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BIFURCATION SET AND LIMIT CYCLES
FORMING COMPOUND EYES IN A
PERTURBED HAMILTONIAN SYSTEM

JIBIN L1 AND ZHENRONG Li1u

Abstract

-In this paper we consider a class of perturbation of a Hamiltonian cubic
system with 9 finite critical points. Using detection functions, we present
explicit formulas for the global and local bifurcations of the flow. We
exhibit various patterns of compound eyes of limit cycles. These results
are concerned with the weakened Hilbert’s 16th problem posed by V.L
Arnold in 1977.

1. Introduction

The weakened Hilbert 16th problem, posed by V.I. Arnold in 1977 [1}, is to
determine the number of limit cycles that can be generated from a polynomial
Hamiltonian system of degree n — 1 with perturbed terms of a polynomial of
degree m + 1. The separatrixes and relative positions of the limit cycles for
the Hamiltonian system with perturbations play an important role [2]. For
a polynomial differential system of degree n, the results of (3] imply that, in
order to get more limit cycles and various patterns of their distribution, one
efficient method is to perturb a Hamiltonian system with symmetry which has
the maximal number of centers. Thus, to study the weakened Hilbert 16th
problem, we should first investigate the property of unperturbed Hamiltonian
systems, i.e., determine the global property of the family of planar algebraic
curves. Then, by using proper perturbation techniques, we can obtain the
global information of the perturbed non-integrable system.

Only two particular examples were given in the paper [3]. In this paper we
discuss the following system:

%2:— = y(1+ 2% — ay?) + ex(mz? + ny® — ),
(L1),
% = —z(1 — cz? + y?) + ey(mz?® + ny® - N),

where a > ¢ > 0,ac> 1,0 < e << 1, m, n, A are parameters. Our object is to
reveal the bifurcation set in the 5-parameter space. Since the vector field defined
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by (1.1)e=o is invariant under the rotation over , the phase portrait of (1.1).
has a high degree of symmetry. By bifurcating limit cycles from homoclinic
and heteroclinic orbits and centers, we obtain many interesting distributions of
limit cycles which form various patterns of compound eyes.

It is well known that a point is defined to belong to the bifurcation set if, in
any neighbourhood in the parameter values, there exist at least two topologi-
cally distinct phase portraits. By computing detection functions [5] [6], we can
give a description of the bifurcation set in the five-parameter space of (1.1)..
For the fixed pair of a, ¢, the half parameter plane (n,m) with m > 0 can be
partitioned into 19 angle regions. Hence, various possible phase portraits of
(1.1)¢ can be found. Especially, for a complex polynomial system, Il'jasenko
[7] has proved that with applications to real cases, the cubic system has 5 limit
cycles with disjoint interiors. This paper shows that there exist a large region of
parameters such that the II’jasenko distribution of limit cycles can be realized
by (1.1)e.

The first author has been supported by the C. C. Wu Cultural & Education
Foundation fund Ltd. in Hong Kong. Moreover, he is indebted to Jack K. Hale
and Shui-Nee Chow for helpful discussions.

2. Analysis of the unperturbed system

Consider the system

dz _ 2 2 dy _ 2 2
(2.1) i y(1+z° — ay®), prie z(1 — cz* + y°).

The system (2.1) has 9 finite singular points, among them, 0(0,0),
A9 (,/‘ZLC'_L“17 /25 ) and AY, ..., A (see Fig. 2.1) are centers; S9(1/+/,0),
S9(~1/+/¢,0), S3(0,1/+/a) and S9(0, —1/+/a) are hyperbolic saddle points. For
0 < € << 1, (1.1)¢ also has 9 critical points, 0 and 4;, S;(s = 1,...,4), which
take respectively slight displacements from A? and S?.

The first integral of (2.1) is given by
(2.2) H(z,y) = —(cz* + ay*) + 22%y% + 2(z2 + ¢*) = h.
Its polar coordinate form is

H(r,0) = —r*(ccos* § + asin* § — 2 cos? fsin? §) + 2r?

(2.3) () + 2r2 = h.

If we let = rcosé, y = rsinf, then (2.1) becomes

dr 3y dé _
(2.4) ru’(8), pri

. (1= ru(6)).
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Fig. 2.1 The phase portrait of unperturbed system (2.1).

From (2.3), we have

+ /1 — hu(f) qer 1 = 1/v(6, h)
u(6) B u(6) .

(2.5) r? =ri(0,h) = L

Using (2.3) - (2.5), it follows that
(2.6) ‘
g N 1 2 1/2
i v(0,h) = ii[—(a+c+2)h cos” 20+2h{a—c) cos 268+4—h(a+c—2)]"/*.
With h varying, the curves defined by (2.2) can be divided into the following
types:

(i) {I'*} : =00 < h < —1/a. This corresponds to a family of closed orbits
which enclose all 9 finite singular points. Let snu, cnu, dnu be the Jacobian
elliptic functions with modulus k. If we denote by

pn(t) = [wivpp(k2enlwitsn®wit — dnlwit) — ppenwrt — dn’witsnwit)'/?,

where k; = =le=p)’ , w1 = 2+4/(1— ah)pp,
4pp

—(h+ 1) +i((ac — 1)h? — (a + c + 2)h)1/?
p= 1—ah '
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Then the orbit of {T'#} has the parametric representation ‘

. v—hdnw, tsnwit _ v —hpperus t
Co- om0 0 WOt e

where —oo < h < 0.
(i) {T%} : 0 < h < 1. This corresponds to a family of closed curves sur-
rounding the origin 0(0, 0), which has the parametric representation

_ \/ﬁdnwltsmult _ mcnwlt

(iil) When h = 1/a, there are 4 heteroclinic orbits connecting two critical
points S§ and SY. If we let

1y 4(8) = [a(ATsh®261t & 24161 ch2frt + 1)1/2

where A? = (a—c)/2(a+1), 7 = 2(a+1)/a, then the heteroclinic orbits F2/°'+

and I‘l/ ** have respectively parametric representation:

1 —Alsh2ﬁ1t
(2.9) Tyla ™t maalt) = o alt) =
O] i)
1 A1sh264t
(2.10) T'y's / Tiralt) = ——, y1,3(t) = lf_ﬂl
1/a(t) /—‘1/a(t)

(iv) {Th*}: 1 < h <1 These are two families of closed orbits surrounding
respectively three singular points A9, S9, A and A3, S9, S9. The orbit of
{r§+} has the parametric representation:

z3(t) = VA[1 + 20wsdn2wstsn2wat] "2,
(2.11) y3(t) = V[l + 20wsdn2wstsn2wst] " 2acn2wst,

where w3 = \/_A1/4 A = h[—alac — 1)h + (a + ¢ + 2)], the modulo k3 =
a/ o + 72, o (1~:h)j-1\/_, B2 = ah(lfrh)
(v) When h = 1, there are four homoclinic orbits I‘é/ N * surrounding respec-

tively the centers A?(; = 1 - 4) and connecting respectively the saddle points
S? and S9. One of homoclinic orbits has the parametric representation:

ch2(,t

Velsh?2Bat + 2A2625h2Bst + (1 — A3)]1/2’
1

¥34(0) = ZIoh3pst + 2AnBrshalat + (1 = ADI2

Tyst wsalt) =

(2.12)
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where 82 = 2(1 + c)/c, A3 =2(1+c)/(a—c).
(vi) {T%} : 1 < h < &£=t2. This is composed of four families of closed orbits
surrounding respectively one critical point A?(z = 1 - 4). If we write

Uh(t) = [1 + 20wak] sn2waten2wat + oPdn?24t]'/?,

where wy = [(1+ h)+ VA]Y2, k} = (a® — $2)/c?, o, B are the same as in (iv),
then one family of {T'4} has the parametric representation:

(2.13) z4(t) = ‘% va(t) = ﬂ"-&%

Note that as h increasing, the curve I'? extends outside, the other curves con-
strict inside.

3. Detection functions and bifurcation parameter
of the perturbed system

In the paper [5], we have considered the perturbed Hamiltonian system

dr OH
T a7 ez(p(z,y) - ’\),
(3.0) dt 8y
) dy 0H

il el ey(q(z,y) — A),

where H(z,y) = h is a first integral of (3.0)c=o. Assume (£,7) is a critical point
of (3.0)c=0, and there exists a family {T*} of closed orbits surrounding (&,7)
when 0 < h < h. We call the function

AR) = /F h / (z,v) dzdy/2 /F h / dody  (0<h<h)

a detection function, where f(z,y) = p+ g+ xg-f + yg—g. Obviously, if (3.0).
is a polynomial system, then A(h) is the ratio of two Abelian integrals (8]. By
using A(h), we can determine the existence and stability of limit cycles created
by {T*}. _
We know the following conclusions from [5] and [6]:
(i) The parametric value of the Hopf bifurcation created by the critical
point (£,7) is A(0) = 3f(6,m).
(ii) ‘If (3.0) has a homoclinic orbit T at h = h, which connects a hyper-
bolic critical point (a, 8), then the parametric value of the homoclinic
bifurcation is A(h) = hhmﬁ,\(h).

(iii) The sign of A’ () is determined by the sign of saddle value of (, §).
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We now consider the perturbed system (1.1).. By using the method of [3]
- [5], corresponding to 4 families of closed orbits {T'?}(i = 1 - 4), we define 4
detection functions as follows:

1r/2 /2
A(h) = Z;l((:; =/0 i (9, h)g(19 dﬂ// r2 (9, h) dd
/ 14+ y/v(¥,h) d19// 1+\/v(19h 9,
0 u(9)
(3.1)
(~o0 < h < 1/a)
/2 /2
Da(h) = Zfigg - /0 r4 (9, h)g(8) 49/ /0 r2 (9, ) df
_ [ 1= V@, k) i ™2 11— J/u(d, h)
- /0 {W—} g(9) d9/ /0 [—u(197_ dv,
(3.2)
(0<h<1/a)
(k)
= L = [0t ooy any [ 0) - r2 o)
CPNTEAD) NN
/0 =T 19)dz9// —dﬂ
(3.3)

(1/a < h < 1/c)

Na(h) = 22 _ /:‘("’ WO oo [f R

da(h) Jh)  UA(Y) oa(hy  u(¥)

(3.4)
a+c+2

(1/e<h< 22

)

where g(9) = mcos® ¥ + nsin? ¥, d(h) = 91(h) (1/a < h < 1/c),

(a-d?+tla—c)—(a+c+2)(atc—2—4/h)
J12(h) = —arccos[ T1oT2

From (3.1) - (3.4), we know that A\;(h) (i = 1 - 4) are differentiable functions
of h. From the parametric representations of I'*(; = 1 - 4), we obtain explicit
formulas for A;(h), they can be described by using complete elliptic integrals.
Since we only need to understand information of Hopf bifurcations and homo-
clinic and heteroclinic bifurcations for the bifurcation of limit cycles of (1.1),
we neglect them. We next investigate and calculate the values of bifurcation
parameters.
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1. Hopf bifurcations. The values of Hopf bifurcation parameters in the
origin 0(0,0) and centers AY(i = 1 - 4) are

(3.5) Y = A (0) + 0(e) = 2(mz® + ny*)|o(0,0) + 0(€) = 0+ 0(¢),

b = M(BEE12) 4 0(6) = 2(me? + ma) g +0(6)
(3.6) [(1+a)ar(rzzj1(1+c)n] +0(e).

2. Homoclinic and heteroclinic bifurcations. To obtain the limit values
of Ai(h) (i=1-4), as h — 1/a and h — 1/c respectively, it is necessary to
calculate the following 17 integrals. Here we give the results of the calculations.

/2 49
Lo = = Iy + Lo,
10 A (19) 11 12

I = /07r &Z(g)ﬂ = 1/[8¢(v/ac — 1)]1/? © Ii(a,0),

I = /0 = (Z)dﬂ = /[8a(v/ac ~ DI/? € Ly (c,a),

Vu(d,1/a) d19 c—
=[S g+ e -
where p = p(a, ¢) = V2(SLHEHER)/2 g = g(a,c) = v/a/c(a+ c+2),

fila,c) % def 2(a+1) py/2(a+ 1)+ ¢
14, -
2(a+1 )+ p/2@+ 1)+

fa(a,c) def arctan ___\2/(%_(;—_11))_ 4 arc 2\/2—(;134_ p
SN CRVOL. N .
Iy _/0 u(¥) 4\/5ap (f1(c,a) = \/—ﬁfg(c, a)],

where po = p(c, a), g0 = q(c, a).

Jiy = "2 cos?9dd  wly/a(2 — 3ac — 2¢* — 2c) — V/c(2ac + a + ¢)]
1 / @) 8c(la — c)[2ac(v/ac — 1)]1/2

def
é J11(0,, C),

™/2 sin® 9 dy /24
= - = Jio = —=J J;
Jia /0 220) Jui(e,a), Jio /o 2 ! + Jig,
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J /”/2 Vu(8,1/a) cos? 9d¥ (¢ — a)?
921 = =
0

w2 () ~ Vac? fOl(aaC)+‘§f1(a,c)

2D+ Bp

/—_~4q_p2 (f2(aa C) T,

+

where

A=[(p*-2¢)Ba+c+4)-4a+1)(a+c+ 2) + 2¢% — (29 — p*)?]
/120* (0" - 49)) € A(a,),  Ao=A(c,a),  Bo=B(c,a),
B =[(2¢ - p*)(2A + 1) + (3a + c + 4) + 4¢(A + 1)]/8pg % B(a, o),
D=-[2¢-p)2A+1)+ (Ba+c+4)/8¢ ¥ D(a,c), Do=D(c,a),
def v/2(a +1)[(2g — p?)(24+ 1) + (3a + ¢ + 4)]/4 + A(2a + 2)3/2
foi(a,¢) = 4(a+1)2+2(29 - p2)(a+ 1) + ¢2 ’
/2 \/v(8,1]a)sin? 9 &9 (c—a)
7= [ 2@ e

2
foa(a,c) + gfl(a,c)

2G + Fp

\/w(.ﬁ(a: c)— ;r) )

+

where

2
P°—2¢—2(a+c+2) det
E = =E Ey=F
2p2(p2 — 4q) (a,c), 0 (Ca a)’

F = [2E(2q — p*) + 4¢E + 1)/(8pg) % F(a, ¢), Fy = F(c, a),
G =—-[2B(2¢-p*) +1)/(8¢) £ G(a,c),  Go = G(c,a),

foa(a,c) % V2(a+ 1)[2E(2g — p?) + 1)/4 + E(2a + 2)3/
021 € = 4a+1)2+22¢—p?)(a+ 1) + ¢ ’

™2 Ju(d, 1]a) dv
Jao =/ *(QL = Jo1 + Jao,
0 u?(Y) .
™2 y(9,1/a) cos? 9 dI 1
-]31—/0 20 =J11—’d-711,
/2 y(9,1/a) sin? 9 & 1
Jag :/ v /an)(j;)n = Jig — ;1-112, J30 = J31 + Ja2,
0
, =/191(1/c) V@, 1/c)cos?9dd _ (a—c)? Foalc,a) + —Fﬂf (c, )
41‘ o 'U,Z(’l9) \/6(12 021¢, 2 I\G

2Go + F
1250+ Sopo

Vi =g 2@
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91(1/9 /508, 1/c) sin? © dd —c)? B
,]42 =A ’U( 1{26()’;)1n = (0;/60162) fOl(c7 a) + '—29'f1(c7 a’)

2Dy + B
L2 0Po

Vim—g oY)

(/) /u(9,1]c) db
Jgo = / —("L = Ja1 + Ja2.
0 ‘

u?(d
Using (3.1) - (3.4) and the previous integrals, we have

(1) m{J11 + 2Jo1 + J31) + n(Ji2 + 2J22 + J32)
/\1 - = )
Iio+ Ig;

1 m(J11 — 2J21 + J31) + n(Ji2 + 2J22 + J32)
(3.8) Ml—-)= y
a Iio—1Inp
<1> 2(mda1 + njzz)
A3 = ——

(3.9) - Tor

(310) X (%) Y <1> _ 2AmJi + )

[# I22

(3.7)

Note that A; (-‘1;) and A; (%) (i=1-3, 7 =23,4) give respectively the parameter
values of heteroclinic and homoclinic bifurcations.

Proposition 3.1.
1 1
If \q (—> > Ao <l> , than A3 (—) > /\r(
a a a a
If \ <l) < Ao <}'> , than A3 <l> < A (
a a a
Proof: From (3.1) - (3.4), we know that

| 1\ $1(1/a)da(1/a) — va(1/a) s (1/a)
M (‘) e (“) = 1102 (1]a) ’

(3.11)
and

(3.12) A3 (

a

1) Y <1> _ 0(l/Q$2(1/a) — pa(1/@)1(1/a) . _,

a

$:(1/a)[@1(1/a) — ¢2(1/a)] i=1,2.

It is easy to see that -

®3 <%> = ¢ <%> — ¢ (é) > 0, & (%) >0 (i=1,2).

Thus, (3.11) and (3.12) gives the conclusion. W
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3. The values of saddle points S; - the detection values of direction of homo-
clinic and heteroclinic bifurcations. Under the condition that the unperturbed
vector field has some symmetries, the sign of the values of a saddle point can be
used to determine the stability of a bifurcating closed orbit from a homoclinic
or heteroclinic loop, and give the signs of Xi(1/a), X;(1/c) (i = 1,2,3, j = 3,4).

At the saddle points S; and S5, when the parameter A takes the values of
A;(1/c) (4 = 3,4), we have

034 = 2e[2(mz® + ny?)|s, — As(1/¢)] + 0(e2)
m(Iyy — cJa1) — nedyg
cly

(3.13) =4e +0(e?).

Similarly, at the saddle points S3 and S4, when A = X;(1/a) (i = 1,2,3), we
have
o; = 2¢[2(mz? + ny?)|s, — Mi(1/a)] + 0(e?).

By using (3.7) - (3.9), we obtain

(3.14)
o1 = % [2([10 + 121) — a(J12 + 2Jy9 + J32)]n - ma(Ju + 2Jo1 + J31) + 0(62);
a(Iio +I21)
(3.15)
%I10 — In1) — a(Jiz — - -
oy = 26[ (Iio — In1) — a(J12 — 2Jog + J32)|n — ma(J11 — 2Jo1 + J31) +0(e);
a(lio — Iz1)
(3.14)
Iy — _
oy = agzadn—amla o 00

a121

4. Global and local bifurcations in the cases m =n

If we let m = n, then (1.1) becomes

Z—f =y(1+ 22 — ay®) + ex(mz? + my? - \),
(4.1), |

d

d—f = —x(1 — cz?® + y?) + ey(mz® + my® — \).

Hence, from 3, we have

A\ (1> _ m{J1o + 2J50 + J30) ;\2 (1> _ m(Jio = 2J3 + Js0)

a Iio+In ’ a Iip—1In

1 2mJag : 1 2mJyo

M=) = , M=) = —,
a I c Iy
A° _ 2m((1+C+2)

i B0 —
b = 20D o), b =0+ 000)
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Lemma 4.1. A;(R) > 0, My(h) > 0 and . lilr? +0)\§(h) = +00,

. /
h—lgr/lc—o As(h) = hm /\ a(h) =

Proof: Since
we see from (3.4) that

def

I'= 303 — b33
_ 1 (k) 91(h) 91(h) 91(h)
- e Fw [ S [

—91(h) UV J 9, (k) —oy(h) VU J_oyny WP
This integral formula can be written as a double integral [4]:
91(h) (h) Qg . d .
(4.2) = / / [ () = uz@2)] 45 49, > o.
811 J =01 () ud (91)u3 (92) /012

When h tends to 1/a or 1/c, at ¥ = 0 of ¥ = /2, the function [v(J, h)] 172 55
unbounded. From (4.2), this implies that

h_l11r§1a+0A3(h) L hm /\ s(h) =

Similarly, we can have the result for Ay(h). Lemma 4 1 implies that 03,4 <
0,03<0. B

d (h d { ¥a(h)
Lemma 4.2. & ($43) <0, & (3R <0.

Proof: For i = 1,2, we have

i (5) = T AR

Using (3.1) and (3.2), we know that

def

J = i (h)gi(h) — ¢ (h)wi(R)
™2 gy (™2 dY "2 q9 (™% udd g9 [ udd
=*Z[/o Sl AL S —/}
(4.3) '
_:F[/’rﬂ/ (vf/2+v1v2+v3/2+v1v2> d1§1d1§2j|~
v1v2)3/2 1+ /o1 - 1+ 2 /-

The signs — and + on the right hand of (4.3) are respectively corresponding to
the cases of 1 = 1 and ¢ = 2. Thus, (4.3) gives the conclusion of lemma 4.2. B
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Lemma 4.3. [5] For h € (0, hg), assume that the functions ¢(h) and ¥(h)
are sufficiently smooth, nonnegative and monotone increasing, the function
Y'(h)/¢' (k) is nonnegative and monotone increasing (decreasing). Then the
function ¥(h)/d(h) must satisfy one of the following properties:

(i) monotone increasing after it decreases to a minimum (monotone de-
creasing after it increases to a marimum);

(if) monotone increasing,

(iii) monotone decreasing.

In particular, if $(0) = ¥(0) = 0 and hlimow(h)/d)(h) =a >0 (or <0), then

Y(h)/é(h) must be increasing (decreasing).

Lemma 4.4. N lim Ai(h) = +o0.

Proof: Write 72, = minge(o,2x) 73 (9,h), b € (—00,0), because '} extends
infinitely as h — —o0, it follows that r? — +00, as h — —oo. We have

w2 /2
m )\l(h)zhlim (rfn/ ri(w// ridﬁ):h lim 72 =400 W
——00 0 —

li
h—s—o00 0 —o0

Lemma 4.5. If A1 (1) > 2, then A\i(h) will be monotone increasing after
it decreases to a minimum; if A (2) < 2, then A1(R) is monotone decreasing,
and Ay (h) is monotone increasing.

Proof: If A1 () > 2, then 01 < 0, ie, »lim Ji(1/a) = +oo. Thus,

Lemma 4.2 - 4.4 can follow the first part of the conclusion of Lemma 4.5. On
the other hand, ¢2(0) = ¥2(0) = 0, Lemma 4.2 and Lemma 4.3 lead to the
result stated for A5(h) B

Lemma 4.6. For the system (4.1),, the inequality A3 (%) > A (%) > Ag (%)
holds.

Proof: We have

1 1\ 2(Jio+ J 40o0J
M=) =22 (_> = (J10+ 320)-]11:‘ 20J10
a a I3 — Iy

by ﬁsing Proposition 3.1, we have Lemma 4.6 B

These lemmas enable us to determine two types of detection curves of (4.3),,
shown as Fig. 4.1 (a) (b).
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Fig. 4.1 The detection curves of (1.1) when m = n.

5. Bifurcation set in the (n,m) plane
We now consider the general case of m # n for the system (1.1),.

Lemma 5.1. . lim Ay(h) = +o0, if m + ki(a,c)n > 0; . lim Ay(h) =
—00, if m+ ki(a,c)n < 0, where ki(a,¢) = Ia/I11.

w/2

LT EVICRD "/ 9(9)

(5.1) ={..)+(..)=hLi(m+ ki(a,c)n).

Proof: From (3.1), we have ‘
2
14/
_i_ﬂ’l] g(9) do

Since ¢ (h) is exactly a quarter of the area insider I'}, we have ¢;(h) — 400
as h — +oo. Clearly, as h — —oo, the sign of lim A;(h) is determined by
the third term of (5.1). Hence, Lemma 5.1 is true. B ‘
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Next, we apply the results of 3 to partition the parameter plane (n,m) as
regions of angles, inside which there are different detection curves of (1.1),.
Without loss of the generality, we only discuss the case of m > 0. In the upper
half plane of (n,m), we have 18 half straight lines with linear equations as
follows.

1. The line [; is use to distinguish the sign of . lim Ay (h).

(5.2) li:m=—ki(a,c)n, ki(a,c) = Lo/ 1.

2. Straight lines l5 - 5 show that values of saddle points of (1.1), are equal
to zero.

(5.3)

F2(1 Ioy) —a(J 2J. J:
ly:o1=0,m= (10 + I51) — a(Jiz2 + 2J52 + 32)]

= k .
a(Ju + 2Jo1 + J31) m 2((1, c)n’

(5.4)

[2(I0 — In1) — a{J12 — 2J22 + J32)
l M = O = — .
3:02 » M a{Jyy + 2J9y + J31) n kg(a, o
(5.5)
[I21 — ada ‘
: ES = | —— ES k :
ly:03=0,m ador ] n 4(a,c)n.,
(5.6)
. _ _ CJ42 o
Is:034=0m= [—122 — cJ41] n = ks(a, c)n.

3. Straight lines lg - l13 determine the relations between Hopf bifurcation
parameters and homoclinic, heteroclinic bifurcation parameters.

(1) )\1(1/0) = 0)

J1g + 2J99 + J3g
(5.7) s:m [ B Jm] n = ke(a, o)
(i) A2(1/a) =0,
Jio — 2J23 + J3z
5.8 lyim=— |22t g :
(5.8) ,im [Ju ~ b Jm] n = kr(a, on

(iii) As(1/a) =0,

(5.9)
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(iv) Aa(l/c) =0,

(5.10) lg:m=— (%‘j) n = kg(a, c)n;

(v) b — M(1/a) =0,
(5.11)
Lo _ |:2(1+C)(I10+121)— (ac—l)(J12+2J22+J32)
10-M=—

2(1+ a)(Im + Ipy) — {ac — 1){(J11 + 291 + J31)

] n = kio(a, c)n;

(vi) b7 — Ao(1/a) = 0,
(5.12) |
It m = — [2(1 +¢)(I10 — Io1) — (ac — 1)(J12 — 2J22 + J32)
11 2(1+ a)(T10 — Io1) — (ac — 1)(J11 — 2J21 + Ja1)

] n = k11(a, o)n;

(vii) b3 — As(l/a) =0,

(1 +¢)Ir1 — (ac — 1)Ja2
(1 -+ a)Igl bt ((J,C — 1).]21

(5.13) Ly :m = - [ ] n = ka(a, 0)n;

(viii) b2 — Ag(1/a) =0,

(1 + C)IQQ - (ac — 1)J42
(1 + a)122 — (ac - 1)J41

(5.14) lig:m=— { ] = kys(a, o)

4. Straight lines l14 - l;7 determine the relations of homoclinic bifurcation
parameters and heteroclinic bifurcation parameters.

() A(1/a) — A3(1/c) =0,

Ip1(J1g + Ja2) — 211022
D1 (Jir+ Ja1) — 2102

(5.15) lig:m=— [ ] = kia(a, O)n;

(ii) A1(1/a) — Ag(1/c) =0,

Ipa(J1g + 2Jo2 + J32) — 2(1ho + In1) Jao
Lo (J1 + 2J21 + J31) — 2(J10 + T21)Ja1

(5.16) lis:m = — [ ] n = kis(a,0)n;

(ifi) Ao(1/a) — As(1/c) =0,

Lo (Jio — 2J22 + J32) — 2(110 — In1)Jao
Io(Ji1 — 221 + J31) — 2(J10 — Io1)Jar

(5.17) lig:m = — [ ] n = kig(a, O)n;
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(iv) As(1/a) — Aa(1/c) =0,

Inpdyg — IntJao

5.18 li7:m=—- | /———~——=
(5.18) 1 [122J21 — Iy

] n = kiz(a, c)n.

5. The straight line l15 determines the relation between Hopf bifurcation
[+]
parameters, i.e. b?f' -b% =0.

l1+¢
(5.19) lig:m=— <1 n a> n = kis{a, c)n.

It is easy to see that the previous 18 straight lines together with the addition
of the n-axis, partition the half-parameter plane (n,m) as 19 angle regions.
Using the integral formulas in 3 to compute k;(a,c), (i = 1 - 18), and letting
ki(a,c) = tgdi(a,c), we obtain:

Lemma 5.2. There exist many parameter pairs (a,c) with a > ¢ > 0 and
ac > 1, such that 0 < ¥3 < U5 < 97 < Y13 < 91 < J12 < Y10 < Phg < Jg <
198<’l911<199<1914<’l916<1915<1917<’l94<’l92<7r.

As an example, take a = 6, ¢ = 2, we have k1 = —0.577, ky = —0.01829, k3 =
6.5749, ks = —0.054, ks = —3.41, ke = —0.4117, k; = —1.85, ks = —0.405,
ko = —0.3744, kyo = —0.462, ky; = —0.39, k1o = —0.496, k13 = —0.819, ki =
—0.3526, k15 = —0.26, kg = —0.328, k17 = —0.206, k15 = —0.43.

In (n, m) half plane, we compute all 18 half straight lines to get the partition
of the parameter plane shown as Fig. 5.1. Corresponding to every angle region
R; (1 = 1 -19) of (n,m) half plane, the sketches of the detection curves have
been drawn in the table 5.1.

(4%

0 R\« - 'R1

- ]777:“
/,' / /)
// ///
/
/

— 1

Fig. 5.1 The partition of (n,m) half plane of parameters.
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L3

" SVERN X |
Rig Ry b Ryq Riyy

Table 5.1 The sketches of all detection curves of (1.1)..

In order to understand the phenomenon of bifurcation of limit cycles, we give
a group of phase portraits when the points (n,m) are inside the angle region
Rs3. They are shown as Fig. 5.2. Using table 5.1, we see that there exist many
interesting distributions of limit cycles and homoclinic or heteroclinic loops, for
the sake of brevity, we omit them.

Let Ck denote a nest of k limit cycles which encloses m singular points.
The sign C is used to shown enclosing relations between limit cycles. And the
sign + is used to divide limit cycles enclosing different critical points. Denote
simply that Ck, + Ck = 2Ck, etc.

On the basis of the invariance of vector field of (1.1) under a rotation over
7, by the property of detection curves and theorems of Ref. [5], we have the
following two theorems.
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Theorem 5.1. For any fized ¢, 0 < € << 1, when (n,m) is inside the angle
region Rs of Fig. 5.1, as A varies, (1.1)¢ has distributions of limit cycles and
homoclinic or heteroclinic loops as follows:

5) If by < A < +00, (1.1)c has one unstable limit cycle with the distribution
ci.
(i) If b2 < X < bfy, (1.1)c has 5limit cycles with the distribution of C& D 4C}.

(i8) If X = b3, (1.1). has 7 limit cycles with the distribution of C§ D 2[C} >
2C1).

(iv) If Ma(1/c) < A < b2, (a.a)e has 9 limit cycles with the distribution of
cl o 2(C2 S 2¢Y].

(v) If X = Ma(1/c), (1.1)c has 4 homoclinic loops connecting respectively the
points Sy and Sy, with the addition of 7 limit cycles.

(vi) If b2 < X < Ag(1/c), (1.1)e has 11 limit cycles with the distribution of
C3 D 2[C} > 2C3).

(vit) If X = b2, (1.1). has 7 limit cycles with the distribution of C§ D 2[C3 D
2C1].

(viii) If A3(1/a) < X < b2, (1.1)c has 8 limit cycles with the distribution of
1 i .

(iz) If A = A3(1/a), (1.1). has 2 homaoclinic loops connecting respectively the
points S3 and Sy, with the addition of one limit cycle C¢.

(z) If X = M(1/a), (1.1)e has two heteroclinic loops which are surrounding
respectively 3 critical points; outside these loops, there is one limit cycle C§.

By using Table 5.1, we also see that the following result is true.

Theorem 5.2. For a fizede, 0 < & << 1, we have

(i) If (n,m) is inside the angle region Ryo, then the distributions of limit
cycles of (1.1); are

(a) 7 limit cycles with 2[C} > 2C}+C} distribution, when A3(1/a) < A < 0;
(b) 6 limit cycles with C§ D 5C] distribution, when A2(1/a) < A < M1(1/a);
(¢) 4 limits cycles with 2C2 distribution, when Ay(1/c) < X < b3.

(i) If (n,m) is inside the angle region Rio, then there are 5 limit cycles of
(1.1)c with the distribution 5C1, when A1(1/a) < A < 0. This is the Il’jasenko
distribution.
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bﬁ|<)\<"“"

be < A < Ay(#)

A= )\3(':&)

A A.l%) ’

AKIe A < Alk)

18

L\i<)\<b:|.

96

2
)~1‘7|.\) Fay T '34(

A= A\dk)

62 A< A lE)

Fig. 5.2 Bifurcations of phase portraits of {(1.1). when

(n, m) lies inside the angle region Rs.
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