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WORK OF PERE MENAL
ON NORMAL SUBGROUPS

F. A. ARLINGHAUS AND L. N. VASERSTEIN

Abstract

We describe subgroups of GL2A which are normalized by elemen-
tary matrices for rings A satisfying the first stable range condition,
Banach algebras A, von Neumann regular rings A, and other rings
A.

Let A be an associative ring with 1 and, for any natural number n,
let GL, A be the group of all invertible n by n matrices with entries in
A (thus GL, A is the group of units of A). Let E,A be the subgroup
of GL,A generated by all elementary matrices a*?, where a € A and
1<i#j<n

For any subset X of A, let E, X denote the subgroup of GL, A gen-
erated by all elementary matrices with entries in X, and let E,(A, X)
denote the normal subgroup of F, A generated by F,X. If n > 3 and
B is an ideal of A, then F, (A, B) is generated by elements of the form
a*bht(—a), wherea € A, b€ B,and 1 <i# j <n.

Denote by G,,(A, B) the inverse image of the center of GL,(A/B)
under the canonical homomorphism GL, A — GL,(A/B); if n > 2, then
Gr(A, B) consists of all matrices of GL, A which, reduced modulo B,
are scalar matrices zI with z in the center of A/B.

For various classes of rings A (see [3], [36]-[38]) including all von
Neumann regular rings, all Banach algebras, all commutative rings, and
all stable range 1 rings, one has a complete description of all subgroups
H of GL, A which are normalized by E,A for n > 3. Namely, for any
subgroup H of GL,A:

(a) If there exists an ideal B of A such that E, (A, B) CH CGr(A, B),
then E,(A, B) = [E,A, E,B] = [H, E,A] = [Gn(A, B), E, A] and
so H is normalized by E, A.
(b) If H is normalized by E, A, then there is a unique ideal B of A
satisfying
E,.(A,B) C HC G,(A,B).
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Note that these cannot be extended to arbitrary rings A when n > 3
(see [10]), nor are they true when n = 2. In fact, the structure of EyA is
intractable even for the integers Z (see [9], [18], [27]-[32]). Since there
are nonstandard normal subgroups of F;A when A is a field of 2 or 3
elements (see [8]), the same is true of any ring A with a residue field of
2 or 3 elements.

A ring A is called von Neumann regular if for every a € A there is an
z € A with axa = a. By using zax instead of z, if necessary, we have
aza = a and zax = .

Some partial positive results about the structure of Es A were known
for von Neumann regular rings (see [37]), Banach algebras (see [38]),
and rings with stable range 1 (see [3]), including all commutative rings
A with stable range 1 (see [5], [20], [34], [43]).

In particular, it was proved in [37] that for A/rad A von Neumann
regular and B an ideal of A, then [E2A, G2(A, B)] C E3(A,B). This
inclusion implies that every subgroup H of GL3A satisfying condition
(a) with n = 2 for some ideal B is normalized by F>A. However, these
results excluded those normal subgroups of E2 A which do not satisfy any
ladder condition E5(A, B) C H C G2(A, B) for any ideal B, for example
when A is the field of 2 or 3 elements and H = [E;A, E;A]. In [24],
Menal and Vaserstein replaced Es(A, B) by [EsA, E2(A, B)] to obtain
the following complete description of normal subgroups of F;A for any
von Neumann regular ring A.

Theorem 1. Let A be a von Neumann regular ring and H o subgroup
Of GLQA.‘

(a) If there is an ideal B of A with [E3A,E;B] C H C G2(A, B),
then
[H,E2A] C E;B = Ey(A, B),

and

(Ga(A, B), [Ea &, B2 )] = [E2A, [ A, H]| =
= [H N EsA, E2A] = [EQA, EzB] = [EzB,EzB]

C H. In particular, H is normalized by [EsA, E3A] and both
HNEsA and HE;B are normalized by EsA;
(b) If [H, ExA] C H, then there is a unique ideal B of A such that

[E2A, EQB] CHC G2(A, B)

This gives the following classification result.
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Corollary. Let A be a von Neumann regular ring. Then a subgroup
H of E3A is normal if and only if there is an ideal B of A such that
[EQA, EgB] C HC GQ(A,B)

In the case of a commutative regular ring A this result was proved by
Costa and Keller in [5]. Note that in this case A has stable range 1 (see
[11, cor. 4.5]), so E;A = SLyA. In general, the stable range of A is not
always 1 (see [23]), and it remains an open problem as to whether A is
always a GE-ring, i.e., GL, A is generated by elementary and diagonal
matrices.

The uniqueness of the ideal B in the theorem is easy to see. This is a
consequence of the following fact which is true for an arbitrary ring A:
if H is a subgroup of GLyA such that [F2A, EaB] C H C G2(A, B) for
some ideal B of A then B = {z € A: z122%! € H}. To verify this fact,
observe that z1-2z2! = [z12, 112(-1)21112] € [E3B, E,A] C H for any
z € B. Finally, since both off-diagonal entries of the matrix are z, the
inclusion z22%! € G5(A, B) implies that z € B.

In general, the intersection H N FE2A in the theorem cannot be replaced
by H because [E2B, F2A] # [H, E3A] when H = Go(A,B) and A = B
is the field of three elements. However, when E»A is perfect (i.e., FxA =
[E2A, E3A]), the theorem implies that [E2A, E;B] = [Ga(A, B), EzAl.
In this case, a subgroup H of GLsA is normalized by E2A whenever
[E2A, E2B) C H C G3(A, B) for an ideal B of A.

In the same paper, Menal and Vaserstein also applied these techniques
to Banach algebras. However, it was shown in [39, section 4] that there
are normal subgroups of E;A corresponding to any quasi-ideal Y of A
which do not satisfy any ladder condition [F2A, E;B] C H C G2(A, B)
for an ideal B of A if Y is not itself an ideal, for example, F2(A,Y) (see
(33, prop. 4.2]).

Recall that a quasi-ideal of A is an additive subgroup Y of A such
that aya € Y and yay € Y for any y € Y and a € A. Note that in
many cases, every quasi-ideal is an ideal, for example, when 24 = A and
A is commutative [39, lemma 4.1], but that this is not true in general.
In fact, if 24 # A, then quasi-ideals appear even in commutative local
rings (see [1]).

The previous results did not use quasi-ideals because every quasi-ideal
of a von Neumann regular ring is an ideal. This is also the case for
every Banach algebra which is simple or commutative (see [38], [39]),
but is not true for an arbitrary Banach algebra. However, the exterior
(Grassman) algebra on a 2-dimensional real vector space is an example
of a 4-dimensional algebra with a quasi-ideal that is not an ideal.

Let Co(A,Y) be the set of all g € GLyA with [g, F2A] C Ea2(A,Y).
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Clearly C3(A,B) C G2(A, B) for any ring A and any ideal B of A;
the equality C3(A,B) = G2A,B) is equivalent to the inclusion
[E2A,G2(A,B)] C E3(A,B). Menal and Vaserstein then proved the
following description of normal subgroups.

Theorem 2. Suppose that 24 = A and that for any a € A there
15 a finite sequence Ti,%2,....Ln in A with x1 + 2o +... + z, = 1 and
1—ax;, € GL1A for alli. Let H be a subgroup of GLoA.

(a) If there is a quasi-ideal Y of A with E5(A,Y) C H C Co(A,Y)
then Ez(A, Y) = [EQA,EQY] = [EQA,EQ(A, Y)] = [EQA,H] =
[E2A,C2(A,Y)] C H and so H is normalized by EsA. Further-
more, when'Y is an ideal, C2(A,Y) = Ga(A,Y);

(b) If H is normalized by E2A, then there is a unique quasi-ideal Y
of A such that E5(A,Y) C H C Ca(A,Y).

This leads to the following classification result.

Corollary. Suppose that 2A = A and that for any a € A there is
a finite sequence x1,%9,...,Tn in A with 9 + 22 + ... + 5, = 1 and
1~az; € GL1A for all i. A subgroup H of ExA is normal if and only if
there is a quasi-ideal Y of A such that E(A,Y) C H C C3(A,Y).

Menal and Vaserstein proved some parts of the theorem under weaker
hypotheses on the ring A. It should also be noted that under slightly
different hypotheses on the ring A, the theorem was proved in [39] in
the case when every quasi-ideal of A is an ideal.

The hypotheses of Theorem 2 are satisfied not only by Banach algebras
but also by many other rings, for example, the ring of all bounded smooth
functions on any smooth manifold. In fact, these hypotheses are satisfied
by any connected topological ring A with GL; A open in A.

Theorem 2 can also be extended to other classes of rings. We call 4
semilocal if A/rad A is a (not necessarily finite) direct product of matrix
rings over division rings — for example, any Artinian ring is semilocal.
Menal and Vaserstein showed in [24] that the semilocal rings satisfying
the hypotheses of Theorem 2 are precisely those rings A with 24 = A
and which contain no factor ring isomorphic to a matrix ring M, (Z/3Z),
which extends Theorem 2 to any subgroup H of GL3;A in the following
manner.

Corollary. Let 24 = A be a semilocal ring without factor rings iso-
morphic to a matriz ring M,,(Z/3Z). Then the conclusions of Theorem
2 hold for any subgroup H of GL3A.
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For a commutative local ring, the corollary was proved in ([1], [13],
[15], [16], [19], [21], [33]); results for commutative semilocal rings can
be found in ([2], [7]). Kolotilina and Vavilov showed in [14] that for any
normal subgroup H of GLyA there is a unique ideal B of A such that
E»(A,B) C H C Ga(A, B), provided that A is a semilocal ring satisfying
two conditions. First, the center of A must contain a unit € such that
1 - € is also a unit; second, that A has neither factor rings which are
division algebras with centers of cardinality less than 5 nor factor rings
which are isomorphic to M»(Z/2Z).

The use of quasi-ideals opens up a wider range of rings. Many authors
had some treatment of commutative local rings, but the results that
Menal and Vaserstein obtained in {24] included noncommutative local
rings A for which 24 = A. In [26], they extended their results to local
rings A such that A/rad A contained at least 4 elements.

We call aring A localif A/rad A is a division ring, where rad A denotes
the Jacobson radical of A. Note that in a local ring A, if Y is a quasi-
ideal of Aand Y # A, then Y C rad A, since A = yAy C Y if Y contains
a unit y.

Let A be the exterior (Grassman) algebra on a vector space V' over a
field F with dimgV > 2 and let Y be the F-subspace of A spanned by
the monomials of odd degree. Then A is a local ring with A/rad A = F'
and Y is a quasi-ideal which is not an ideal. If 2F = F, then 2A = A and
A is not commutative. If 2F = 0, then 24 = 0 and A is commutative.

For any quasi-ideal Y # A of an arbitrary ring A denote by T2(A,Y)
the set of all elements of the form z?'diag(u,v)y™?, where z,y € Y,
u,v € GL1A, and v lau—a,uav ' —a € Y foralla € A. Set To(A, A) =
GLyA. When A is local, it is clear that T3(A4, B) = G2(A, B) for every
ideal B of A. Note that for any ring A, G2(A4,0) is the center of GL2 A =
G2(A, A) which consists of scalar matrices over the center of the ring A.
Moreover, G2(A,0) is the centralizer of EpA in GLyA.

Then Menal and Vaserstein proved the following result.

Theorem 3. Suppose A is a local ring such that A/rad A has at least
4 elements. Then:
(a) EQ(A,Y) = [EQA,EQY] = [EQA,EQ(A,Y)] = [EQA,TQ(A,Y)] fO’I‘
any quasi-ideal Y of A;
(b) If H is a subgroup of GLyA which is normalized by EaA, then
there exists a unique quasi-ideal Y of A such that Ey(A,Y) C
HC TQ(A, Y)

This result uses the following lemma, which follows from T5(A,Y)
being a subgroup of GL,A invariant under conjugation by EyA.
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Lemma. Let A be a local ring, Y a quasi-ideal of A. Then To(A,Y)
is a subgroup of GLsA and [E2A, To(A,Y)] C Ex(AY) C To(AY).
Therefore [H,E,A] C H for any subgroup H of GL2A such that
E>(AY) C H CT5(A,Y) for some quasi-ideal Y of A.

The unique quasi-ideal in part (b) of Theorem 3 is in fact the level
of H, L(H) = {a € A : a’? € H} which plays an important role
in most classification theorems. The uniqueness of Y is easy to see,
because Y C L(H) whenever E2(A,Y) C H, and L{H) C Y whenever
H C T»(A,Y). This is true for an arbitrary ring A and a subset Y;
however in general it is not true that Fy(A4,Y) C Ta(A,Y).

If card (A/rad A) < 4, then F2A maps onto the group EoF = SLoF
where F' = A/rad A is a field, and since FoF is not perfect (see [8]),
E5 A is not perfect.

Furthermore, in this case, H = [EpA, F2A] is a normal subgroup
of E3A such that no quasi-ideal Y of A exists with Eq(4,Y) C H C
T5(A,Y). In fact, if A is the field of 2 elements, then H is a non-central
normal subgroup of GLs A containing no nontrivial elementary matrices.

In the case of a commutative local ring A, the theorem is essentially
due to Abe (see [1]). This case was also treated in ([13], [15], [16],
[19], [21], [33]). When 2A = A, the theorem is contained in Menal and
Vaserstein (see [24]). The main difficulties in proving the theorem lie in
the case when A/rad A is a small field of characteristic 2.

It was shown in [42] that for any local ring A with A/rad A having at
least 3 elements and any normal subgroup H of GLsA there is a unique
ideal B of A such that F2(A, B) C H C G3(A, B). Under the additional
condition that the center of A/rad A has at least 7 elements, this was
proved previously by Kolotilina and Vavilov in [14]. However, it is not
true in general that every subgroup H of GLsA such that Ea(A, B) C
H C G4(A, B) for an ideal B of A is normal (see [42]). By the lemma,
such a subgroup H is always normalized by FsA.

In [25], Menal and Vaserstein used these methods on stable range
one rings. In this paper they generalized to noncommutative rings the
description of EyA-normalized subgroups given by Costa and Keller in
[5]. The quasi-ideals which appear in the results of Menal and Vaserstein
do not appear in many previous results as every quasi-ideal is an ideal
in the commutative case with 24 = A.

A ring A satisfies the first Bass stable range condition if for any a,b € A
with aA+ bA = A, there is an r € A such that (a +br)A = A (see [35]).
Equivalently, this means that there is an r such that a + br is a unit. We
denote this by sr{A) < 1. A result of Kaplansky [40] says that when
sr(A) < 1 every one-sided unit in A is a unit.
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In [12], Goodearl and Menal proved the stable range one condition
for many classes of rings and algebras. They used a strong form of
stable range one, unit 1-stable range (replace the r above by a unit u
to obtain the definition), which followed from the following condition on
a ring A : given any z,y € A, there is a unit u € A such that z —u
and y — v~ ! are both units. Verification of this condition yields stable
range one in the following cases: (1) any algebra over an uncountable
field, in which all elements are zero-divisors or units and there are no
uncountable direct sums of nonzero one-sided ideals; (2) any algebra over
an uncountable field, in which there are only countably many primitive
factor rings, all of which are Artinian; (3) the endomorphism ring of any
noetherian module over an algebra as in (2); (4) any algebraic algebra
over an infinite field; (5) any integral algebra over a commutative ring
which modulo its (Jacobson) radical is algebraic over an infinite field; (6)
any von Neumann regular algebra over an uncountable field, which has
a rank function. They also use other techniques to prove stable range 1
for other rings, including finite Rickart C*-algebras and certain strongly
w-regular rings. For more examples of stable range one rings, see [3], [6],
[35], [40], [41].

When sr(A) < 1, more is known about the structure of GL,A. In (3],
Bass showed

[E,A,E.B] = [E,A,Gn(A,B)] = [GL,A,GL,B) = E,(A, B)

for any ideal B of A and any n > 3, where the principal congruence
subgroup GL, B is defined as the kernel of the homomorphism GL,A —
E.(A/B). Generally, [GL,A,G,(A, B)] # E,(A, B) even for local rings
A. Moreover, G,(A, B)/GL,B = G3(A, B)/GL2B for n > 2, hence this
group does not depend on n, and it is an abelian group isomorphic to
the group of units of the center of the ring A/B.

The group GL,B/E,(A,B) = K,(4,B) = GLB/W(A, B) is also
an abelian group which does not depend on n for n > 2, where
W (A, B) is the subgroup of GL, A generated by the elements of the
form (a + ¢ + abc)(a + ¢ + cba)~! with a € B,b € A,c € 1+ B (see
[17], [22]). So the group G.(A, B)/E,(A, B), which classifies all sub-
groups H of GL, A normalized by E, A and with the same "level” B, is
two-step nilpotent. When A is commutative, F,(A, B) = SL, B for all
ideals B of A, Gn(A, B)/GL,B = G1(A, B)/GL,B = GL,(A/B), and
GL.B/En(A,B) = K1(A, B) = GL,B.

The next theorem [25] gives more information about the structure of
E;(A,Y) and C3(A,Y) for rings A with sr(A) < 1 and quasi-ideals Y’
of A. Part (b) generalizes to quasi-ideals a result of [15] describing the




396 F. A. ARLINGHAUS, L. N. VASERSTEIN

kernel of the Whitehead determinant GL1B — K;i(A, B) for ideals B
(the case B = A had been done in [18]).

Theorem 4. Let A be an associative ring with sr(A) < 1. Then for
any quasi-ideal Y of A:

(a) the group F2(A,Y) is generated by elements of the forms
ab?y?1(—a)1? and a®>'yt?(—a)>! witha € Aandy e Y;

(b) the group E2(A,Y) consists of all elements of the form
zL2y21252d, where x,y,z € Y, and d is a diagonal matriz which
is a product of diagonal matrices of the form diag(a+c+abc, (a+
¢+ cba)™t) with a,b,c € Aja+ ¢+ cba € GL1A and either
a—1l,ceY ora,c—1€Y;

(c) when Y is an ideal of A, Co(A,Y) = G2(A,Y) and this group
consists of all elements of the form z'2y?12Y2d with z,y,z € Y
and a diagonal matriz d = diag(u,v) with u,v € GL1 A such that
v ieu —a,uav ! —a €Y forallac A

Under the additional condition 24 = A, Menal and Vaserstein proved
the second conclusion of Theorem 4(c) for any quasi-ideal Y of A:

Theorem 5. Let A be an associative ring with 1 such that sr(A) <
1 and 2A = A. Then for any quasi-ideal Y of A, the group C2(A,Y)
consists of all elements of the form x'2y®1zM2d with z,y,2 € Y and
a diagonal matriz d = diag(u,v) with u,v € GL1A such that v™*au —
a,uav ' —a €Y forallac A.

In this case, Menal and Vaserstein obtained the following result.

Theorem 6. Let A be an associative ring with 1 such that 24 = A
ond sr(A) < 1. Then a subgroup H of ExA is normal if and only if
[E2A, E2(A,Y)] C H C Cy(A,Y) for some quasi-ideal Y of A.

This classification result follows from:

Theorem 7. Let A be an associative ring with 1 such that 24 = A
and sr(A) < 1.

(a) If H is a subgroup of GLoA normalized by FEsA, then there is
a unique quasi-ideal Y of A such that [E2A,Ex(A,Y)] C H C
02(A7Y);

(b) If Y is a quasi-ideal of A, then [ExA, E,Y)| = [E2A,Co(A,Y) N
ELA]. ,
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For a stable range 1 ring A and n > 3, (GL,A)qp, the abelianization
of the linear group GL,A is well-known. Specifically, it is K;A which
is isomorphic to GL1 A/W(A), which is described above. In [4], Berrick
and Menal computed the abelianization of GL, A, showing that K; A is
a direct summand of (GL2A), in the following result.

Theorem 8. If I is an ideal of A with stable range 1, then every
element g € GLaI can be written in the form g = diag(u,v)a®bb2c>!,
where u,v € GLoI and a,b,c € I. Moreover, there is a group isomor-
phism of (GLaI)ap with (I/12)2 @ 12/L&GL I/W1(I,I), where L is the
ideal of I generated by (22 — 2)I and I(z? — z) for all z € I.

In [42], the problem of developing a "sandwich theorem” for normal
subgroups of GLy A similar to the one for GL,, A with n > 3 was explored.
In this paper, results previously discussed were generalized to rings A
which satisfy one of three conditions; either A is a stable range 1 ring,
or A/rad A is von Neumann regular, or for every a € A there is a
finite sequence x1, %32, ...,Z, in A such that 1 + 22 + ... + 7, = 1 and
1—ax; € GL A for all i. In this case, the following theorem was proved.

Theorem 9. Suppose A is a ring satisfying one of the above three
conditions such that no proper one-sided ideal of A contains all u — 1,
where u € GL1 A, and every element of A is a sum of units. Then
for every subgroup H of GLs A which is normalized by GE2 A there is a
unique ideal B of A such that [ExA, E;oB] C H C Go(A, B).

Here GE3 A is the subgroup of GLy A generated by all its diagonal and
elementary matrices. If A is a stable range 1 ring, then GE; A = GLy A.
When no proper one-sided ideal of A contains all u — 1, Es(A,B) C
[E2B,GE3A] for every ideal B of A.

While the converse to this theorem is not always true, the same paper
contains the following modification.

Theorem 10. Suppose A satisfies one of the above three conditions.
Then

(G2(A, B), |[E2A, E; A]] C E3(A, B)

for any ideal B of A. Therefore, if H is a subgroup of GL2 A such that
E2(A,B) C H C G3(A, B) for an ideal B of A, then [H,[E2A, ExA|] C
Ey(A, B), hence H is normalized by [E; A, E2 Al
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