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UNITARY SUBGROUP OF
INTEGRAL GROUP RINGS

A.A. BovDI AND S.K. SEHGAL

Abstract

Let A be a finite abelian group and G = A X (b), %2 =1, o’ =
a~!, Ya € A. We find generators up to finite index of the unitary
subgroup of ZG. In fact, the generators are the bicyclic units.
For an arbitrary group G, let B2(ZG) denote the group generated
by the bicyclic units. We classify groups G such that B2(ZG) is
unitary.

Let ZG be the integral group ring of an arbitrary group G and let
f: G — U(Z) = {£1} be an orientation homomorphism. For each
T = Y ag9, we put 7 = S a,f(g9)g™!. In particular, if f is trivial,

g€eG
zf coincides with the standard z*. Let U(ZG) be the group of units of
ZG. Then u € U(ZG) is called f-unitary if u=! = w/ or u=! = —u/.
All f-unitary elements of U(ZG) form a subgroup Uy(ZG) containing
G x U(Z). We refer to Us(ZG) as the f-unitary subgroup of U(ZG).
Interest in the group Us(ZG) arose in algebraic topology and unitary
K-theory [4].

We are interested in the constructive description of Uy(ZG). If G is
finite cyclic, then Bovdi [1] gave a linearly independent set of generators
for a torsion free subgroup of finite index in U;(ZG). This was extended
to finite abelian groups by Hoechsmann-Sehgal in [3]. We give generators
up to finite index of Uy(ZG) if G is a finite dihedral group. In fact, the
generators consist of the bicyclic units. The subgroup By (ZG) of U(ZG)
generated by all the bicyclic units of ZG plays an important role in the
study of U(ZG) (see [5], [6]). In Theorem 2, we characterize groups G
for which B,(ZG) is unitary.
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2. Us(ZG) for dihedral groups

First, we recall some definitions. For an element a € G of finite order
nwrite@ = 14+ a4 -+ a”~L. Denote by t(G) the set of all torsion
elements of G. If a, b € G, o(a) < o0, then ‘

Ugp =1+ (1 —a)ba

has an inverse u;i =1— (1 — a)b@. Moreover, us =1 if and only if b
normalizes (a). The elements 4,4, @, b € G are called bicyclic units of
ZG and the group generated by them is denoted by By(ZG). We recall
[5] that by B1(ZG) is understood the group generated by the Bass cyclic
units of ZG. It is known [5] that if G is a finite dihedral group and Z is
the centre of U(ZG) then (Z, Bo(ZG)) (equivalently, (Bl(ZG) By (ZG)))
is of finite index in U(ZG). We prove

Theorem 1. Let G be the dihedral group

Suppose f is an orientation homomorphism of G with kernel {a). Then
the indez (Us(ZG) : Ba(ZG)) is finite.

We need the

Proposition. Let G be a group containing a subgroup A of index 2
and an element b such that G = (A,b) and b=Yab = a~! for all a € A.
Suppose that A% # 1. If f is an orientation homomorphism of G with
kernel A, then

1) the centre of Us(ZG) coincides with ta(A) x (—1), where
t2(A) = {a € t(A) : a® = 1};

2) the centre of U(ZQG) is the direct product of t2(A) X (=1) and a
torsion free abelian group T such that U(ZA) = (—1) x Ax T and
z=z" forallz €T.

Proof: Let £ = 21+ z2b, z; € ZA be a central unit in ZG. Since G is
a subgroup of U(ZG),

z=>b"lzb= ]+ z3b and zt=a"lza =1z, +a %z2b
for all z € A. Then z; = z} and

(1) z2(1-a?) =0
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for all a € A. We wish to prove that o = 0.

Let us suppose that zo # 0. From (1) we obtain that A? is finite. Let
A? denote the sum of all elements of A%. If H is a normal subgroup of
G, then denote by A(G, H) the ideal of ZG generated by elements of the
form h — 1 with h € H. Clearly,

IG/A(G,H) = Z(G/H).
If x(y) is the sum of the coefficients of y, then the element
T+ A(G, A) = x(z1) + x(z2)b+ A(G, 4)

is trivial, because |G/A| = 2 [7, p. 46]. This implies that one of the
numbers x(zl)/\or x(z2) equals +1 and the other is zero. From (1) we
obtain zop = 242, z € ZA, x(x32) = x(z)]A?|, and this is possible only
in the case when x(z3) = 0.

Suppose A = A?. Thenzy =+ 5. a for some y € Z. From the equality
a€A
x(z2) = v]Al = 0 we obtain v = 0 and z; = 0, which leads to a

contradiction. Thus A # A% Write 7o = (Eaici);ﬁ with oy € 7

where ¢;’s are a transversal of A2 in A. Then
T+ a2b+ AG, A%) =71 + (Y uci ) A% + A(G, A7)

-z + (|A2| Zaici)b+ A(G, A?)

is a unit in Z(G/A?). Since G/A? is an abelian group of exponent two, by
Higman’s theorem 7, p. 57], all units of Z(G/A?) are trivial. Obviously,
S~ a; = 0 and if a; # 0 for some i, then a;|A?| # £1. Thus, a; = 0 for

all 7 and the equality o = 0 is contradictory. Hence, z = x; € U(ZA)
and z* = z = z} = 1. Clearly, if z € U(ZA) and z* = z, then z is a
central unit of ZG.

It is well known (see [2]) that U(Zt(A)) = +t(A) x T and U(ZA) =
+A x T, where every element u € T satisfies the condition v = u”.
Therefore the centre of U(ZG) is the direct product of subgroups %t (A)
and T. This is 2) of the Proposition.

Suppose that z = z1 + z2b is a central unit in U;(ZG). Since G is a
subgroup of Uf(ZG) z is central in U(ZG). It follows that £ = z; and
zzf = 2,27 = 22 = +1. Therefore, by Higman’s theorem z; = +a where
a € ta(A). This completes the proof of the Proposition. B
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Proof of Theorem 1: Let G be the dihedral of order 2n given by G =
(a® = 1 = b?,a® = a™1). If n = 2, then the theorem is trivial. So
we may apply the last Proposition. Let Z be the centre of U(ZG).
Then we know that (U(ZG) : (B2(ZG), Z)) < oo. We have seen in the
Proposition above that Zj, the centre of Uf(ZG), is finite and Z; < Z.
It suffices to prove, therefore, that Bo(ZG) is unitary. If us, # 0, then
o{z) =2 and ‘

Uzy =1+ (1 —2)y(l + ).

Now, ¥y = a‘z®, &€ =0or 1. Since £(1+ z) = 1+ = we have, in any case,
Upy =1+ (1—z)a* (1+x).
Then uf , = 1+ (1+x)/ (a*)/ (1-2)7 = 1+ (1—2) a™* (1+z). Therefore,

Ugyud, =1+ (1=z)(a'+a ") (1+2z) = 1as (a’+a7") is central. This
completes the proof of the theorem. B

Remark. The last theorem holds for nonabelian groups G = (A, b)
where A is finite abelian and 82 =1, a®* =a~! foralla € A. If A is an
elementary 2-group, then so is G and there is nothing to prove. Suppose
A? #£ 1. The nonlinear irreducible representations p of G are induced
from those of A and p(ZG) = p(D) for some dihedral subgroup D of A.
The result follows.

3. Unitarity of the subgroup B:(ZG)

Theorem 2. Let G = (A,b) where A is the kernel of the nontrivial
orientation homomorphism f : G — U(Z). The subgroup Bo(ZG) is
nontrivial and f-unitary if and only if G is non-Hamiltonian 'in which
an element b £ 1 of finite order can be chosen such that one of the
following conditions is fulfilled:

1) A is an abelian group, the order of the element b divides 4 and
bab=! = a~! for alla € A;

2) A is a Hamiltonian 2-group, G is the semidirect product of A and
(b | b? =1), and every subgroup of A is normal in G;

3) A is a Hamiltonian 2-group and G is the direct product of a Hamil-
tonian 2-subgroup of A and a cyclic group (b of order 4,

4) t(A) is an abelian group, every subgroup of t(A) is normal in G
and bab™! = a7 1b% for all a € A, where the integer i depends on
a.

We need the following.
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Lemma. Suppose that G has a subgroup A of index 2 with G = (A, b)
and o(b) < oo. Suppose further that A # Na({b}) and
1) t(A) is abelian and all subgroups of t{A) are normal in A;
2) bgb™! = g7! for allg € A\ NA((b)).
Then bab™! = a™! for alla € A and b* = 1.

Proof: Let ¢ € N4({(b)). Choose a € A\ N4 ((b)). At first, suppose ¢
has finite order. Then by (2) we have

a”lbeb™! = blac)b™! = ¢ ta" .

If @ € t(A), then by (1) we have beb™! = ¢! If a has infinite order,
there exists an integer n such that a™c = ca™, since {¢) is normal in A.
By hypothesis, a™c ¢ N((b)) and thus

a”"beb™ = blate)b T = ¢ la ™.

It follows that beb~! = ¢! as desired. Now it is enough to prove that ¢
cannot have infinite order. Suppose that o(c) = oo and o(a) < co. Then
there is an n such that ¢"a = ac™. Clearly, ac™ ¢ N({(b)). We have

a bt = blac®)b! = ¢ a7t

It follows that bc™b~1 = ¢~". This is impossible because ¢ € N((b)).
Now let o(c) = oo, of(a) = oo. There exists an n such that be™ = ¢*b
and a”'c¢® = bac™b™! = ¢ "ol It follows that [¢",a?] = 1. Clearly,
a’c® ¢ N({(b)) and we get

a”?c® =ba®’cb =g 2

which implies ¢®™ = 1, a contradiction. Since b* € 4, bb%b~! = b~2 and
we have b? = 1, completing the proof of the lemma. &

Proof of Theorem 2:
“Necessity.”

Suppose that By(ZG) is nontrivial and f-unitary. Let us first prove
that every finite subgroup (a) of A is normal in G. Let n be the order
of {a). If g ¢ Nc({a})), then u,, = 1+ (1 — a)ga # 1. Then from the
equality u;_}] = uiyg we have

ag~' fg)(1—a™) = ~(1-a)ga.

Multiplying by @ we obtain n(1—a)ga = 0, which is impossible. There-
fore, every subgroup of t(A) is normal in G. Because By(ZG) #1, G\ A
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contains an element ¢ of finite order with (c) not normalized by A. Then
c? € t(A) and ¢? is central in ZG. Clearly,

Ueg = 1+ (1 —c)g(1+ c)-c_2

and f(c) = —1. Since uc, is f-unitary, ucguf, =14and it follows that

) (9+ 97 F @)1+ e)e? = clg+ g7 f(9) (1 + 2.

Choose b € G\ A such that b is a 2-element of least order and let
g € A In (1) taking c = b, g = bg~ b1 whenever g ¢ Na((b)). We
obtain bgb™! = g 16" for all g € A\ N4 ((b)) and

(b9)? = (g7 'bPg)"*".

Clearly, bg is a 2-element in G \ A and i’ is even, otherwise the order of
bg is less than the order of b, which is imnpossible. Therefore,

(2 bgb™! = g~ 1bY

for all g€ A\ Na((b)).
a) Suppose that the order of b divides 4.

Then from (2) bgb~! =g~ for all g € A\ N4((b)).

If t(A) is abelian, then, by the Lemma, A is abelian and bab™! = a~!
for all a € A. This is case 1) of the theorem.

If t(A) is nonabelian, then t(A) is a Hamiltonian group and

t(A)=QxExT

where Q is the quaternion group of order 8, E2 = 1 and all elements of
T are of odd order.

We wish to prove that A = t(A). Suppose that g is an element of
infinite order of A\ N({b)). Then g € C4(Q) and there exists an element
w of order 4 of @ such that [b,w] = 1, because every subgroup of Q) is
normal in G. Clearly, g?w ¢ N((b)) and by (2)

wg™? = bwg?bh™! = bgwb™! = w7,
which is impossible. Therefore, all elements of A\ N((b)) have finite
orders. ‘

Let g be an element of infinite order from N4((b)) and let an a €
A\N4((b)). Clearly there exists n such that [g", a] = 1, because the finite
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cyclic subgroup (a) is normal in G. Then g"a € A\ N4({(b)) and g"a is
of infinite order, which leads to a contradiction. Therefore, t(A4) = A.
We claim that T' = 1. Let v be an element of odd order from A\ N({b}).
Obviously, there exists an element w of order 4 in @ such that [b,w] =1,
as every subgroup of @Q is normal in G. Thus vw ¢ N({b)) and by (2)

v lw = bowb ™! = wly T

which is impossible. Next, let v be an element of odd order from N 4((b)).
Because (v) <« G, [v,b] = 1. Clearly there is an element w of order 4 in
@ such that b~ lwb = w™! and vw ¢ N4({b)). Then

1 -1,,.,~1

wlv = bwob™t = v lw™L,

which is impossible. Hence, the structure of G is described in case 2) or
3) of the theorem.

b) Suppose that the order of b is 2¢ (k > 3).

Then by (2) b belongs to the centre of ¢t(A), because t(A) is abelian
or Hamiltonian. Hence, t(A) is abelian and every subgroup of t(A) is
normal in G. Then from (2) bab™! = a~'b% for all a € A\ Ns({(b)).
Denote by (b%7) the subgroup generated by % = abab™?, as a runs over
A\ N4((B)).

Put G = G/(b*), A= A/(b*) and b = b(b*"). Then G satisfies the
conditions of our Lemma and it follows that 7 = 1 and bab~! = a~! for
all a € A. This is case 4) of the theorem.

“Sufficiency.”

Let G satisfy one of the conditions 1)-4) of the theorem. Clearly, if a
finite subgroup (c) is not normal.in G, then c € bA, (c?) = (b?) and 2
belongs to the centre of ZG. Therefore,

Uy =14+ (1 —c)g(l1+ c)c_2

and .
Uegul, =1+ (1—c)(g+g " f(g)(1+c)c.

Suppose that g € A. Then f(g) = 1 and (g + g~ !)c? is a central
element. This is obvious in cases 1), 2) and 3). Suppose that G satisfies
the condition 4) of the theorem. Then (c?) = (b?), and bgb~! = g~ 1b%
and G/(b*) is abelian. Thus

bg+g )b =(g+g )T =a"t(g+g ")

and (g + g~1)c? is central in ZG.
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If g € bA, then g = ba, f(g) =—1and

g——l — a-—lb—l — b_lab‘li.

Clearly, g~'c = gc? and (g9 + f(g)g~')c? = 0. Therefore, ucguf, =
1 and the bicyclic units are f-unitary. Thus B2(ZG) is an f-unitary
subgroup, proving the theorem M
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