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THE p-PERIOD OF AN INFINITE GROUP

YINING XIA

Abstract

For ' a group of finite virtual cohomological dimension and a
prime p, the p-period of I' is defined to be the least positive integer
d such that Farrell cohomology groups H*(I'; M) and Ai+d(r, M)
have naturally isomorphic p-primary components for all integers i
and ZI'-modules M. ‘

We generalize a result of Swan on the p-period of a finite
p-periodic group to a p-periodic infinite group, i.e., we prove
that the p-period of a p-periodic group ' of finite wed is
2LCM(IN({z))/C({{z})]) if the I has a finite quotient whose a p-
Sylow subgroup is elementary abelian or cyclic, and the kernel is
torsion free, where N(—) and C(—) denote normalizer and central-
izer, (x) ranges over all conjugacy classes of Z/p subgroups. We
apply this result to the computation of the p-period of a p-periodic
mapping class group. Also, we give an example to illustrate this
formula is false without our assumption.

For ' a group of virtual finite cohomological dimension (ved) and a
prime p, the p-period of I" is defined to be the least positive integer d
such that the Farrell cohomology groups H*(T; M) and ﬁ”d(l"; M) have
natually isomorphic p-primary components for all ¢ € Z and ZT'-modules
M [3].

The following classical result for a finite group G was showed by Swan
in 1960 [9)].

Theorem (Swan).

a) If a 2-Sylow subgroup of G is cyclic (# {1}), the 2-period of G is
2. If a 2-Sylow subgroup of G is a (generalized) quaternion group,
the 2-period of G is 4.

b) Suppose p an odd prime and a p-Sylow subgroup of the finite group
G is cyclic (# {1}). Let S, denote the p-Sylow subgroup and A,
the group of automorphisms of S, induced by inner automorphism
of G. Then the p-period of G is twice the order of A,.
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Remark.

The group A, above is isomorphic to N(S,)/C(S,), where N(—) and
C(-) denote the normalizer and centralizer of 5, in G.

It is very natural to ask a question: If T" is a p-periodic group of
finite ved, is a similar result still true? In other words, is it possible to
describe the p-period of a p-periodic group I' of finite ved by an algebraic
non-homological invariant of the group I itself?

In this paper, we generalize the result of Swan for a finite group to a p-
periodic group I' of finite ved which has a finite quotient whose a p-Sylow
subgroup is elementary abelian or cyclic, and the kernel is torsion-free,
i.e., we prove that the p-period of a p-periodic group I' of finite ved is
twice the least common multiple of {{N({z))/C({z))|} in these two cases,
where () ranges over all conjugacy classes of Z/p subgroups of I'. On the
other hand, we give a group 'y of finite vcd whose only finite subgroup is
a Z/2, but the 2-period of T'y is greater than 2|N(Z/2)/C(Z/2)|. Finally,
an application will be made for calculating the p-period of a mapping
class group.

The following four theorems are our main results of this paper.

Theorem 1. Assume that I' is p-periodic. IfT" has a normal subgroup
of finite cohomological dimension so that the associated.gquotient is a
finite group whose a p-Sylow subgroup is elementary abelian, then the
p-period of T is twice the least common multiple of {{N({z))/C({(z))|},
where {x) ranges over all conjugacy classes of Z/p subgroups of T.

Theorem 2. Let I’ be a group which has a normal subgroup of finite
cohomological dimension so that the associated gquotient is a finite group
whose a p-Sylow subgroup is cyclic, then the p-period of T is fwice the
least common multiple of {{N({z))/C({(x))|}, where (z) ranges over all
conjugacy classes of Z/p subgroups of .

Theorem 3. There is a group [y of finite ved whose only finite sub-
group is a Z/2, but the 2-period is greater than 2|N{(Z/2)/C(Z/2)|.

Theorem 4. If the mapping class group I'y is a p-periodic group and
g < p(p—1)/2, then the p-period of Ty is 2LCM{ged(p — 1, b;)}, where
b, € By, (cf. section 3).

The rest of this paper is organized as follows. In section 1, we prove
Theorems 1 and 2. In section 2, we provide an example illustrating
Theorem 3. Finally in section 3, we give a formula for the calculation of
the p-period of a p-periodic mapping class group T'.
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1. Proof of Theorems 1 and 2

Lemma 1.1. Let H = {(z,y/x? = 1, yzy~! = z7), where ¢ = 0 o

q # 0 mod(p). If d is the minimal positive integer such that r¢
mod(p), then the p-period of H equals 2d.

r
1

Proof: If ¢ # 0, H is a finite group, the proof is immediate by Swan
Theorem. Otherwise, if ¢ = 0, H is infinite and we look at the short
exact sequence 1 — Z/p — H — Z — 1. The spectral sequence of
Farrell cohomology associated to the exact sequence converges in the
following way: Ey? = H¥(Z; HI(Z/p; Z)) — H"*(H; Z) [2]. This spec-
tral sequence collapses since H*(Z; Hi(Z/p; Z)) = 0 wheni < O ors > 1.
Therefore, 1 — H"Y(Z/p; Z)z — H™(H; Z) — H"(Z/p; Z)% — 1 is an
exact sequence. By looking at the Z action on the subgroup Z/p,u® €
H24(Z/p; Z) is an invariant element of the Z action on H?4(Z/p; Z).
Here u is a generator of H2(Z/p,Z). Therefore, there exists an ele-
ment h € H2(H; Z) such that Res(h) = u? # 0 on H?4(Z/p, Z). By
Brown-Venkov theorem [2] and H2%**4(H;Z) = Z/p, H*#(H;Z) =
Z/p, H'(H; Z) = 0 for other i’s, the p-period of H is 2d. ®

Lemma 1.2. Let Z/p be a normal subgroup of a group T' of finite
ved, and let M be a finite quotient of T' with torsion free kernel. Then
I'/Cr(Z/p) = Nr(Z/p)/Cr(Z/p) = Nm(Z/p)/Cm(Z/p)=M/Cm(Z/p).
Here we still use Z/p to stand for the image of Z/p in M.

Proof: Let pr : I' — M be the natural projection map. The map
pr maps Nr(Z/p) onto Ny(Z/p) and Cr(Z/p) to Cm(Z/p), so in-
duced map pr. : Nr(Z/p)/Cr(Z/p) — Nu(Z/p)/Cm{Z/p) is a well-
defined surjective homomorphism. Let {x) = Z/p, if yzy~! = z7, then
pr(y)zpr(y)~'=z", i.e., pr, is an injective. W

Lemma 1.3. Suppose a group M contains a cyclic subgroup Z/p™ D
Z/p and |N(Z/p™)/C(Z/p™)| is prime to p, then the homomorphism
induced by inclusion i, : N(Z/p")/C(Z/p™) — N(Z/p)/C(Z/p) is injec-
tive. : )

Proof: Notice N(Z/p) D N(Z/p™) and the inclusion i maps C(Z/p™)
to C(Z/p), i.e., the induced map by inclusion i, : N(Z/p™)/C(Z/p™) —
N(Z/p)/C(Z/p) is a well-defined homomorphism. Now let {z) = Z/p",
then (z" ') = Z/p, if y € C(Z/p), yzy~! = zF, then yz?" 'y~ =
" =P so (k=1)p"! = 0 mod(p"), i.e., k = 1 mod(p). Let k =
Ap™+1, Ais primetopand 1 <m < n, k% = 1 mod(p™), d divides p—1
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by assumption. Hence k% = (Ap™ + 1)¢ = B + Adp™ + 1 = 1 mod(p"),
where p*™ divides B. This implies Ad = 0 mod(p), a contradiction
unless A=0. &

Lemma 1.4 (Swan) [9]. Suppose the p-Sylow subgroup S, of a finite
group M is abelian. Let A, be the group of automorphisms of Sy induced
by inner automorphisms of M. Then an element a € H'(Sp; Z) is stable
if and only if it is fized under the action of A, on H'(S,; Z).

Proof: See [9]. B

Proof of Theorem 1: A theorem of Brown [3, p. 293] states that if T’
is p-periodic, then H*(F; Z)p) = Hpjegﬁ* (N(P;); Z)(p), where § is the
set of all conjugacy classes of Z/p of I'. Therefore, the p-period of I is
the least common multiple of the p-periods of Nr(F;).

1) Lower bound. Let |Np(B;)/Cr(B;)| = di, () = P;. There exists
y € T, such that yzy~! = 2", r% = 1 mod(p). Let H = (x,7)
be a subgroup of I' generated by elements x and y. Then the
p-period of H is 2d; by Lemma 1.1, i.e., the p-period of Nr(FB;) is
a multiple of 2d;.

2) Upper bound. Let pr: I' — M be a projection onto the finite
quotient M whose a p-Sylow subgroup is elementary abelian, and
pri : Nr(P;) — M; be the restriction map of pr, where M; is the
image of pr;. Then M; = ImNr(P;) = N, (P;) normalizes F; (P;
also denotes the image of P;), the group A, of automorphisms of
S, induced by inner automorphisms of M; maps P; to itself.

Let u € H3(Sp; Z) = Hom(P, x Z/px ... ... Z/p, C*) be a cohomol-
ogy element such that u(z) # 1 and u(y) = 1 if () = P, {y) = Z/p,
where C* is the multiple group of nonzero complex numbers. Then
Res(u) # 0 in H?(P;;Z). Now we claim that u% € H?%(S,;Z) is a
~ stable element for Sy, in M;. In fact, d; = [Np, (P;)/Cwm,(F;)| by Lemma
1.2, and A, fixes the element u® € H?%(S,; Z) since N, (P;)/C . (P;)
fixes the element u%. By Lemma 1.4 [9], u® is a stable element for
Sp in M;, ie., there exists an element v € H?%(M;; Z) such that
Re s¥i(v) = Res3P(u®) = [Re s3P(u)]% # 0. If we apply the canonical
homomorphism ¢* from ordinary cohomology to Farrell cohomology 3,
p. 278] we have Re s (9" (v) = Res32(g* (u)) = Re s (g (w)™ #0,
i.e., there exists an element prig*(v) € H?%(Np(P);Z) such that
Re sP(PZ) (prig*(v)) # 0 in H%%(P; Z), by Brown-Venkov theorem [2]
and the fact that Np(P) has only one order p subgroup, the p-period of
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Nr(P;) divides 2d;. See following diagram.

A R ~
H(Np(P,); Z) —— A% (P,; Z)
pri* ’[ T”

Res Res

H?4(M;; Z) H*(8p;Z2) ——  H™(P; Z)

Io* | Io* | " |

H (M Z)  —— H*(85;2) —— H*(P;2) ®

Proof of Theorem 2: is basically a similar argument except for the
upper bound part. In fact, if ' has a finite p-periodic quotient M with
torsion free kernel, then I' is p-periodic and the p-period of I' divides
the p-period of M. This is because the inflation map H*(M) — H*(T")
maps an invertible element of H*(M) to an invertible element of H*(T').
Using Swan Theorem, we obtain that the p-period of Np(F;) divides the
p-period of M;, which is 2| N, (Z/p™)/Cum;(Z/p™)|. Also, by Lemma 1.3,
the number 2|Ny, (Z/p")/Cm,(Z/p")| divides 2|Np, (P:)/Cum, (Pi)| =
2|Nr(F;)/Cr(F;)|. =

2. An example

Lemma 1.3, Lemma 1.1 and Swan Theorem imply that the equality
|N(Sp)/C(Sp)| = |N(Z/p)/C(Z/p)} holds in the case of a finite group G
whose a p-Sylow subgroup is cyclic, here Z/p is the order p subgroup of
Sp. Therefore, Theorems 1 and 2 are generalizations of Swan Theorem.

In the case of a group T' of finite ved, in general, |N(S,)/C(S,)| #
|N(Z/p)/C(Z/p)| even if all maximal p-subgroups S, of I are cyclic. For
example, let T* = (z,y|z?" = 1, yzy~! = zP*!), and d is the minimal
positive integer such that (p+1)¢ = 1 mod(p?). Then |N({z))/C({z))| =
d = p, but |[N({(zP))/C({z?))] = 1. A similar argument to Lemma 1.1
shows the p-period of I'* above equals 2p. This trivial example shows
that the p-period of an infinite ‘group I' can not be only described in the
form 2LCM{|N(Z/p)/C(Z/p)|} in general.

The example ['* above could lead us to think that the p-period of a p-
periodic group I" equals 2LCM {|N(C(p))/C(C(p))|}, where C(p) ranges
over all conjugacy classes of maximal p-cyclic subgroups of I'. Recall in
the case of a finite group G, Swan Theorem can be also stated in the
different form: the p-period of G equals 2|N(C(p))/C(C(p))| (including
the case p = 2), where C(p) is a maximal p-cyclic subgroup of G.
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Unfortunately, the next example shows that this is not true.

Example. Let '), ., denote the congruence subgroup of SL(n, Z) of
level m, i.e., the kernel of the surjective homomorphism r,, : SL(n, Z) —
SL(n,Z/m) induced by the reduction mod(m) (m may not be prime). It
is well-known that the group I'y, ., is always torsion free when n > 1 and
m > 3. A result of Charney [4] states that the group I', , is cohomology
stable with Z/2 coefficient for any odd prime p. Define I'y = lim,, I'y, p,
then H*(Ty p; Z2/2) = H(Tp; Z/2) for n > 2i+ 5.

Let GL(Z) be the infinite general linear group of Z and w; €
HY(GL(Z); Z/2) the i-th Stiefel-Whitney class of the inclusion GL(Z) —
GL(R) for 1 > 1. We still denote by w; the image of w; under the re-
striction H (GL(Z); Z/2) — H{(SL(Z); 2/2) — H'(Ty; Z/2).

The calculation in [1] by Arlettaz gives following results: for any odd
prime p

a) '(Ul (Fp) =0
b) wn(Ty) # 0
c) w3(Tp) = 0 if and only if p = 7 mod(8).

Also, we know from Wu formula for the Steenrod square Sq'(ws) =
wiwye + Wows = ws in H3(I‘p; Z/2). Again, denote by w; the image
of w; under the restriction H*(T's; Z/2) — H!(T'11,5). Combining both
results of Charney and Arlettaz above, we have w; = 0, wy # 0 and
Sql(we) = ws # 0 in H*(T11,5;Z/2) (in fact, these are all true for
H*(T'n5;Z/2) as long as n > 11.)

Let Ty denote the group of the extension 1 — Z/2 — Ty —
I135 — 1 which corresponds to the non-trivial cohomology element
wy € H%*(T115;Z/2). Obviously, the group Iy contains only one 2-
subgroup Z/2, and the extension is central. Next, we check that the
group [ is of finite ved, then show that the 2-period of I'g is greater
than 2. i

Consider the following commutative diagram, where all maps Ry, Ry,
Ry and R, are restriction maps.

2 s 2
H?(Tn1,4;2/2) ——— H*(T'11,20;Z/2)

B [ s

H*(SL(11,Z); Z/2) B H2(f11,5; Z/2)

4

In fact, the map R} =0isa speciai case of the result by Millson {7, p.
85] which states that for any n > 3 the map r* : H*(SL(n, Z/4); Z/2) —
H?*(SL(n, Z),Z/2) induced by the reduction mod(4) is an isomorphism.
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Thus, we obtain the nontrivial second Stiefel-Whitney class wsg in
H?(T'11,5; Z/2), but the restriction of wy into the cohomology of the finite
index subgroup H2(T'11,20; Z/2) is 0. This actually proves that the group
Ty is finite ved and the ved(T) = ¢d(T11,20) = ved(SL(11, Z)) = 55 [3,
p. 229].

In order to find a lower bound on the 2-period of T'y, consider two
spectral sequences as follows:

1. The Lyndon-Hochschild-Serre spectral sequence of the group ex-
tension 1 — Z/2 — To — T'115 — 1 with Z/2 coefficient. This
takes the form Ey? = HY(T'y15; HY(Z2/2; Z/2)) = H'V(Ty; Z/2).

. The Farrell cohomology spectral sequence {2] of the group exten-
sion1— Z/2 - Ty — I'ii,s — 1 with Z/2 coefficient. This takes
the form Ey? = HY (T, 5; H1(2/2; Z2/2)) = H*tI(To; Z/2).

Let w € H'(Z/2;Z/2) be the generator of the cohomology ring
H*(Z)2;Z/2) = Fyu), and da(u) = we € H*(I'; Z/2) be the second
Stiefel-Whitney class corresponding to the extension 1 — Z/2 — T’y —
I'y35 — 1. Then u is transgressive, dy(u) = 7(u) = wy, where 7 is the
transgression. The element u? = Sq'(u) is also transgressive (8, p. 81,
and d3(u?) = 7(u?) = 7(Sq' () = S¢*(7(uw)) = S¢* (we) = w3 # 0 in
E3 because H'(T'11,5; Z/2) is trivial.

Consider a commutative diagram involving in both spectral sequences
as follows:

0 ) . d 3 . £y0 .
HY (T, H*(2/2;2/2)) —— H*(Tns; HY(Z2/2;Z/2))

e o

0 .2 . s 3 . g0 .
H(T5;H(Z2/2,2/2)) —— H*(Tns, H(Z2/2,2/2))

The nontriviality of d3 in the second row implies the nontriviality of
ds in the first row. This shows Res:H2(Ig; Z/2) — H?*(Z/2;Z/2) is
trivial since the map Res factors through E%? = 0. Therefore, there
is no invertible element in H?(Ty; Z/2). By the fact that the reduced
map .PAIQ(FO;Z)(Q) — H?*(T'y; Z/2) is ring homomorphism, there is no
invertible element in I:IQ(FO; Z)(2), i.e., the 2-period of Iy is greater than
2. We have proved our Theorem 3.

3. The p-period of the mapping class group T,

The p-periodicity of the mapping class group is studied in a different
paper of the author {11]). As an application of the theorem 1, we obtain
the p-period of a p-periodic mapping class group I'y when g < p(p—1)/2.
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Recall that the mapping class group I’y is defined to be the group of
path components of orientation preserving diffeomorphisms of the closed
orientable surface S, of genus g > 1. Next, we define a set By, for
surface S, and a prime p.

Definition. For p odd, let 2g—-2—mp—z 0<i<p-1

Byp={l,i+pi+2p,...... T+ ([2¢/(p— 1)) —m)p} if ¢ # 1.
Byp={14+p,1+2p,...... 1+ ([29/(p— )] —m)p} ifi=1.
And for p = 2,
By =1{0,4,8,......29 +2} if g is odd.
B, =1{2,6,10,... ... 2g + 2} if g is even.
Remarks.

1. The notation [—] here means the integer part.
In case i # 1, 29/(p— 1) < m, define B, , = 0.
Incase i =1, 2g/(p— 1) <m+ 1, define B, , = 0.
2. It is proved in [11] that the set B, , is exactly the set of all possible
number of fixed points when an order p diffeomorphism acts on
the surface S,. ‘

Lemma 3.1. For the mapping class group T'y, there is a formula
LCM{|(N({{z))/C({x))|} = LCM{ged(p—1,b;)}, where () ranges over
all conjugacy. classes of Z/pin Ty, b; ranges over all b; € By .

Proof: 1) Assume |N(( ))/C’(( ))I = d. Then there exists an integer
r such that z ~ z” <. z” (=~ means “is conjugatc to” in T'y)
so that d is the minimal positive integer satisfying ¢ = 1 mod(p). The
d divides p — 1 obviously. Let b be the number of fixed points of the
z action on Sy, o(z) = (B1,82,-.. ... Bb) the fixed point datum, where
B; € Z/p— {0} (cf. [10]).
Let us define a permutation r* on the ordered b;-tuple (81, B2, - - ., Ob:)-
Set r*(01,02,... ... Bo) = (rBi,rB2,... ... ), () = (r?)" ...
L)Y = (rdmh* Tt is well-defined since o(z) = o(z7) =
------ = o(m"d—‘) as an unordered b-tuples [12]. We can decompose
r* = (ﬁilaﬂizy ...... ﬂis)(ﬁjl’ﬂj2, ...... ﬂjt) ...... (ﬂkl,ﬁk'z,-n ...ﬂku),
a product of cyclic permutations. Notice that permutations r*, (r*)?,. ..
...(r*)?! do not have fixed points. Otherwise, there exists §; such
that rjB; = B; mod(p), 1 < j < d— 1. This forces rj = 1 mod(p),
a contradiction. But, of course, (r*)¢ = (r¢)* = Id. These imply



THE p-PERIOD OF AN INFINITE GROUP . 249

§=1t= - = u = d, le., the number |[N((z))/C({x))| = d di-
vides the number b; of fixed points of the z action on the surface S,. We
have showed that LCM{|N ((z))/C({z))|} divides LCM {gced(p—1,b;)},
where (z) ranges over all conjugacy classes of Z/p in 'y, b; ranges over
all b; € By p.

2) Conversely, assume ged(p — 1,b;) = d. Then there is a mod(p)
integer 7 so that d is a minimal positive integer satisfying r¢ = 1 mod(p).

Case 1. b; # 0. If d # 1, then r # 1. Consider the unordered b;-tuples
o= (1,rr%. .. ... rd=l Lt =l L,rr?,. .. ... ,r4=1),
Since (b;/d)(1+T+72+... ... 74=1) = 0 mod(p). There exists an clement
z €Ty, P = 1, and the it’s representive fixed point datum o(z) is 0, i.c.,
the unordered b;-tuples o can be realized as a fixed point datum of an
order p element in Iy [6]. Obviously, o(z) = o(2") = oz )= =
olz" Norzraa ma A ~z™ ' inT,. This implies that the
number d divides the order |N({z))/C({z))|. If ged(p—1,b;) =d =1, for
any order p element x in I’y with the number of fixed points b;, obviously
1 divides |N{{z})/C({x))]-

Case 2. b; = 0. On the one hand, we have ged(p — 1,b;) = p — 1.
On the other hand, the z acts on S, freely. All order p free actions are
conjugate by [5], this implies |N({z))/C({z))| =p - 1.

So, LCM {ged(p — 1, b;)} divides LCM{|N{{z))/C({x))|}. &

Proof of Theorem 4: Let p : Ty — Sp(2g,Z) be the canonical ho-
mology representation and p : Sp(2¢, Z) — Sp(2¢g, F,) be the reduction
map. Here ¢ can be chosen a primitive root of mod(p) such that g > 3,
and ¢P~! is not congruent to 1 mod(p?) (by the Dirichlet theorem).

Now Ker(pu) = N is a torsion free, normal, finite index subgroup of
I'y and a p-Sylow subgroup of the finite quotient I'y /N = Sp(2¢, F})) is
elementary abelian if 29 < p(p — 1). Then we can use Theorem 1 and
Lemma 3.1 to finish the proof. ®

A list of the p-period of a p-periodic mapping class group I'; can be
also found in the Appendix C of the author’s thesis [12].
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