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INTERPOLATING SEQUENCES AND THE
NEVANLINNA PICK PROBLEM

ARNE STRAY

Abstract

The extremal solutions to the Nevanlinna Pick problem are studied. If
there is more than one solution, Nevanlinna showed that all extremal
solutions are inner functions. With some extra information on the inter-
polation data we find that the extremal solutions are Blaschke products
whose zeroes form a finite union of interpolating sequences.

1. Introduction

Let U denote the analytic functions bounded by one in the open unit disc
D. Consider the Nevanlinna Pick interpolation problem

(NP): f(zn) =wn,n=1,2,...,f€U

In his work on this problem, R. Nevanlinna [6], demonstrated the importance
of the so called vertevorrat corresponding to (NP):

A(z) = {f(2) : f € E}, z € D\{2n}

where E is the set of solutions to (NP).

If E contains more than one function, Nevanlinna proved that A(z) is a disc.
Moreover, he showed that each boundary value of A(z) is attained by a unique
function from E, and that the class of solutions I satisfying

1 I(z) € 0A(z)

is independent of z. Any solution of (N P) satisfying (1), will be called extremal.
An important discovery by Nevanlinna is that every extremal solution is an
inner function if E is not a singleton. ([6, Satz 7} or [2, page 172]).

Let p(2) denote the radius of A(z). It is not hard to see that each extremal
solution being inner is equivalent to

(2) lim1 plre?y =1
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for almost all 8 € [0, 2r) with respect to linear measure.

More information about the extremal solution to (NP) may be obtained if
one can improve on (2). Let II denote the Blaschke product corresponding to
{z}: 2]

Zn| Zn — 2
I(2) =11, P g 7

The main results of this work can be described as follows: For a large class
of problems (N P) it is shown that p(z) — 1if |I(2)| — 1.

Using this information about p, we assume that II factors into I1=1II;,..., Iy
where the zeroes of IIg, 1 < k < N is an interpolating sequence (see definition
below). Under various conditions on {w, } we prove that any extremal solution
to (NP) is a Blaschke product admitting a similar factorization.

This work is a continuation of [9] and [10]. We use the book [2] by J. Garnett
as a reference for the theory of the classical Hardyspaces HP, 0 < p < oo in D.
In particular H* denotes the Banach space of all bounded analytic functions
in D with norm

Iflleo = sup{lf(2)| : z € D}.
We also have || f|lc =ess sup |f(e")| where f(€¥) = lim,_,; f(re®®) exists
0<8<2m

allmost everywhere df in light of Fatous theorem ([2, page 29]).

The sequence {z,} C D is called interpolating for H* if the problem f(z,) =
wn, n =1, 2,... is solvable with f € H*, for any bounded sequence {w,}. In
(1], L. Carleson proved that {z,} is interpolating if and only if

)

(C2): The measure ) (1 — |2,])6., is a Carleson measure, where 6, denotes
the point mass at z,.

Condition (C3) implies that if f belongs to the Hardy space H!, tflen

(3) D1 (E)I(1 = |znl) < oo.

See [2, page 63 and 287| for details.

A Blaschke product whose zeros form an interpolating sequence, will be called
an interpolating Blaschke product.

a—v
1-—7%a

(Ch) i;lf 0(Zn,2m) 26 >0 <a(a, by =

and

2. Some theorems

The problem (N P) will be called semiscaled if there is f € H™ such that
fllo <1 and f(zs) = wn, n > N, for some N. If one can choose N = 1, we
say that (NP) is a scaled problem. As in 1, IT denotes the Blaschke product
corresponding to {z,}. With this notation we have
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Theorem 1. Suppose the Nevanlinna Pick problem (N P) is semiscaled and
has more than one solution. Then p(z) — 1 if [II(2)| — 1, where p(2) is the
radius of the disc A(z) = {f(2) : f solves (NP)}.

Remark. The hypothesis that (N P) is semiscaled, can not be dropped. A.
Nicolau recently found an example {7, p. 93], where {z,} C (0,1) is inter-
polating and (NP) has more than one solution, such that [TI(£x)| — 1 while
p(&k) — 0, for some sequence {£x} C (0, 1).

Suppose zn, — 1 within some cone included in D. Then we say that {zn}
converges nontangentially to 1.

Theorem 2. Suppose z, — 1 nontangentially and that the Nevanlinna Pick
problem (NP) with data {z,}, {wn} is semiscaled. Let I be any extremal solu-
tion to (NP). IfII factors into finitely many interpolating Blaschke products,
then I is a Blaschke product admitting a similar factorization. Moreover, the
zeroes of I converge to 1 nontangencially.

Our final result is only a slight extension of Theorem 1 in [9]. We include it
here because of its relevance to recent work by T. Nazaki in [5].

Theorem 3. Let {z,} be a finite union of interpolating sequences. Thereisa
number r > 0 depending only on {z,} with the following property: Let I be any
extremal solution to a Nevanlinna Pick problem (NP) with data {2}, {wn}-
Suppose that there is f € H™ such that ||flle < r and f(zn) = wn if 1
is sufficiently large. Then I factors into finitely many interpolating Blaschke
products.

3. Proofs

The method of proof has two main ingredients originating in the interpolation
theory for H®. We combine the classical work of R. Nevanlinna [5] by more
recent ideas largely due to L. Carleson ({1}, [2, ch. VII]).

If (N P) has more than one solution, R. Nevanlinna found analytic functions
P, Q, R and S in D, such that all solutions to (N P) are given by

@) | p= {32 wev}.

The functions P, Q, R and S are normalized such that PS—RQ = II. Fixing
z in D\{z,} we see that A(2) = {f(2) : f € E} is the image of the closed unit
disc under the Mobius transformation

. P(z) — Q(2)w
01w = B TS Gw
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The extremal solutions to (/N P) are precisely the functions I, corresponding
to w = €', 0 < a < 27. The radius p(z) of A(z) is easily computed to be

)
%) = RDE - ISGIP

We start by collecting some more or less well known results related to Nevan-
linnas formula.

Lemma 1. Suppose the Nevanlinna Pick problem (N P) has more than one
solution. Then P, Q, R, S and p have the following properties:

(i) R"'eU

(if) max{|P(2)], |Q(2)], IS(2)I} < |R(2)|, z€ D

(i) p(z) < (), ze D _

(iv) If (N P) involves only finitely many data, then p(z) > 1-C(1—|z|), z €
D, for some constant C > 0.

(v) If (NP) is scaled, then R € H*(D) and (1 — M)|(2)| < p(2), z € D, for
some constant A € (0,1).

In the concluding remarks following the proofs, we shall indicate how Lemma
1 follows from Nevanlinna’s original paper 6] and more recent results.

Proof of Theorem 1: We first use a deep result due to P. Jones to prove
Theorem 1 if (NP) is scaled. So we assume (N P) is solved by some f € H™®
such that |[fllec < A < 1. Given e € (0,1), let r =1 — € and choose t-€ (r,1)
such that o(r,t) > 1 —e. Fix a, b € D such that [II(a)| < r, |II(b)] > ¢. By
Schwarz lemma ([2, page 2]).

o(a,b) > o(l(a), II(b)) > o(r,t) > 1 —e.

Hence if we define ¢ € H* by ¢(2) = lz__bbz, we have

max{|(z)], [I(2)[} > 1 -

for any 2 € D. By Theorem 1 in P. Jones paper [4], there are functions
g1, g2 € H* such that
g1 +vg2 =1

and
l91(2)| + |92(2)| < 14 A(e), 2€ D

where A(e) — 0 if e — 0. If e is so small that (1+ A(e))A < 1, it follows that

Fu = fpga + wlgy

solves (N P) whenever |w| < (14 A(e))~!. This means that p(b) > (1 —€)(1+
A(e))~1 if [TI(b)| > 1 — ¢, where t = t(¢) depends only on e.
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To prove Theorem 1 in general, let us consider an expanded problem (N P),
obtained by adding finitely many constraints to (N P). If a typical solutions to
(N P) is given by Nevanlinnas formula (4), we require in addition

P(&x) — Q(&k)w(ék)
R(&) — S(&)w(ék)

Then (5) defines a finite Nevanlinna Pick problem (NP)y for the unknown
function w € U. By assumption, it has more than one solution.

(5)

=, 1<ESN

Corrresponding to (N P) we have defined A(z), p(2) and the M&bius transfor-
mation ©,. For ¢ = 1,2 we denote the same objects for (NP); by Ai(2), pi(2)
and @ respectively. If ¢(z) denotes the center of A(z), it is well known ([9,
page 473]) that.

c(z) = ©.(a(2))
where a(z2) = %&%. Let S; denote the image of the unit circle under the
transformation ©. Then since A;(2) C A(z), we have

(6) p1(z) > inf{le(z) — w| : w € S1}.
Applying Schwarz lemma to ©,, we have

le(z) — ©:(8)

o e {E

€€ 52} = inf{o(a(2)), &) : £ € Sa}.

But S1 = ©,(S2), and since p(z) — 1 if [II(z)| — 1, Theorem 1 follows from
(6) and (7) if we show that

inf{o(a(z)),£) : { € Sa} — 1

if [II(2)| — 1.
Suppose to the contrary that there is a sequence {uvx} C D such that
[TI(vk)] — 1 and

(8) inf{o(a(ve),&) : €€ So} <t <1

for k=1,2,... . Replacing {vx} by a subsequence if necessary, we may assume
that {vx} is interpolating. :
By Lemma 1, the radius ps of S, satisfies

(9) p2(vk) 2 1= C(1 = |ul), k=1,2,...

By well knows properties of the metric o ([2, page 3]) it follows from (8) and
(9) that

SCk) | 5 1~ 41— Juel)

R(vg)

(10) la(w)] = |
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with C; depending only on t and C. Since p = Wgﬁ, Lemma 1iii gives that
1> (|RJ* - |S}?)~L. If this is combined with (10), we get

Cy

2
>
RO 2 T

with C! independent of k. This means that 3 (1 — |vg|?)|R(vk)|? = oo contra-
k

dicting that {vg} is interpolating by Lemma 1(v) v and the final remarks in
1. m

To prove Theorem 2, we need a lemma on Blaschke products that certainly
must be well known. If 0 < o < 7, we define the cone

To = {2 : |arg(l - 2)| € a}

Lemma 2. Let B be an inner function. The following statements are equiv-
alent

(i) B is Blaschke product whose zeroes is a finite union of interpolating
sequences contained in some CONE Tq.
(ii) inf{|B(2)|, z € D\ 1t} > 0 for some t.
(i) Given € > 0, there is v such that |B(z)| > 1 — € if z € D\,.

Proof of Lemma 2: To prove (i) — (ii}, we may assume that the zeroes {a,}
of B form an interpolating sequence. We fix t € (o, 7) and then choose § > 0
so small that

D,={z:0(z,an) < é}Cm,n=12,...

Let Fs = D\UD,. If follows from Carlesons condition (C;) in 1 that D, N

n
Dy, = ¢ if n # m provided é is small enough. Condition (C)) also give
inf{|b(z)| : z € Fs} > 0 and since D\, C Fj, (ii) follows.

To see that (ii) — (iii), let W be one of the two components of D\7;. Let
w(z) denote the harmonic measure of 3W N 3D with respect to W, evaluated
at ze W. If € > 0, it is evident that w(z) > 1 — € in W\, if r is sufficiently
close to 7. Since log|B]| is a bounded harmonic function in W, (iii) follows.

To prove (iii) — (i), we first observe that any singular inner function fails to
satisfy (iii). It follows that B is a Blaschke product with zeroes {an} contained
in D N 74, for some a.

Let Ny denote the number of points from {a,} contained in Ry = 7, N {2 :
1 —27% < |z| < 1— 27571}, Elementary properties of the metric o ([2, page
2]) shows that

inf sup o(z,w)<d<1
2€D\7r weRy

with d independent of k. By (iii) we have
IB(2)| 2 @™ > |B(2)| 2 1 ¢
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if z € D\r.. This means that {Ni} is a bounded sequence. Hence we can split
{a,} into finitely many sequences {bs} such that either {b,} C Ta N (URa2k) or
k

{bn} C Ta NU(Rak—1). But then {b,} is an interpolating sequence. For details
%

see [3, ch. 10]. Alternatively, it is not hard to check that (C1) and (C?) in 1
holds for such a sequence {a,}. W

Proof of Theorem 2: We use the notation from the proof of Theorem 1 and
consider a scaled problem (NP) together with an expanded problem (N P);.

Suppose first that (NP); has more than one solution. By Theorem 1
|I.(2)] — 1 if [II(2)] — 1 uniformly in & € [0,27). Assuming II satisfies
Lemma. 2, we see that all I, also satisfy Lemma 2.

If (NP); has a single solution f, we have

_P-QI
f= R-—SI

where I is the unique solution of the problem (N P)y corresponding to (5). By
the classical Pick-Nevanlinna theorem I is a finite Blaschke product and hence

(11) ()| 21-c(l—|2l), z€ D

for some ¢ > 0. The function f given above is inner ([9, p. 492]) and by
Schwartz lemma applied to ©,, we have again

ﬂz—)p(_zfi)' = p(a(2), I(2)).

Hence if f fail to satisfy Lemma 2, we can pick a sequence {vk} C D\ such
that p(vk) — 1, ¢{vg) — 0 and deduce

(12) o(@(vg), I(vg)) £d< 1
for k=1,2,... . Combining (11) and (12) we get as before

‘ S(vk)

R('Uk) z21- C(l - lvkl)

and obtain a contradiction as in the proof of Theorem 1. ®

Let us finally explain briefly the proof of Theorem 3. Again we adopt the
notation from the proof of Theorem 1. Hence we consider an extremal solution

_P-QI

fo= %1

where P, Q, R and S correspond to a scaled problem (NP) and [ is a finite
Blaschke product.
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Define as before F5 = D\|JD,, where D,, = {z: 0(z, 2,) < 6}. If {2,} is the

n
union of K interpolating sequences, it follows from Carlesons condition (C})
that no z € D is contained in more than K different discs D,,, if § is sufficiently
small.

We fix such a small § and assume r < % in Theorem 3, where §; =
inf{|II(2)| : z € Fs} > 0. If h solves (NP) and ||h|lcc < r, then

F,=h+Tw

solves (N P) whenever |w| <1 —r. If 2 € Fs, we then have
8
(13) - {w |w] < I} C A®R) C {w: Jw] < ()]}

Again we get by Schwartz lemma

fo(z) — c(2)

(14) p(2)

= a(a(2), 1(2)).

If fo(vk) — 0 for some sequence {vx} C Fj, we get from (13) and (14) that
o(a(vk), I(vk)) <t <1, k=1,2,... and obtain a contradiction as in the proof
of Theorem 1. '

Hence the inner function fo must satisfy inf{|fo(2)| : 2z € F5, |2| > r} > 0 for
some 7 € (0,1). From the way Fs was constructed, this implies that fy factors
into finitely many interpolating Blaschke products &

4. Concluding remarks

Consider again the problem (N P) with data {z,}, {wn}. Let ry denote the
minimal norm for the truncated problem f(z,) = wn, n > N. Even if ry — 0
as N — oo, it may be the case that there is no Blaschke product among the
extremal solutions to (INP). In fact the singular inner function

1+ 2
I(z) = -~
@ = |-122]
can be realized as the unique solution to such'a problem.
Suppose on the other hand that there are functions Ay € H*® such that

O0<n<N
wy, n >N

hn(zn) = {

and |hn|lec — 0. In this case we say that (NP) is superscaled. Using dual
extremal functions as Oyma did in [11], it is easy to see that any superscaled
problem has a unique minimal solution AI where ) is a constant and I is inner.
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We do not know if I necessarily is a Blaschke product in this case. If {2,} is a
finite union of interpolating sequences, T. Nakazi [5] studied problems of type
[o.24

(NP) with data {2}, {wn}, where ¥* — 0 and 6, = [] o(2k, 2n).
n

It is not hard to see that such problems are superscaled. In [5], Nakazi
showed that the minimal solution to such a problem is a complex multiple of
an inner function. By Theorem 3 we see that this inner function is indeed a
Blaschke product.

Let us finally mention an apparently difficult open problem: Is Theorem 3
valid with some numerical constant r independent of {z,}? For applications
it would be sufficient to find some extremal solution satisfying the conclusion
under the assumption that {2,} is an interpolating sequence.

Some recent work by A. Nicolau [8] should also be mentioned in this connec-
tion. :

Let us finally give the necessary references to provide a proof of Lemma, 1.

Lemma 1 (i) and (ii) is in Nevanlinnas original paper. That (iii) holds is ex-
plained in [9, page 494]. If (N P) is a finite problem, it follows from Nevanlinnas
work that p(z) is of class C* near the unit circle. Hence (iv) follows.

The lower bound for p in (v), is used in {9, Lemma 2]. In [9] we also observed
that (R — e**S)~! € H2 if 0 < o < 27 and (N P) has more than one solution.
If (NP) is scaled, one even has (R — e**S) € H2. This is seen from Theorem
4.4 and Theorem 5.5 in Ch. IV in Garnetts book [2], and observing, that the
function F in Lemma 5.6 corresponds to (R—e**S) 2. But then (v) must hold.
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