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THE WORK OF
JOSE LUIS RUBIO DE FRANCIA III

The aim of this paper is to review a set of articles ([6], [10], [11], [13], [16],
[25]) of which José Luis Rubio de Francia was author or co-author written
between 1985 and 1987.

I had the luck of being his graduate student around this time so that we
collaborated in some of this work. It is hard to say in a few words how was
José Luis Rubio but at least I would like to point out that he influenced my
career in a decisive way and that he was one of the nicest persons I have ever
met.

1. Singular integrals with rough kernels:
L theory ([16], [6], [13])

In all these papers a common approach in used to study the boundedness of
several singular integrals, based on the following idea: decompose the operator
T as a sum

T = i Tk
k=—c0

in such a way that

(1) 1T fll2 < C2721%Y| f||5 for some a > 0;

if now one of the following inequalities happens

(@) WF Il < CllFllans
(3) T fllpo < Clflipo for some po # 2;

(4) [Tk fll 22wy < C|fllL2(w) for some weight w,
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interpolation with (1), summing a geometric series and duality give the bound-
edness of T'in L?, 1 < p < 0o, in L?, pg < p < ph (or p < p < po) and L%(w?),
0 < 8 < 1, respectively. Polynomial growth in k can be allowed in inequalities
(2), (3) and (4) with the same conclusion.

To get (1) we'll start with a natural descomposition of T as 3,
each Tj is given by convolution with a measure o;.

oo

j=—oo 1j Where

If, for example, one can prove

(5) |6;(€)] < Cmin(|27¢],]|27¢|71)* for some & > 0,

then we can construct T as follows: choose a function ¢ € C*°(R™), supported
in 1 <[] < 2 and such that

(6) Y@ =1 VE#£0,

j=—00
define S; as
(SiF)(€) = $(27E)f(£)
and take
(1) Te= Y T;Siw.

j=—o0

Under these circunstances, (1) is easily verified using (5) and Plancherel’s
theorem.

a) The simplest application will consider the singular integral

®) - i@ =po. [ Ty

where Q is homogeneous of degree zero, its restriction to the unit sphere has
- mean value zero and is in LI(S™"1) for some ¢ > 1. It is well-known that
T is bounded in LP(R"), 1 < p < oo, by using the method of rotations
but the present method offers an alternative approach. T;f is the integral
restricted to 27 < lyl < 25+ and o; is the integrable function given by
QYY" X(2i <w|yj<2i+1} Where X4 stands for the characteristic function of
the set A. The estimation of an oscillatory integral shows that (5) happens for
any a < 1/¢'.
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Theorem 1. Let {0;} be a sequence of Borel measures supported in {z €
. j g
R™ : |z| £ 27}, with uniform total variation and integral zero such that

16;(8)] < C|27¢| for some a > 0.
Then, Tf = zjaj * f 18 bounded in L?, 1 < p < oo.

Defining T as above we only need to compute the Hérmander constant of
its kernel to show that (2) is verified with constant C(1 + |k|).

As an application, singular integrals of the type (8) are bounded in LP(R"),
1 < p < oo. If one introduces a bounded radial function in the kernel of
(8), the method of rotations is not applicable but theorem 1 gives again the
L?-boundedness, 1 < p < oo.

Before modifiying some aspects of this theorem, let us state a new one related
to maximal operators.

Theorem 2. Let {u;} a sequence of positive Borel measures supported in
{z e R": |z} < 27}, with uniform total variation such that

|5(8)] < C|2€]™* for some a >0,

then, Mf(z) = sup; |u; * f(z)| defines a bounded operator in LP(R™), 1 <p <
00.

To prove this theorem, define o; = p; — i;(0)p; where ; = 27"p(277.)
and ¢ is a C*°(R™) function, supported in the unit ball and such that ¢(0) = 1.
Then, the sequence {o;} satisfies the hypotheses of theorem 1 and the same is
true for {€;o;}, where €; = &1 arbitrarily, with constants independent of the
sequence of signs. It is enough to observe that

(9) Mf(z) < (Z|gj*f(x)|2)l/2 +cM f(z)

(where M stands for the Hardy-Littlewood maximal function) and apply the-
orem 1 to get the LP-boundedness of the square function (via the uniform
boundedness of 3. ¢;0; * f and the usual argument with Rademacher func-
tions).

A consequence of theorem 2 is the L?-boundedness of the lacunary spherical
maximal function (take y; = normalized Lebesgue measure over the sphere
of radius 27). Obviously one can substitute the sphere by any other compact
surface with enough curvature to ensure the required decay condition of the
Fourier transform for the Lebesgue measure carried by it.

b) Given a matrix A whose eigenvalues have nonnegative real part, we can
define the associated group of dilations {6,} by 6,z = t*z and a “norm” in R"
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such that |6,z = t||z||, t > 0, (see [26]). I this norm is used in theorems 1
and 2 instead of the euclidean norm, they are still true. Apart from standard
modifications of operators like (8), this provides other interesting results.

Given a curve I' : t — 4(t) in R", two operators are usually associated to it:
the Hilbert transform along I'

Hei@) =pv. [ fle=20)F

and the maximal function along T’

h
Mef() =gl [ e = (e

. .1 .
Hrf = E;’ o * f where g; is the measure of size 3 over the portion of I' where

27 < |t| < 27! and Mr is equivalent to sup; |u; * f| where p; is the measure
of size 27971 over the same portion of I'. A homogeneous curve is given by

y(t) = thu, t>0, v(t) = (=t)%v, t<O.

where u,v € S~ ! and the positive and negative parts of v generate the same
subspace of R®. The boundedness of the Hilbert transform and the maximal
function along a homogeneous curve are now a consequence of the estimates
for &; and i}, which can be found in [26]. In that paper LP-boundedness for
p # 2 is proved via analytic interpolation which we avoid here. The same result
holds for well-curved curves, see again [26] for the definition and the proof of
the key estimate.

c) Inequalities like (3) can be used instead of (2). In order to get them one
modifies the choice of ¢ above requiring

(10) 3 e =1, VE£0

j==c0

instead of (6) so that 3, S]2~ = I and Littlewood-Paley type inequalities occur
in both senses (see {17, chap. V]). The following chain of inequalities can be
written

1T fllpo = 1Y T5Sxllpo < CIQ 1T3 i FP) 2 llpe <
i i

(11) 2\1/2
< CIQ 1S+xF15) *llpe < Cllfllpos
j .
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provided the {T;} satisfy the following vector-value inequality
Q1T 652 1w < CUO i) g
j j

This inequality is easily obtained from an uniform weighted inequality

(12) [mrrusc [ipa

where A is bounded from L? to LY and ¢ = (P_o), . For convolution operators
T} with kernel 05, (12) holds with Aw = o*(w) = sup; ||o;| * w].

We can state the following theorem:

Theorem 3. Let {o;} be a sequence of Borel measures in R™ with uniform
total variation, such that

(5) 165(€)] < C min(|27¢],|27¢|71)* for some a > 0.

If o* is bounded in LY(R™) for some ¢ > 1, then Tf = 2_;0i* f is bounded
in LP(R™), [;7 -1 < 2—1q.

We can avoid the compactness assumption for the support of ¢; but no new
interesting results come from this generalization. Its main interest with respect
to theorem 1 lies in the modifications to be given below.

Theorem 2 is also obtained from theorem 3 by using a bootstraping argument
(again we don’t need to assume that supp p; is compact but then we have to
add |d;(€) — 4i;(0)] < C|27€|%). As before we define o; = p; — 4i;(0)p; and
apart from (9) we also have

(13) o (f)SMf+CMS.

This inequality together with theorem 3 and (9) imply: if M is bounded in
L1, 1t is also bounded in LP, %— 1< ziq, (i.e, p> q—i?l-)

Starting with ¢ = 2 where the result is given by the hypotheses on i;(6),
any p > 1 is reached after a finite number of steps.

d) Let € = (£1,£2) € R™xR™ ™™, theorem 3 can be modified in the following
way:
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Theorem 4. If in theorem 3 we assume

(14) 165(6)] < Cmin(|2761,[276| )" for some a > 0,
instead of (5), the same conclusion holds.

The same proof works after taking operators S; which act only on the variable
€1

Condition (14) implies ¢;(0, {2) = 0, V&, € R"~™ which is usually too strong.
It seems better to assume

(15) 10:;'(51,52) - 0}'(0,_52)1 < Cl27g |
Id;(O)] < Cl27& |7

But then one has to make some hypothesis on ¢;(0, §2), for example,

(16, |5(0,&)| < Cmin(|2/&], (2762 71).
Writtin_g

(&, €2) = [0(61,€2) — 05(0,€2);(€1)] + 5(0, &2)p5(&1)

theorem 4 is applied twice.

For the maximal operator conditions like (15) are to be assumed on {u;} and
an extra hypothesis on the boundedness of the maximal operator associated to
£(0,&2). All the technical details can be found in [16].

Now we can prove the boundedness of the Hilbert transform and the maximal
function along a homogeneous curve with A diagonal by induction without using
non-isotropic dilations. If the entries in A are integers, the estimations we need
are also much easier. In addition we get a result for flat curves which is not
given by theorem 1 and 2:

Corollary 5. Let ' = (t, (%)) be a curve in R? such that o(0) = ¢'(0) =0,
©"(t) > 0 and increasing fort > 0, ¢ odd or even, then Hr and Mr are bounded
in LP(R?), 1 < p < 0.

e) If in the hypotheses of corollary 5 we merely assume ¢"(t) > 0 (i.e. not
necessarily increasing) the conclusion can be false. In [21] the following result
was proved: let ' = (¢, (%)) be an even convez curve in R?, then Hy is bounded
in L? if and only of 3C > 1 such that
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(17) ¢'(Ct) 2 24'(t), Vt>0.

Assuming (17), inequality (14) fails in an angular sector which moves with
J. This sequence of sectors is lacunary so that one can apply Littlewood-Paley
inequalities associated to them as was proved by Nagel, Stein and Wainger [22].
Combining these inequalities with theorem 4, the following is proved in [6]:

Theorem 6. Let T = (t,¢(t)) be a curve in R?, odd or even, ¢"(t) > 0 for
t > 0, satisfying (17). Then, Mr and Hr are bounded in LP(R?), 1 < p < oo.

Together with the result in [21] this theorem implies that for ¢ even, (17) is
necessary and sufficient for the L? boundedness.

In [13], A. Cérdoba and José Luis Rubio de Francia generalized the preceding
~ theorem to the case where the curve is neither odd nor even. The proof works
when some balance condition between the positive and negative parts of the
curve is assumed. They also proved that the condition is necessary.

Theorem 7. Let T = (t,¢(t)) be a curve in R? such that ¢(0) = ¢'(0) = 0;
|’ ()| increasing if t > 0 and decreasing if t < 0; IC > 1 such that |o'(Ct)| >
2l'(1)|,Vt # 0 and Ik > 1 s.t. |p(k~'8)| < |p(—t)| < |p(kt)| for every t > 0
(balance condition). Then Mr and Hr are bounded in LP(R?), 1 < p < oo.

f) Inequality (4) is also useful and gives weighted inequalities for singular
integrals with rough kernels. In the chain of inequalities (11), one can use the
L*(w) norm instead of L?° if w € A, and the first and third inequalities still
hold for the Littlewood-Paley theory (see [20]).

i T is given by (8) with @ € L*°, T;f < CMf and the vector valued
inequality also holds in L?(w) (see [17]). Then

Theorem 8. Let T be as in (8) with € L°(S"'). Then, T is bounded
in LP(w), Vw € A,.

To pass from L?(w) inequalities to all L?(w), w € A,, one uses the extrapo-
lation theorem of Rubio de Francia ([24]).

g) For all the singular integrals studied above, including Hilbert transforms
along curves, the maximal operator over the truncated integrals is shown to
be bounded in the same spaces giving the a.e. convergence of the truncated
integrals.

M. Christ used in [8] and [9] methods similar to those developed here, in-
dependently. In fact, theorem 1 is a modification of [16] following his ideas.
In [8], Hilbert transform and maximal functions along homogeneous curves in
nilpotent groups are studied.
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Extensions of the theory to the multiparameter setting with applications to
multiple singular integrals and operators along hypersurfaces are in [14], to
operators which are not necessarily of convolution type in [3] and [5]. Further
results on curves are in [4] (see also Wainger’s lecture in this Proceedings) and
more weighted inequalities appear in [15] and [27].

2. Maximal functions with continuous parameter [25]

Maximal functions were studied in the preceding section only when they
were controlled by their dyadic version but this is not the general case as the
spherical maximal function shows. Moreover, this is also an example where
the dyadic maximal function is bounded in a range which is larger than the
one for the continuous maximal function. In [25], José L. Rubio de Francia

gave a simple proof of the theorem of Stein on the boundedness of the spherical
maximal function for p > -

7" > 3, (see {26] for the original proof).
n—

Theorem 9. Let m be the Fourier transform of a compactly supported pos-
itive measure p in R" such that

(18) Im (§)| £ C’|§|_“‘for some a > —;—

Then, the mazimal operator

T*f(z) = sup(m ) f)¥(2)

2a + 1
2a

is bounded in LP(R™), p >

(V stands for the inverse Fourier transform.)
Let us sketch the proof: take a cutting function 3 € C°°(R") supported in

1
3 < |€] < 2 and also ¢ € C°(R") supported in |€| < 1, such that

e(6) + ) v =1

j=0

and consider m; = m ¥(277-). Since the maximal function associated to m ¢ .
is bounded by the Hardy-Littlewood maximal function, it is enough to prove
that

T; f(a) = sup(m;(t)/)" ()
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satisfies

IT; 1l < €27 £l

for the desired range of p’s. This is achieved in a way similar to the one in the
preceding paragraph, starting with an L?—inequality. In fact, due to the size
hypothesis on m one gets

1T} £l < €279 D 5,

For p =1, looking at T} as a vector valued singular integral, one can compute
the Hérmander constant of the kernel to obtain

T}l < C32°||f ||

Interpolating and summing in j gives the result for p < 2. But for p = oo
the theorem holds trivially and the proof is ended.

When p is the Lebesgue measure over the unit sphere, (18) is satisfied with

a= and Stein’s result is obtained. For other hypersurfaces a theorem of
Greenleaf in [18] is obtained.

Since this method is based on a good LZ—estimate which is false in n = 2, it
is not applicable to get Bourgain’s result [1].

If m is not the Fourier transform of a measure as before, the L™ estimate
can be false. In [25] there is also a theorem concerning this case.

Theorem 10. Let s be an integer > -721, m € C*tY(R") such that

|D*m(€)] < ClE]~° Vie| £ s+ 1 with a > %
Then, T* is bounded in LP(R™) for

2n < <2n—2
n+2a—1 P n —2a

1
(1 on the left if a > -T-l;—, oo on the right if a > g)
~For p < 2 the proof follows the same way as'in Theorem 9 but now
* (L —a } n
1T £l < Co2EH2Dflm VB> 5.

When p > 2, the theory of vector valued singular integrals is again applied
to get an L>°—BMO estimate:

* o —a n
IT? fllBao < Ca27~9||fll0e VB> 3
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This constant is smaller than the H' — L! constant so that the range in
Theorem 10 is not symmetric.

Notice that for p < 2, Theorem 9 is better than theorem 10 if a < 3——1 and
conversely if @ > 252, Since this second theorem applies also in the ﬁrst case
one must combine both results to obtain the optimal situation when M comes
as the Fourier transform of a measure.

3. Operators related to the method of rotations
and the Radon transform [10]

a) Given an one-dimensional operator S bounded in LP(R), we can define a
collection of n-dimensional analogues: for any u € S"~?,

Suf(x) = S(f(= +-u))(0).

All these operators are uniformly bounded in LP(R"). We look for inequali-
ties of the type

(19) ( L ([ isesteman)™ dm>w < il

The left-hand side is called the LP(L?) mixed norm of the family {S,f}.
Inequality (19) is trivial for p = ¢ (hence for p > ¢) because the order of
integration can be reversed.

When S is the Hilbert transform, Hardy-Littlewood maximal function or
maximal Hilbert transform, inequalities like (19) are used in the method of
rotations for singular integral operators with variable kernel ([2]):

(,y)

(20) Tf(z)=p-v. | B

f(z—y)dy

where
sup ||z, -)|| L (s»-1) < +oo for some r > 1.
z

Taking f = characteristic function of the unit ball, one proves that (19) only
can be true when - > 7P for the three operators listed above. In
q :

(n—1)p

[10] the following is proved

Theorem 11.

(i) When S = M, (19) holds for E > ntl

(n _lp) whenever p < max(2, ———-——)
(n) When S is an one- dzmenszonal operator bounded in L7(w) for every
weight w € A.(R), then (19) holds in the same range as (1).
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In both cases interpolation with the trivial case p = ¢ gives a result for

1
p > max(2, %—-—) which is sharp if n = 2 but leaves an undecided region when

n > 3.

The proof of (a) for p = 2 uses an estimate from L? to L2(L2) where Lf,

2(n—1
is a Sobolev space. By the embedding theorems, for any ¢ < —(2—-—5-)-, there
n—

1
exists § < 3 such that L%(S"_l) C L9(S™'). The estimate is obtained via

1
the Fourier transform. For p = -7-1——;—_——-, the X-ray transform and its L? mapping

properties are used. See [10] for details. (b) is then obtained from (a).
Applying theorem 11 to the method of rotations in {2] we get:

Corollary 12. Let T be a singular integral operator like (20) and T* the
mazimal operator of the truncated integrals. Then, T and T* are bounded in

LP(R™) if 1 < p < max(2, ; !

for anyr > 1 and if n > 3, for

)a,ndr>n;p'. Ifn=2alsofor2<p< o
n

1 2
nt <p<ooifr> P
2p -1

This result is sharp in n = 2 but there is probably a better result if n > 3.
A maximal operator related to the Bochner-Riesz multipliers is given by

Myf(s) = sup = [ 1£(z = )l dy

where for a fixed 6 > 0, the supremum is taken over all the parallelopipeds
containing the origin and having one side of length r and (n — 1) sides of length
ér, ¥r > 0. The conjecture is

(21) ’ M5 f]ln < C(log &)°|Ifln

which was proved by Cérdoba [12] for n = 2, the only case where it is known.

If (21) was true, interpolating with the trivial estimate with constant C6'~™
for p close to 1 would give

(22) 1M5 £ll, < C(log 6)*6' "7 f|l, 1<p<n

As a consequence of theorem 10 (a) we have:
. n+1
Corollary 13. (22) holds if 1 < p < max(2, T)

For n = 2 this gives a new proof of Cérdoba’s result.
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b) A maximal operator associated to the Radon transform is

1
Rfe) =swp— [ If@—y)lddy), = €R", ue s
r>0
lyl<r

<y, u>=0
where A is the Lebesgue measure on the hyperplane < y,u >= 0. Remember
that for v € S"~! and t € R, the Radon transform of f in (u,t) is obtained
by integrating f over the hyperplane < z,u >= t (see [23]). Again one can
consider mixed norm estimates

rle 1/p
(29) ( L (L rrera) dw) < iy
and the theorem proved in {10] is:

Theorem 14. Inequality (23) holds whenever
n+1 1 _n

1<p< and ->——(n-1)
q b
or +1 12 1
n
<p<?2 d - --1
n =P= an q>(p )n—l
or

p>2 and g < co.
n+1

It is enough to prove the theorem forp =2, ¢ < o andg=n+1,p >

n
and interpolate with the trivial case p = ¢. The L?—theory is handled with
the Fourier transform and the mapping properties of the Radon transform are
used in the remainder.

¢) Let us include two more results from [10]:

Theorem 15. Let T be a recizﬁable curve in R™ whick crosses at most M
times (M > 0 given) every hyperplane in R™ and uy,...,un, N points over I'.
IfH,,,..,H,, are the Hilbert transforms in these directions, then

1/q

1
Z |Hu; f17 ll < Cqf|f||2
Jj=1 ’

=|

and

| sup |Hy, flll2 < Clog N||f|f2-
1<5<N

Notice that S! has the finite crossing property of the theorem so that any
set of N points in R? satisfies those inequalities.

As a consequence we have
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) ) L4
Corollary 16. Let uy,...,un as in the preceding theorem, if 3 <p <4,

N 1/2 1/2

N
L DG AP Dl < Clog M SHI (ST IRE |

i=1
with C independent of N.

4. Singular integrals with rough kernel:
weak (1,1) estimates [11]

The singular integral (8) and the related maximal operator

(24) M f(z) = sup — / 125" f(z - v)| dy
>0T ly|<r

are easily seen to be bounded in LP(R"™), 1 < p < oo, by using the method
of rotations. But this method does not apply to obtain a weak (1,1) estimate
because the weak L!—space is not a normed space. The question remained
open for a long time until M. Christ gave in [7] the first proof of the weak
(1,1) estimate for Mg in the two-dimensional case. Subsequently, in a joint
paper with José L. Rubio de Francia [11], they were able to extend the result
to all dimensions for Mg and to prove it for n = 2 for the singular integral
(they claim that in this case the proof can be extended to n < 5). S. Hofmann
proved independently the result for the singular integral in [19].

Theorem 17. The mazimal operator Mg given by (24) is of weak type (1,1)
when n > 2 and Q € Llog L(S™™!). The singular integral operator T given by
(8) is of weak type (1,1) when n =2, Q € Llog L(S') and [Q = 0.

The proof follows the usual Calderén-Zygmund argument with just one mod-
ification: after decomposing f = g+b where b is a sum of functions b; supported
in disjoint dyadic cubes @; and with mean value zero, one takes away an ex-
ceptional set E formed by dilations of the cubes @; and usually proves that
T8 L (rm\Ey < C||b]|1. Instead of this inequality, what is used in the above
papers is

I T8I %2 (ra\ iy < CAIIB

where A > 0 is the height at which the Calderén-Zygmund decomposition
has been made. The idea of using this inequality goes back to a paper of C.
Fefferman.

In practice, one takes K;(z) = 27/"y(277z)Q(z) where 7 is a radial C*

function, nonnegative, supported in 3 < |z £ 4 and identically one on 1 <
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|z] < 2. Then Mqf < Csup; f+K; if f > 0 and it is enough to prove the weak
(1,1) estimate for sup; f x K.

If b is the “bad function” in the Calderén-Zygmund decomposition of f and
the exceptional set E is constructed by taking the union of the cubes with same
centers as Q; and five times their sides, for a fixed 7, b; * K;(z) is different from
zero in some point ¢ F only if the side of the cube Q; where b; is supported
is less than 2. For each s € Z, denote by B, the sum of the b; for which
the sidelength of Q; is 27; then, the key estimate is the following: assuming
€ L>°(S™ 1) and s > 0,

| sup I + Bj_lll32rny < C27% QY15 AlI1b]l1

for some € > 0. By dilation invariance it is enough to prove it for j = 0. If
Ky(z) = Ko(—x) we have

| Ko * B_,||2 =< Ko * Ko x B_y,B_, >

and it is enough to prove

| Ko * Ko * B_y||oo < C|||2,27%°A.

The convolution I\;o * K¢ has better properties than Kj alone and this makes
possible the above estimate to hold. When n = 2, Ko %K is Holder continuous
outside the origin and this is enough (see [7]) but for n > 3 this Holder property
does not hold and one has to go into harder geometric considerations (see [11]).

For the singular integral there is an additional complication coming from the
fact that the key estimate must be now proved for a sum instead of a supremum

1Y K Bimalliamny < €27 A lIQll%

J

The square of the sum presents cross terms which are hard to handle. This
is the reason why the proof works only in low dimensions.
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