f(x) = f_0(x) + H'_1(z_0, x) + \cdots + H_n^{(n)}(z_0, x)$, where $H_j = H_{f_j}$.

Proof:

E(n) still denotes the space $[L_{\mu(\cdot)}^{p(\cdot)}][\delta^{(n)}(z_0)]$ as in the preceding proof.

It is already known that the result is true for n = 0 and n = 1. Assume that it is true for n - 1 and let us see it for n > 1.

Let $f \in E(n)$ and $F \in \mathcal{F}(L^{p(\cdot)}_{\mu(\cdot)}, \Gamma)$ with $F^{(n)}(z_0, \cdot) = f$. Consider the set

$$A = \{x \in X \; ; \; F(z_0, x) = 0\}$$

and assume the following

Claim. If F satisfies the hypothesis of Lemma 3, then we get that $F^{(n)}(z_0,\cdot) \in E(n-1)$.

It is clear then, that $(F(z,\cdot)\chi_A(\cdot))^{(n)}(z_0)$ is in E(n-1) and if $f_n = F(z_0,\cdot)\chi_{A^c}$ and $H_n = H_{f_n}$, then $G_n(z,x) = F(z,x)\chi_{A^c}(x) - H_n(z,x)$ satisfies the hypothesis of the claim and therefore, $G_n^{(n)}(z_0,\cdot) \in E(n-1)$.

Consequently, if we call $g(\cdot) = (F(z,\cdot)\chi_A(\cdot))^{(n)}(z_0) + G_n^{(n)}(z_0,\cdot)$ we have, from the induction hypothesis, that there exist f_0, \dots, f_{n-1} in E(0) such that

$$g(x) = f_0(x) + \sum_{j=1}^{n-1} H_j^{(j)}(z_0, x).$$

Finally, as $f(x) = g(x) + H_n^{(n)}(z_0, x)$, the desired result is obtained. The converse is quite similar.

Proof of the claim:

We know that the claim is true for n = 1. Let us consider the set $B = \{x \in X : F'(z_0, x) = 0\}$. Then, from the induction hypothesis, $(F(z, \cdot)\chi_B(\cdot))^{(n)}(z_0)$ is in E(n-2).

Let now $x \notin B$. One can consider the function

$$G_F(z,x) = rac{F(z,x)}{z - z_0} \chi_{B^c}(x) - H_F(z,x)$$

where $H_F = H_{F'(z_0,\cdot)\chi_{B^c}}$.

Because G_F satisfies the hypothesis of Lemma 3, $G_F^{(n-1)}(z_0,\cdot)$ is in E(n-2) and, thus, as

$$(F(z,x)\chi_{B^c})^{(n)}(z_0) = n\left(G_F^{(n-1)}(z_0,x) + H_F^{(n-1)}(z_0,x)\right)$$

and $H_F^{(n-1)}(z_0,\cdot) \in E(n-1)$, we get that $F^{(n)}(z_0,\cdot)$ is in E(n-1).

Corollary 6. Let $J(z,x) = (\mu(z_0,x)/\mu(z,x))^{1/p}$. Then, the space $[L^p_{\mu(\cdot)}][\delta^{(n)}(z_0)]$ is equivalent to

$$L^{p}(\mu(z_{0})) + L^{p}(\mu(z_{0})(J'(z_{0},x))^{-p}) + \dots + L^{p}(\mu(z_{0})(J^{(n)}(z_{0},x))^{-p}) \equiv$$

$$\equiv L^{p}(\mu(z_{0})(\sum_{i=1}^{n}|J^{(i)}|(z_{0},x))^{-p}).$$

Proof:

Let us denote $\mu_k = \mu(z_0)J^{(k)}(z_0, x)^{-p}$ for every $k \in \mathbb{N}$. If $p(\gamma) = p$, $H_f(z, x) = J(z, x)f(x)$ and, as $f \in L^p(\mu_0)$,

$$H_f^{(k)}(z_0, x) = f(x)J^{(k)}(z_0, x) \in L^p(\mu_k).$$

Now we see the equivalence of the norms. Assume initially that n=1 and let $f\in [L^p_{\mu(\cdot)}][\delta'(z_0)]$. Let $F\in \mathcal{F}(L^p_{\mu(\cdot)},\Gamma)$ with $F'(z_0,x)=f(x)$ and consider $G(z,x)=F(z,x)-J(z,x)F(z_0,x)$. It is satisfied that $G(z_0,\cdot)=0$ and, therefore, $G'(z_0,\cdot)\in L^p(\mu_0)$. Moreover,

$$\|G'(z_0,\cdot)\|_{L^p(\mu_0)} \leq \frac{1}{d(z_0,\Gamma)} (\|F\|_{\mathcal{F}} + \|F(z_0,x)\|_{L^p(\mu_0)}) \leq \frac{2\|F\|_{\mathcal{F}}}{d(z_0,\Gamma)}.$$

Thus, $F'(z_0, x) = G'(z_0, x) + J'(z_0, x)F(z_0, x) = f_0(x) + f_1(x)$ with f_0 in $L^p(\mu_0)$ and f_1 in $L^p(\mu_1)$. Moreover,

$$||f_0||_{L^p(\mu_0)} + ||f_1||_{L^p(\mu_1)} \le \frac{2||F||_{\mathcal{F}}}{d(z_0, \Gamma)} + ||F||_{\mathcal{F}} = \left(1 + \frac{2}{d(z_0, \Gamma)}\right) ||F||_{\mathcal{F}},$$

that, a fortiori, yields the equivalence of the norms. Now, assume that the result is true for n-1 and let $f \in [L^p_{\mu(\cdot)}][\delta^{(n)}(z_0)]$ and F in $\mathcal{F}(L^p_{\mu(\cdot)},\Gamma)$ with $F^{(n)}(z_0,x)=f(x)$. The function $G^{(n)}(z_0,x)=f(x)-J^{(n)}(z_0,x)F(z_0,x)$ is in $[L^p_{\mu(\cdot)}][\delta^{(n-1)}(z_0)]$ and, from the induction hypothesis, there exist $f_j \in L^p(\mu_0)$ $(0 \le j \le n-1)$ such that

$$f(x)=f_0(x)+f_1(x)J'(z_0,x)+\cdots+f_{n-1}(x)J^{(n-1)}(z_0,x)+J^{(n)}(z_0,x)F(z_0,x).$$

Moreover,

$$||f_0||_{L^p(\mu_0)} + \cdots + ||f_{n-1}||_{L^p(\mu_{n-1})} \ll ||G^{(n)}(z_0, x)||_{[L^p_{\mu(\cdot)}][\delta^{(n-1)}(z_0)]} \ll ||F||_{\mathcal{F}}.$$

Now, the proof is easily ended. ■

Corollary 7. Let w_0, w_1 be two positive measurable functions on X. Then f is in $[L^{p_0}(w_0), L^{p_1}(w_1)]_{\delta'(\theta)}$ if and only if there exist f_0, f_1 in $L^p(w)$, $(1/p = (1-\theta)/p_0 + \theta/p_1)$ and $w = w_0^{p(1-\theta)/p_0} w_1^{p\theta/p_1}$ such that

$$f(x) = f_0(x) + f_1(x)(\frac{1}{p_0}\log w_0(x) - \frac{1}{p_1}\log w_1(x)) + f_1(x)\log |f_1(x)|.$$

Proof:

Given $0 < \theta < 1$, there exists a measurable set $\Gamma_1 \subset \Gamma$ such that $\int_{\Gamma_1} dP_{z_0}(\gamma) = \theta$. So, if we consider $A(\gamma) = L^{p_0}(w_0)$ for each $\gamma \in \Gamma \setminus \Gamma_1$ and $A(\gamma) = L^{p_1}(w_1)$ for each $\gamma \in \Gamma_1$, we have $A(\gamma) = [L^{p_0}(w_0), L^{p_1}(w_1)]_{\alpha(\gamma)}$ with $\alpha(\cdot) = \chi_{\Gamma_1}(\cdot)$.

It is known (see [11, 1.18.5]) that $A(\gamma) = L_{\mu(\gamma,x)}^{p(\gamma)}$, where, for each $\gamma \in \Gamma$,

$$rac{1}{p(\gamma)} = rac{1 - lpha(\gamma)}{p_0} + rac{lpha(\gamma)}{p_1}$$
 and $\mu(\gamma, x) = w_0^{p(\gamma)(1 - lpha(\gamma))/p_0} w_1^{p(\gamma)lpha(\gamma)//p_1}$

Moreover, α attains the values 0 and 1, and thus, as we have proved in [2] in quite analogy with the reiteration results of [3], if $T = \delta^{(n)}(z_0)$ $(n \in \mathbb{N})$ and $w'(z_0) \neq 0$, then

$$A[T] \equiv [L^{p_0}(w_0), L^{p_1}(w_1)]_S$$

where $S(\varphi) = T(\varphi \circ w)$ and $[L^{p_0}(w_0), L^{p_1}(w_1)]_S$ is defined like in the interpolation method of [10]. So,

$$[L^{p_0}(w_0), L^{p_1}(w_1)]_S \equiv [L^{p_0}(w_0), L^{p_1}(w_1)]_{\delta'(\alpha(z_0))} = [L^{p_0}(w_0), L^{p_1}(w_1)]_{\delta'(\theta)}.$$

Hence, the space we want to identify is a particular case of Proposition 5. But, in this case,

$$\mu(z,x) = w_0^{p(z)(1-w(z))/p_0} w_1^{p(z)w(z)/p_1}.$$

If we call $B(z)=\frac{1}{2\pi}\int_0^{2\pi}\frac{1}{p(\gamma)}dP_z(\gamma)$ and $\mathcal{B}(z)=B(z)+i\tilde{B}(z)$ with $\tilde{B}(z_0)=0$, we have

$$\mu(z_0, x)^{\mathcal{B}(z)}\mu(z, x)^{-B(z)} = w_0^{((w(z)-1)+(1-\theta)p\mathcal{B}(z))/p_0} w_1^{(p\mathcal{B}(z)\theta-w(z))/p_1}.$$

Now we can apply Proposition 4 to end the proof. ■

Remark. In view of the Corollary 6 and the above calculation, one can easily obtain that

$$[L^{p}(w_{0}), L^{p}(w_{1})]_{\delta^{(n)}(\theta)} \equiv L^{p}(w_{0}^{1-\theta}w_{1}^{\theta}(1+|\log(w_{0}/w_{1})|^{n})^{-p})$$

as it is said in [7].

Remark.

Let $\varphi(x,t)$ be a function that, for each $x \in M$, is an increasing function of t in $0 \le t < \infty$, and $\varphi(x,0) = 0$. Denote by $\varphi(X)$ the class of measurable functions g on M such that there exist $\lambda > 0$ and $f \in X$ with $||f||_X < 1$ and

$$|g(x)| \le \lambda \varphi(x, \lambda |f(x)|)$$
 a.e. $x \in M$.

Define the "norm" of g, $||g||_{\varphi(X)}$, as the infimum of the values λ for which such an inequality holds.

It is known (see [1]) that if $\varphi(x,t)$ is a concave function of t and change the previous norm by

$$||q|| = \inf\{\lambda > 0 : |q(x)| < \lambda \varphi(x, |f(x)|)$$
 a.e. $x \in M\},$

then $(\varphi(X), \|\cdot\|)$ is a Banach Lattice. In our case, we can only assure that the space $\varphi(X)$ is a Frechet Lattice.

We say that a function f is equivalent to g in \mathbb{R}^+ if and only if there exist $a,\ b>0$ such that

$$a f(x) \le g(x) \le b f(x)$$
 a.e. $x \in X$.

It is also known that $L_{\mu(\gamma)}^{p(\gamma)} = \varphi_{\gamma}(L^1)$, where

$$\varphi_{\gamma}(x,t) = \mu(\gamma,x)^{-1/p(\gamma)} t^{1/p(\gamma)}.$$

Consider the function

$$\varphi_z(x,t) = \exp\left(\frac{1}{2\pi} \int_{\Gamma} \log \varphi_{\gamma}(x,t) dH_z(\gamma)\right).$$

Then $\varphi_z(x,t) = \mu(z,x)^{-1/p(z)} t^{\omega(z)}$.

Finally we assume that, for each $1 \le k \le n$, the function $\varphi_k(x,t) = |\delta^{(k)}(z_0)(\varphi_z(x,t))|$ is equivalent to an increasing function that we shall continue denoting by φ_k .

Proposition 8. If $T = \delta^{(n)}(z_0)$, the space $[L_{\mu(\cdot)}^{p(\cdot)}][T]$ is equivalent to $\sum_{k=0}^{n} \varphi_k(L^1)$.

Proof:

Let $f \in \varphi_k(L^1)$ and let $h \in L^1$ with $||h||_{L^1} \le 1$ and $\lambda > 0$ such that $|f(x)| \le \lambda \varphi_k(x, \lambda |h(x)|)$.

We have

$$\varphi_k(x,\lambda|h(x)|) = |\delta^{(k)}(z_0) \left(\mu(z,x)^{-1/p(z)} (\lambda|h(x)|)^{\omega(z)}\right)|.$$

It is easy to see that the function $F(z,\cdot) = \mu(z,\cdot)^{-1/p(z)} (\lambda |h(x)|)^{\omega(z)}$ is in $\mathcal{F}(L_{\mu(\cdot)}^{p(\cdot)})$, and hence, f is in $[L_{\mu(\cdot)}^{p(\cdot)}][\delta^{(k)}(z_0)]$.

Moreover, $||f||_{[L^{p(\cdot)}_{\mu(\cdot)}][\delta^{(k)}(z_0)]} \leq \lambda ||F||_{\mathcal{F}}$. So it is clear that if $(f_n)_n$ converges to zero in $\varphi_k(L^1)$, $(f_n)_n$ converges to zero in $[L^{p(\cdot)}_{\mu(\cdot)}][\delta^{(k)}(z_0)]$.

Conversely, from Proposition 5, one can obtain that if $f \in [L_{\mu(\cdot)}^{p(\cdot)}][\delta^{(n)}(z_0)]$, $f(x) = g(x) + H_n^{(n)}(z_0, x)$ where $|H_n^{(n)}(z_0, x)| \equiv \varphi_n(x, |g_n(x)|)$ with $g_n = |f_n|^{p(z_0)}\mu(z_0) \in L^1$. An induction ends the proof.

2. Applications

Example 1.

If $b \in BMO$ has a norm enough small s, then $W = e^b$ and W^{-1} are weight of A_p . Furthermore, for any Calderón Zygmund integral operator (CZO), L,

$$L: L^p(W) \longrightarrow L^p(W)$$
 and $L: L^p(W^{-1}) \longrightarrow L^p(W^{-1})$.

(See [8]).

Proposition 9. Under the previous hypothesis, for each $b \in BMO$,

$$\int_{\mathbf{R^n}} |L(g(x)|b(x)|)|^p \frac{1}{(\|b\|_* + \mathbf{s}|b(x)|)^p} dx \ll \frac{1}{\mathbf{s}^p} \|g\|_p^p \qquad \forall g \in L^p.$$

Proof:

It is a trivial consequence of the fact that

$$L: [L^p(W), L^p(W^{-1})]_{\delta'(\theta)} \longrightarrow [L^p(W), L^p(W^{-1})]_{\delta'(\theta)}$$

and that for $\theta = 1/2$,

$$[L^p(W), L^p(W^{-1})]_{\delta'(\frac{1}{2})} \equiv L^p((1+|b|)^{-p}).$$

So, if $f \in L^p((1+|b|)^{-p})$, $||L(f)||_{L^p((1+|b|)^{-p})} \ll ||f||_{L^p((1+|b|)^{-p})}$. On the other hand, if $g \in L^p$, $L(g) \in L^p$ and

$$||L(g)||_{L^p((1+|b|)^{-p})} \le ||L(g)||_p \le c||g||_p.$$

The combination of all these results ends the proof.

Corollary 10. If L is a CZO,

$$\sup_{b\in BMO} \left(\int_X |L(|b(x)|)|^p \frac{1}{(\|b\|_* + \mathbf{s}|b(x)|)^p} dx \right)^{\frac{1}{p}} \ll \frac{1}{\mathbf{s}} |X|,$$

for any Lebesgue measurable set X and |X| its measure.

Example 2.

Consider $0 < \gamma < n$, $1 < p_1 < (n/\gamma)$ and $1/p_2 = 1/p_1 - \gamma/n$. If $b \in BMO$, it is proved in [9] that if $L_{\gamma} = *|x|^{\gamma-n}$ (Riesz Potentials), then

$$L_{\gamma}: L^{p_1}(e^b) \longrightarrow L^{p_2}(e^b)$$
 and $L_{\gamma}: L^{p_1}(e^{-b}) \longrightarrow L^{p_2}(e^{-b}).$

Thus, with an argument quite similar to the one of Proposition 9, we get the following result.

Proposition 11. Under the previous conditions,

$$\sup_{b \in BMO} \left(\int_X |L_\gamma|b(x)| \ |^{p_2} \frac{1}{(\|b\|_* + \mathbf{s}|b(x)|)^{p_2}} dx \right)^{\frac{1}{p_2}} \ll \frac{1}{\mathbf{s}} |X|^{\frac{1}{p_1}}.$$

Example 3.

Let $1 < p_1 < p_2 < \infty$ and $p = 2(p_1^{-1} + p_2^{-1})^{-1}$. If $g \in L^p(\mathbf{R^n})$ and g^* is the Maximal function of Hardy-Littlewood, there exists α such that $(g^*)^{\pm \alpha}$ are weights in the classes A_{p_1} and A_{p_2} ([4, Prop. 2]). Consequently, if L is a CZO,

$$L: L^{p_1}((g^*)^{\pm \alpha}) \longrightarrow L^{p_1}((g^*)^{\pm \alpha})$$
 and $L: L^{p_2}((g^*)^{\pm \alpha}) \longrightarrow L^{p_2}((g^*)^{\pm \alpha}).$

Proposition 12. Under the previous conditions, for each $f \in L^p(\mathbf{R}^n)$ $(p_1 \le p \le p_2)$,

$$\left(\int_{\mathbf{R}^n} |L(f|\log |g^*|)|^p \frac{1}{(1+\alpha|\log |g^*|)^p} dx\right)^{\frac{1}{p}} \ll \frac{1}{\alpha} ||f||_p.$$

Example 4. On the Hardy-Littlewood maximal operator.

Let M be the Hardy-Littlewood maximal operator. If $0 < \alpha < 1$, then

$$f(x) = M(||x||^{-\alpha n})(1 + |\log M(||x||^{-\alpha n})|)^{-1} \in L^{1/\alpha}(\mathbf{R}^n).$$

If we take $p=1/\alpha$ and u=1, it will be a particular case of the following result.

Proposition 13. Let $u \in A_2$ and p > 1. If $f(1 + |\log |f||)^{-1} \in L^p(u^{-1})$ and $g = M(fu^{-1})u$, then $g(1 + |\log |g||)^{-1} \in L^p(u^{-1})$.

Proof: Let $\alpha:\Gamma\longrightarrow (0,1)$ a measurable function such that

$$\frac{1}{p} = \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{1 + \alpha(\gamma)} d\gamma.$$

Then

(a)
$$u^{\alpha(\gamma)} \in A_{\alpha(\gamma)+1}$$
 (see [5]) and, therefore, if $p(\gamma) = 1 + \alpha(\gamma)$

$$M: L^{p(\gamma)}(u^{\alpha(\gamma)}) \longrightarrow L^{p(\gamma)}(u^{\alpha(\gamma)}).$$

(b) By interpolation

$$M: [L^{p(\cdot)}(u^{\alpha(\cdot)})][\delta'(0)] \longrightarrow [L^{p(\cdot)}(u^{\alpha(\cdot)})][\delta'(0)].$$

(c) If
$$u: [L^{p(\cdot)}(u^{\alpha(\cdot)})][\delta'(0)] \longrightarrow L_{\phi}(u^{-1})$$

is defined by u(f) = uf, then u is an isomorfism, where $L_{\phi}(u^{-1})$ is the Orlicz space associated to $\phi(t) = \varphi^{-1}(t)^p$, and $\varphi(t) = t(1+|\log t|)$. This result is a consequence of Proposition 4 with $H_{\mu}(0,x) = pw'(0)\log u$ and from the fact that $L_{\phi}(u^{-1})$ is the space of the measurable functions such that $f(1+|\log |f||)^{-1} \in L^p(u^{-1})$.

Now the proof ends from (a), (b) and (c). ■

References

- 1. Calderón, A. P., Intermediate spaces and interpolation, the complex method, *Studia Math.* **24** (1964), 113–190.
- 2. Carro, M. J. and Cerdà, J., Complex Interpolation and L^p Spaces, Studia Math. **99** (1) (1991), 57–67.
- 3. Coifman, R., Cwikel, M., Rochberg, R., Sagher, S. and Weiss, G., A theory of complex interpolation for families of Banach spaces, *Advances in Math.* 43 (1982), 203–229.
- 4. Coifman, R., Rochberg, R., Another characterization of *BMO*, *Proc. Amer. Math. Soc.* **79** (1980), 249–254.
- 5. Garcia-Cuerva, J. and Rubio de Francia J. L., "Weighted norm inequalities and related topics," North-Holland, Mathematics studies, 1985.
- 6. Hernández, E., Intermediate spaces and the complex method of interpolation for families of Banach spaces, *Ann. Scuola Norm. Sup. Pisa* **13** (1986), 245–366.
- 7. Lions, J. L., Quelques procédés d'interpolation d'operateurs linéaires et quelques applications, Séminaire Schwartz II (1960/61), 2–3.
- 8. MIKHLIN, S. AND PRÖSSDORF, S., "Singular integral operators," Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986.
- 9. Muckenhoupt, B. and Wheeden, R., Weighted norm inequalities for fractional integrals, *Trans. Amer. Math. Soc.* **192** (1972), 261–274.
- 10. Schechter, M., Complex Interpolation, Comp. Math. 18 (1967), 117–147.
- 11. TRIEBEL, H., "Interpolation theory, function spaces, differential operators," North Holland, Amsterdam-New York-Oxford, 1978.

Departament de Matemàtica Aplicada i Anàlisi Universitat de Barcelona Gran Via de les Corts Catalanes 585 08071 Barcelona SPAIN