APPROXIMATION PROBLEMS IN MODULAR SPACES OF DOUBLE SEQUENCES

ALEKSANDER WASZAK

Abstract

Let X denote the space of all real, bounded double sequences, and let Φ, φ, Γ be φ -functions. Moreover, let Ψ be an increasing, continuous function for u>0 such that $\Psi(0)=0$.

In this paper we consider some spaces of double sequences provided with two-modular structure given by generalized variations and the translation operator.

We apply the $\gamma(\tilde{v}_{\Phi}, \tilde{\rho}_{\varphi})$ -convergence in $\tilde{X}(\Phi, \Psi)$ in order to obtain an approximation theorem by means of the (m, n)-translation, i.e. a result of the form $(\tau_{mn}x - x) \to 0$ in an Orlicz sequence space l^{Γ} .

1. Notation

- 1.1. A function φ defined in the interval $[0, \infty)$, continuous and nondecreasing for $u \geq 0$ and such that $\varphi(u) > 0$ for $u > 0, \varphi(u) \to \infty$ as $u \to \infty$ and $\varphi(0) = 0$, is called a φ -function. We will consider three φ -functions Φ, φ and Γ . Moreover, let Ψ be a nonnegative, nondecreasing function of $u \geq 0$ such that $\Psi(u) \to 0$ as $u \to 0+$, (see [3]).
- 1.2. Let X be the space of all real, bounded double sequences. Throughout this paper sequences belonging to X will be denoted by $x=(t_{\mu\nu})=((x)_{\mu\nu})$ or $(t_{\mu\nu})_{\mu,\nu=0}^{\infty}=((x)_{\mu\nu})_{\mu,\nu=0}^{\infty}$ and $|x|=(|t_{\mu\nu}|), y=(s_{\mu\nu}), x^p(t_{\mu\nu}^p)$ for $p=1,2,\ldots$. By a convergent sequence we shall mean a double sequence converging in the sense of Pringsheim. The symbols X_d or X_i denote subspaces of the space X such that, for every fixed $\overline{\mu}$ and for every fixed $\overline{\nu}$ the sequences $(t_{\overline{\mu}\nu})$ and $(t_{\mu\overline{\nu}})$ are nonincreasing or nondecreasing, respectively.
- **1.3.** Let $\rho_{\varphi}: X \to (0, \infty)$ be a functional generated by the φ -function φ such that for arbitrary $x, y \in X$ and $\alpha, \beta \geq 0$.

1'
$$\rho_{\varphi}(0) = 0$$
,

1"
$$\rho_{\varphi}(x) = 0$$
 implies $x = 0$,

2'
$$\rho_{\varphi}(-x) = \rho_{\varphi}(x)$$
,

3'
$$\rho_{\varphi}(\alpha x + \beta y) \leq \rho_{\varphi}(x) + \rho_{\varphi}(y)$$
, for $\alpha + \beta = 1$,

260 A. Waszak

```
3" \rho_{\varphi}(\alpha x + \beta y) \leq \alpha \rho_{\varphi}(x) + \beta \rho_{\varphi}(y), for \alpha + \beta = 1, 3" \rho_{\varphi}(\alpha x + \beta y) \leq \alpha^{\overline{s}} \rho_{\varphi}(x) + \beta^{\overline{s}} \rho_{\varphi}(y), for \alpha^{\overline{s}} + \beta^{\overline{s}} = 1, 0 < \overline{s} \leq 1.
```

The functional ρ_{φ} is called pseudomodular or modular, if satisfies the conditions 1', 2', 3' or 1', 1", 2', 3', respectively. If in place of 3' there holds 3", then ρ_{φ} is called convex psedomodular or $convex\ modular$, respectively. In the case when in place of 3' there holds 3"' then we have \overline{s} -convex pseudomodular or \overline{s} -convex modular, respectively. Let us remark, that if ρ_{φ} is pseudomodular or modular in X, then $X_{\rho_{\varphi}} = \{x \in X : \rho_{\varphi}(\lambda x) \to 0 \text{ as } \lambda \to 0+\}$ is called a $modular\ space$. Evidently, $X_{\rho_{\varphi}}$ is a vector subspace of X; if $\rho_{\varphi}(x) = \sum_{\mu,\nu=0}^{\infty} \varphi(|t_{\mu\nu}|)$ then ρ_{φ} is modular and moreover the modular space $X_{\rho_{\varphi}}$ is the Orlicz sequence space l^{φ} .

It is well know that if ρ_{φ} is convex modular, then a sequence $x^p = (t^p_{\mu\nu}), p = 1, 2, \ldots$ of elements of $X_{\rho_{\varphi}}$ is ρ_{φ} -bounded if, and only if, there exists a positive constant k such that $\rho_{\varphi}(kx^p) \leq 1$ for $p = 1, 2, \ldots$. Modular convergence $x^p \stackrel{\rho_{\varphi}}{\longrightarrow} Tx$ in $X_{\rho_{\varphi}}$ means that $\rho_{\varphi}(k(x^p - x)) \to 0$ as $p \to \infty$ for a k > 0 depending on the sequence (x^p) , (compare [2], [3] and also [4]).

1.4. Now we shall consider a two-modular space $\langle X, \rho, \rho' \rangle$, where ρ is convex modular and ρ' is modular. A sequence (x^p) of elements X is called γ -convergent to $x \in X$, if $x^p \xrightarrow{\rho'} x$ as $p \to \infty$ and (x^p) is ρ -bounded. We denote this by $x^p \xrightarrow{\gamma'} x$ or shortly $x^p \xrightarrow{\gamma} x$. A sequence (x^p) of elements of X satisfies the ρ' -Cauchy condition, if there exists a constant k > 0 with the property that for every $\varepsilon > 0$ there is an N such that $\rho'(k(x^p - x^q)) < \varepsilon$ for p, q > N. The two-modular space $\langle X, \rho, \rho' \rangle$ will be called γ -complete, if for every fixed ρ -ball K in $X_{\rho}(K = \{x \in X : \rho(k_0x) \leq M_0, k_0 \text{ and } M_0 \text{ are some positive numbers } \}$, any sequence (x^p) of elements of K satisfying the ρ' -Cauchy condition, is γ -convergent to an element of K, (see for instance [4] and [6]).

2. Some subspaces of the space of double sequences

2.1. The (m,n)-translation of the sequence x is defined as a sequence $((\tau_{mn}x)_{\mu\nu})$ where

$$(\tau_{mn}x)_{\mu\nu} = \begin{cases} t_{\mu,\nu} & \text{for } \mu < m \text{ and } \nu < n, \\ t_{\mu+m,\nu} & \text{for } \mu \ge m \text{ and } \nu < n, \\ t_{\mu,\nu+n} & \text{for } \mu < m \text{ and } \nu \ge n, \\ t_{\mu+m,\nu+n} & \text{for } \mu \ge m \text{ and } \nu \ge n. \end{cases}$$

The φ -modulus of the sequence x is defined by the formula

$$\omega_{\varphi}(x;r,s) = \sup_{m \geq r} \sup_{\mu,\nu} \varphi(|(x)_{\mu\nu} - (\tau_{m0}x)_{\mu\nu} - (\tau_{0n}x)_{\mu\nu} + (\tau_{mn}x)_{\mu\nu}|).$$

An easy computation shows that

$$\omega_{\varphi}(x;r,s) = \sup_{m \geq r} \sup_{\mu \geq m} \sup_{\nu \geq n} \varphi(|t_{\mu,\nu} - t_{\mu+m,\nu} - t_{\mu,\nu+n} + t_{\mu+m,\nu+n}|).$$

Let the function Ψ and the convex φ -function φ be given. The functional

$$\rho_{\varphi}(x) = \sup_{r,s} rs\Psi(\omega_{\varphi}(x;r,s))$$

defined for every $x \in X$ is pseudomodular in X, and in consequence we may define the modular space $X_{\rho_{\varphi}}$ and the respective F-norm $\|x\|_{\rho_{\varphi}} = \inf\{\varepsilon > 0 : \rho_{\varphi}(\frac{x}{\varepsilon}) \le \varepsilon\}$, (compare [5]).

2.2. The Φ -variation v_{Φ} of the sequence x is defined by

$$v_{\Phi}(x) = \sup_{(m_{\mu}),(n_{\nu})} \sum_{\mu,\nu=1}^{\infty} \Phi(|t_{m_{\mu-1},n_{\nu-1}} - t_{m_{\mu-1},n_{\nu}} - t_{m_{\mu},n_{\nu-1}} + t_{m_{\mu},n_{\nu}}|),$$

where the supremum runs through all increasing subsequences (m_{μ}) and (n_{ν}) of indices. It is easily seen that v_{Φ} is pseudomodular, defined in X. The symbols $\|\cdot\|_{v_{\Phi}}$ and $X_{v_{\Phi}} \equiv X_{\Phi}$ denote respectively an F-norm and a modular space, (see for instance [2] and [5]).

2.3. In the following we shall define two vector subspaces of the space X:

$$\begin{split} X_{\varphi}(\Psi) &= \{x \in X : rs\Psi(\omega_{\varphi}(\lambda x; r, s)) \to 0 \text{ as } r, s \to \infty \text{ for a } \lambda > 0\}, \\ X(\Phi, \Psi) &\equiv X_{\varphi}(\Phi, \Psi) = X_{\varphi}(\Psi) \cap X_{v_{\Phi}}. \end{split}$$

We see at once that $X_{\omega}(\Phi, \Psi) \subset X_{\omega}(\Psi) \subset X_{\rho_{\omega}}$.

2.4. In the sequel, \overline{c} denotes the space of all double sequences $x = (t_{\mu\nu})_{\mu,\nu=0}^{\infty}$ such that $t_{\mu0} = t_{0\nu} = a$ for all μ, ν , and $t_{\mu\nu} = b$ for $\mu \ge 1$ and $\nu \ge 1$, where a and b are two arbitrary numbers.

It is easy to check that:

- (a) if $\rho_{\varphi}(x) = 0$ then $\rho_{\varphi}(2x) = 0$ for all $x \in X$,
- (b) for $x, y \in X_{\rho_{\varphi}}$ such that $x, y \in \overline{c}$ we have the inequality $\rho_{\varphi}(x) \leq \rho_{\varphi}(2y)$, where φ is convex,
- (c) the condition $x \in \overline{c}$ implies that x is convergent,
- (d) $\overline{c} = \{x \in X : \rho_{\varphi}(x) = 0\} \subset X_{\varphi}(\Phi, \Psi),$
- (e) $x \in \overline{c}$ if and only if $||x||_{\rho_{\varphi}} = 0$.

Applying results of [1] we shall consider quotient spaces

$$\tilde{X}_{\rho_{\varphi}} = X_{\rho_{\varphi}}/\overline{c}, \, \tilde{X}_{\varphi}(\Psi) = X_{\varphi}(\Psi/\overline{c} \text{ and } \tilde{X}(\Phi, \Psi) = X(\Phi, \Psi)/\overline{c}$$

Their elements will be denoted by \tilde{x} , \tilde{y} , etc. Moreover, applying the properties of \overline{c} , ρ_{φ} , v_{Φ} , $\|\cdot\|_{\rho_{\varphi}}$, we may define the modular functionals $\tilde{\rho}_{\varphi}(\tilde{x}) = \inf\{\rho_{\varphi}(y) : y \in \tilde{x}\}$, $\tilde{v}_{\Phi}(\tilde{x}) = \inf\{v_{\Phi}(y) : y \in \tilde{x}\}$ and the norm $\|\tilde{x}\|_{\rho_{\varphi}} = \|x\|_{\rho_{\varphi}}$; we have also the formula $\tilde{X}_{\rho_{\varphi}} = (X_{\rho_{\varphi}}/\overline{c})_{\tilde{\rho}_{\varphi}}$, (compare [5]).

3. Completeness of a two-modular space

3.1. We are now going to investigate the completeness of two-modular space $\langle \tilde{X}(\Phi, \Psi), \tilde{v}_{\Phi}, \tilde{\rho}_{\varphi} \rangle$. The theorems on completeness of the spaces $\tilde{X}_{\rho_{\varphi}}$ and $\tilde{X}_{\varphi}(\Psi)$ with respect to the F-norm $\|\cdot\|_{\rho_{\varphi}}$ or the modular functional $\tilde{\rho}_{\varphi}$ have been obtained in [7] (compare also [5]). Let us remark that the space $\tilde{X}(\Phi, \Psi)$ is not complete with respect to $\|\cdot\|_{\rho_{\varphi}}$ and $\tilde{\rho}_{\varphi}$, respectively. Indeed, consider the following example.

Let $\Phi(u) = |u|$, $\varphi(u) = |u|$, $\Psi(u) = u^2$ and $x = (t_{\mu\nu})_{\mu,\nu=0}^{\infty}$, $x^p = (t_{\mu\nu}^p)_{\mu,\nu=0}^{\infty}$, $y = 1, 2, \ldots$, where

$$t_{\mu\nu} = \begin{cases} \frac{1}{(\mu+1)(\nu+1)} & \text{for } \mu = \nu, \\ 0 & \text{elsewhere} \end{cases}, \quad t_{\mu\nu}^p = \begin{cases} t_{\mu\nu} & \text{for } \mu \leq p \text{ and } \nu \leq p, \\ 0 & \text{elsewhere} \end{cases}.$$

Since

$$\omega_{\varphi}(x^{p}; r, s) \leq \sup_{m \geq r} \sup_{n \geq s} \sup_{p \geq \mu \geq m} \sup_{p \geq \nu \geq n} \frac{2}{(\mu + 1)(\nu + 1)} \leq \frac{2}{(r + 1)(s + 1)},$$

$$rs\Psi(\omega_{\varphi}(x^{p}; r, s)) \leq \frac{4}{(r + 1)(s + 1)} \to 0 \text{ as } r, s \to \infty$$

and

$$v_{\Phi}(x^p) = \sum_{1 \le \mu, \nu \le p} (t_{\mu,\nu} + t_{\mu-1,\nu-1}) = 1 + \frac{1}{(p+1)^2} + 2\sum_{\mu=1}^{p-1} \frac{1}{(\mu+1)^2} < \infty,$$

then $x^p \in X(\Phi, \Psi)$. Further, if r < p and s < p, we have

$$\omega_{\varphi}(x^p-x;r,s) \leq \frac{2}{(p+1)^2}, rs\Psi(\omega_{\varphi}(x^p-x;r,s)) \leq \frac{4}{(p+1)^2},$$

if $r \geq p$ and $s \geq p$, we have

$$\omega_{\varphi}(x^{p} - x; r, s) \leq \frac{2}{(r+1)(s+1)}, rs\Psi(\omega_{\varphi}(x^{p} - x; r, s)) \leq \leq \frac{4}{(r+1)(s+1)} \leq \frac{4}{(p+1)^{2}}$$

and in consequence we obtain

$$\rho_{\varphi}(x^p - x) = \sup_{r,s} rs\Psi(\omega_{\varphi}(x^p - x; r, s)) \le \frac{4}{(p+1)^2} \to 0 \text{ as } p \to \infty.$$

This shows that $x^p \to x$ in the F-norm of $X_{\varphi}(\Psi)$. Moreover, we have

$$rs\Psi(\omega_{\varphi}(x;r,s)) \leq \frac{4}{(r+1)(s+1)} \to 0 \text{ as } r,s \to \infty,$$

and so $x \in X_{\varphi}(\Psi)$. However

$$v_{\Phi}(x) = \sum_{\mu,\nu=1}^{\infty} |t_{\mu,\nu} + t_{\mu-1,\nu-1}| \ge 2 \sum_{\mu,\nu=1}^{\infty} \frac{1}{(\mu+1)(\nu+1)} = \infty,$$

whence $x \notin X_{\Phi}$. Finally $x^p \in X(\Phi, \Psi)$, $\rho_{\varphi}(x^p - x) \to 0$ as $p \to \infty$, but $x \notin X(\Phi, \Psi)$.

3.2. In the sequel, for a given sequence $x \in X$ we define a new sequence $\overline{x} = (\overline{t}_{\mu\nu})_{\mu\nu=0}^{\infty}$ by the formulas

$$\bar{t}_{\mu\nu} = \begin{cases} t_{\mu0} + a, & \text{for } \mu = 0, 1, 2, \dots \text{ and } \nu = 0, \\ t_{0\nu} + a, & \text{for } \mu = 0 \text{ and } \nu = 1, 2, \dots, \\ t_{\mu\nu} + b, & \text{for } \mu \ge 1 \text{ and } \nu \ge 1, \end{cases}$$

where the constants a and b can be of the form $a=t_{\mu\nu}-t_{\mu0}$, $b=t_{0\nu}-t_{00}$ ($\mu,\nu>0$ are arbitrary indices). In the following we shall consider the sequence \overline{x} defined by the constants $a=t_{11}-t_{10}$ and $b=t_{01}-t_{00}$.

Remark. The following identity holds $\tilde{v}_{\Phi}(\tilde{x}) = v_{\Phi}(\overline{x})$.

Proof: Since $\overline{x} \in \tilde{x}$, then by definition of $\tilde{v}_{\Phi}(\tilde{x})$ we have

$$(+) \tilde{v}_{\Phi}(\tilde{x}) \le v_{\Phi}(\overline{x}).$$

Now, let $y=(s_{\mu\nu})_{\mu,\nu=0}^{\infty}\in\tilde{x}$, then $s_{\mu0}=t_{\mu0}+A$, $s_{0\nu}=t_{0\nu}+A$ for $\mu=0,1,2,\ldots,\nu=1,2,\ldots$ and $s_{\mu\nu}=t_{\mu\nu}+B$ for $\mu\geq 1$ and $\nu\geq 1$, where A and B are two arbitrary numbers. In the following we may define the sequence $\overline{y}=(\overline{s}_{\mu\nu})_{\mu,\nu=0}^{\infty}$, where $\overline{s}_{\mu0}=t_{\mu0}+A+a$, for $\mu=0,1,2,\ldots,\overline{s}_{0\nu}=t_{0\nu}+A+a$, for $\nu=1,2,\ldots,$ and $\overline{s}_{\mu\nu}=t_{\mu\nu}+B+b$ for $\mu\geq 1$ and $\nu\geq 1$, with $a=t_{11}+B-t_{10}-A$ and $b=t_{01}=t_{00}$. Obviously, $v_{\Phi}(y)\geq v_{\Phi}(\overline{y})$ and $v_{\Phi}(\overline{y})=v_{\Phi}(\overline{x})$. Hence, $v_{\Phi}(y)\geq v_{\Phi}(\overline{x})$ for every $y\in\tilde{x}$. In consequence

$$(++) \tilde{v}_{\Phi}(\tilde{x}) \ge v_{\Phi}(\overline{x}).$$

Finally, by (+) and (++) we obtain $\tilde{v}_{\Phi}(\tilde{x}) = v_{\Phi}(\overline{x})$.

3.3. Theorem. Let Φ, φ be φ -functions and let Ψ be the function defined as in 1.1., which satisfies the condition:

there exists a $u_0 > 0$ such that for every $\delta > 0$ there is an $\eta > 0$ satisfying the inequality $\Psi(\eta u) \leq \delta \Psi(u)$ for all $0 \leq u \leq u_0$.

Then, the two-modular space $\langle \tilde{X}(\Phi, \Psi), \tilde{v}_{\Phi}, \tilde{\rho}_{\varphi} \rangle$ is γ -complete.

Proof: Let us suppose that \tilde{K} is a \tilde{v}_{Φ} -ball in $\tilde{X}(\Phi, \Psi)$ and let $\tilde{x}^p \in \tilde{K}$ for $p = 1, 2, ..., (\tilde{x}^p)$ be a $\tilde{\rho}_{\varphi}$ -Cauchy sequence. It is easily seen that the sequence (\tilde{x}^p) is $\tilde{\rho}_{\varphi}$ -convergent to an element $\tilde{x} \in \tilde{X}_{\varphi}(\Psi)$, (see [7] or compare [5]). In consequence $\tilde{x}^p \xrightarrow{\gamma} x$, where $\gamma = \gamma(\tilde{v}_{\Phi}, \tilde{\rho}_{\varphi})$. Next, we show that $\tilde{x} \in \tilde{K}$. Taking the sequence (x^p) , such that $x^p \in \tilde{x}^p$, $x^p \in X_{\Phi}$ we may define the sequence (\bar{x}^p) . Of course, we have

$$v_{\Phi}(k_0\overline{x}^p) \leq M_0$$

for some positive numbers k_0 and M_0 . If $\overline{x}^p = (\overline{t}^p_{\mu\nu})$, then

$$\sum_{m,\nu=1}^{\infty} \Phi\left(k_0 \left| \overline{t}_{m_{\mu-1},n_{\nu-1}}^p - \overline{t}_{m_{\mu-1},n_{\nu}}^p - \overline{t}_{m_{\nu},n_{\nu-1}}^p + \overline{t}_{m_{\mu},n_{\nu}}^p \right| \right) \leq M_0$$

for all increasing sequences (m_{μ}) and (n_{ν}) of positive integers and for $p = 1, 2, \ldots$. Since $\bar{t}^p_{\mu\nu} \to \bar{t}_{\mu\nu}$ as $p \to \infty$ for every μ and ν , where $(\bar{t}_{\mu\nu}) = \bar{x}$, then we easily obtain

$$\sum_{\mu,\nu=1}^{\infty} \Phi\left(k_0 \left| \overline{t}_{m_{\mu-1},n_{\nu-1}} - \overline{t}_{m_{\mu-1},n_{\nu}} - \overline{t}_{m_{\mu},n_{\nu-1}} + \overline{t}_{m_{\mu},n_{\nu}} \right| \right) \leq M_0$$

for $(m_{\mu}), (n_{\nu}), p$ as previously. Therefore $v_{\Phi}(k_0\overline{x}) \leq M_0$. Applying the above remark, we obtain $\tilde{v}_{\Phi}(k_0\tilde{x}) \leq M_0$, and consequently $\tilde{x} \in \tilde{K}$.

4. A theorem of approximation type

4.1. Let $\Phi, \varphi, \Psi, \Gamma$ be the functions defined as in part 1.1. We shall consider an Orlicz sequence space l^{Γ} and the space $\tilde{X}(\Phi, \Psi)$, and we shall apply the γ -convergence in $\tilde{X}(\Phi, \Psi)$ in order to formulate a theorem of the form $\tau_{mn}x - x \to 0$ in the space l^{Γ} .

Let us denote $T(x, m, n, \mu, \nu) = |(\tau_{mn}x)_{\mu\nu} - (x)_{\mu\nu}|$ and $M(x, m, n, \mu, \nu) = |t_{\mu+m,\nu+n} - t_{\mu+m,\nu} - t_{\mu,\nu+n} + t_{\mu,\nu}|$, for all m, n, μ, ν .

Lemma.

- (a) If $x \in X_d$, then $T(x, m, n, \mu, \nu) \leq M(x, m, n, \mu, \nu)$ for all m, n, μ and ν .
- (b) If $x \in X_i$, then $T(x, m, n, \mu, \nu) \leq M(x, m, n, \mu, \nu)$ for all m, n, μ and ν .

Proof (a): For $\mu < m$ and $\nu < n$ we have $T(x, m, n, \mu, \nu) = 0$.

If $\mu \geq m$ and $\nu < n$, then $T(x, m, n, \mu, \nu) = |t_{\mu+m,\nu} - t_{\mu,\nu}| \leq |(t_{\mu,\nu+n} - t_{\mu+m,\nu+n}) + (t_{\mu+m,\nu} - t_{\mu,\nu})| = M(x, m, n, \mu, \nu)$.

If $\mu < m$ and $\nu \ge n$, then $T(x, m, n, \mu, \nu) = |t_{\mu, \nu+n} - t_{\mu, \nu}| \le |(t_{\mu+m, \nu} - t_{\mu+m, \nu+n}) + (t_{\mu, \nu+n} - t_{\mu, \nu})| = M(x, m, n, \mu, \nu).$

For $\mu \geq m$ and $\nu \geq n$ we have $T(x, m, n, \mu, \nu) = |t_{\mu+m,\nu+n} - t_{\mu,\nu}| \leq |(t_{\mu+m,\nu+n} - t_{\mu,\nu}) + (t_{\mu,\nu} - t_{\mu+m,\nu}) + (t_{\mu,\nu} - t_{\mu,\nu+n}) = M(x, m, n, \mu, \nu).$

Finally $T(x, m, n, \mu, \nu) \leq M(x, m, n, \mu, \nu)$ for all m, n, μ and ν .

Proof (b): For $\mu < m$ and $\nu < n$, $(\tau_{mn}x)_{\mu\nu} = t_{\mu\nu}$, then $T(x, m, n, \mu, \nu) = 0$. If $\mu \ge m$ and $\nu < n$, then $T(x, m, n, \mu, \nu) = |t_{\mu+m,\nu} - t_{\mu,\nu}| \le |(t_{\mu,\nu} - t_{\mu+m,\nu}) + (t_{\mu+m,\nu+n} - t_{\mu,\nu+n})| = M(x, m, n, \mu, \nu)$.

If $\mu < m$ and $\nu \ge n$, then $T(x, m, n, \mu, \nu) = |t_{\mu, \nu+n} - t_{\mu, \nu}| \le |(t_{\mu, \nu} - t_{\mu, \nu+n}) + (t_{\mu+m, \nu+n} - t_{\mu+m, \nu})| = M(x, m, n, \mu, \nu).$

For $\mu \ge m$ and $\nu \ge n$ we have $T(x, m, n, \mu, \nu) = |t_{\mu+m,\nu+n} - t_{\mu,\nu}| \le |(t_{\mu,\nu} - t_{\mu+m,\nu+n}) + (t_{\mu,\nu+n} - t_{\mu,\nu}) + (t_{\mu+m,\nu} - t_{\mu,\nu})| = M(x, m, n, \mu, \nu).$

Thus $T(x, m, n, \mu, \nu) \leq M(x, m, n, \mu, \nu)$ for all m, n, μ and ν .

- **4.2.** Let us suppose that the functions Φ, φ, Γ and Ψ satisfy the following condition:
 - (i) There exist positive constants a, b, u_0 such that

$$\Gamma(au) < b\Phi(u)\Psi(\varphi(u))$$
 for $0 < u < u_0$.

First let us remark that the condition (i) is equivalent to the following one:

(ii) For every $u_1 \ge 0$ there exists a constant c > 0 such that

$$\Gamma(cu) \le b\Phi(u)\Psi(\varphi(u))$$
 for $0 \le u \le u_1$, (for a proof see [5]).

4.3. Let the functions $\Phi, \varphi, \Psi, \Gamma$ satisfy the assumptions 1.1. and 4.2., and let $v_{\Phi}(\lambda x) < \infty$ for a $\lambda > 0$.

Theorem 1. If $x \in X_d$ or $x \in X_i$, then

(*)
$$\sum_{\mu,\nu}^{\infty} \Gamma(c\lambda |(\tau_{rs}x)_{\mu\nu} - (x)_{\mu\nu}|) \leq brs\Psi(\omega_{\varphi}(\lambda x; r, s))v_{\Phi}(\lambda x)$$

for all nonnegative integers r and s, where c and b are some positive constants.

Proof: We limit ourselves to the case when $x \in X_d$. By Lemma we have $|(\tau_{mn}x)_{\mu\nu} - (x)_{\mu\nu}| \le |t_{\mu,\nu} - t_{\mu+m,\nu} - t_{\mu,\nu+n} + t_{\mu+m,\nu+n}|$ for arbitrary m,n,μ and ν . Let a positive constant λ and integers r and s be given. Since x is a bounded sequence, taking $u_1 = 4\lambda \sup_{\mu,\nu} |t_{\mu,\nu}|$, and choosing $m \ge r, n \ge s$ arbitrary, by (i) we obtain

$$\Gamma(c\lambda M(x,m,n,\mu,\nu)) \leq b\Phi(\lambda M(x,m,n,\mu,\nu))\Psi(\varphi(\lambda M(x,m,n,\mu,\nu)))$$
 for all m,n,μ,ν such that $\lambda M(x,m,n,\mu,\nu) \leq u_1$. We have

$$\sum_{\mu,\nu=0}^{\infty} \Gamma(c\lambda|(\tau_{mn}x)_{\mu\nu} - (x)_{\mu\nu}|) \le$$

$$\le b\Psi(\sup_{m \ge r} \sup_{n \ge s} \sup_{\mu \ge m} \sup_{\nu \ge n} \varphi(\lambda M(x,m,n,\mu,\nu))) \sum_{\mu \ge m,\nu \ge n} \Phi(\lambda M(x,m,n,\mu,\nu)) =$$

$$=b\Psi(\omega_{\varphi}(\lambda x;r,s))\sum_{k,l=1}^{\infty}\sum_{\mu=km}^{(k+1)m-1}\sum_{\nu=ln}^{(l+1)n-1}\Phi(\lambda M(x,m,n,\mu,\nu))=$$

$$=b\Psi(\omega_{\varphi}(\lambda x;r,s))\sum_{k,l=1}^{\infty}\sum_{\nu=m}^{2m-1}\sum_{\nu=n}^{2n-1}\Phi(\lambda|t_{km+u,ln+\nu}-t_{km+u,(l-1)n+\nu}-t_{km+u,(l-1)n+\nu}-t_{km+u,(l-1)n+\nu})$$

$$- t_{(k-1)m+u,ln+v} + t_{(k-1)m+u,(l-1)n+v}|) =$$

$$=b\Psi(\omega_{\varphi}(\lambda x;r,s))\sum_{u=m}^{2m-1}\sum_{v=n}^{2m-1}\sum_{k,l=1}^{\infty}\Phi(\lambda|t_{km+u,ln+v}-t_{km+u,(l-1)n+v}-t_{k$$

$$-t_{(k-1)m+u,ln+v}+t_{(k-1)m+u,(l-1)n+v}|) \le$$

$$\leq b\Psi(\omega_{\varphi}(\lambda x; r, s)) \sum_{u=m}^{2m-1} \sum_{v=n}^{2m-1} v_{\Phi}(\lambda x) = bmn\Psi(\omega_{\varphi}(\lambda x; r, s))v_{\Phi}(\lambda x).$$

Finally we obtain

$$\sum_{\mu,\nu=0}^{\infty} \Gamma(c\lambda|(\tau_{mn}x)_{\mu\nu} - (x)_{\mu\nu}|) \leq bmn\Psi(\omega_{\varphi}(\lambda x; r, s))v_{\Phi}(\lambda x)$$

for some positive constants c, b, λ and for all $m \geq r$, $n \geq s$, where r, s are nonnegative integers. Hence, taking m = r and n = s, we get the inequality (*).

Theorem 2. Let Φ, φ, Γ be φ -functions (Φ convex) and let Ψ have the same properties as in the previous theorem. Let $x \in \tilde{x} \in \tilde{X}(\Phi, \Psi)$ and $x \in X_d$ (or $x \in X_i$). Then $\tau_{rs}x - x \in l^{\Gamma}$ for all $r, s \geq 0$, and $\tau_{rs}x - x \to 0$ in the sense of modular convergence in l^{Γ} .

Proof: First, let us remark that the condition $x \in X(\Phi, \Psi)$ implies that $v_{\Phi}(\lambda x) < \infty$ and $rs\Psi(\omega_{\varphi}(\lambda x; r, s)) < \varepsilon$ for sufficiently small $\lambda > 0$ and for sufficiently large r and s, where ε is an arbitrary positive number. But, an easy computation shows that if the φ -function Φ is convex then the conditions $x \in X_{\Phi}$ and $v_{\Phi}(kx) < \infty$ for some positive constant k are equivalent. Applying this observation and Theorem 1, we conclude that $\tau_{rs}x - x \in l^{\Gamma}$ for all nonnegative integers r and s. In order to get the condition $\tau_{rs}x - x \to 0$ in the sense of modular convergence in l^{Γ} , it will be necessary to take $r, s \to \infty$, in the inequality (*).

Theorem 3. Let $x^p = (t^p_{\mu\nu})^{\infty}_{\mu,\nu=0} \in X_{\Phi}$, $t^p_{\mu0} = t^p_{0\nu} = 0$ for p = 1, 2, ... where $\mu, \nu = 0, 1, 2, ...$, and let x^p , p = 1, 2, ... belong to the v_{Φ} -ball in X_{Φ} , where Φ is an increasing φ -function. Then the set of sequences (x^p) is uniformly bounded.

Proof: By assumption $v_{\Phi}(k_0x^p) \leq M_0$ for $p = 1, 2, \ldots$, where k_0, M_0 are some positive constants. In consequence, we have

$$\Phi(k_0|t_{\mu\nu}^p|) = \Phi(k_0|t_{00}^p - t_{0\nu}^p - t_{\mu0}^p + t_{\mu\nu}^p|) \le v_{\Phi}(k_0x^p) \le M_0.$$

Now, applying the properties of φ -function Φ we obtain that there exists a positive constant M such that $|t^p_{\mu\nu}| \leq M$ for $\mu, \nu = 0, 1, 2, \dots$

Theorem 4. Let Γ, Φ, φ be φ -functions (Φ and φ are convex) and let Ψ be a nonnegative, nondecreasing function of $u \geq 0$ such that $\Psi(u) \to 0$ as $u \to 0+$. Let us suppose that the functions Φ, φ, Ψ and Γ satisfy the condition 4.2.(i). Moreover, let (x^p) be a sequence such that $t^p_{\mu 0} = t^p_{0\nu} = 0$ for $\mu, \nu = 0, 1, 2, \ldots, p = 1, 2, \ldots, x^p \in \tilde{x}^p, \tilde{x}^p \in \tilde{X}(\Phi, \Psi), \tilde{x}^p \xrightarrow{\gamma} 0$ as $p \to \infty$ in $\langle \tilde{X}(\Phi, \Psi), \tilde{v}_{\Phi}, \tilde{\rho}_{\varphi} \rangle$. Then $\tau_{rs}x^p - x^p \to 0$ with respect to modular convergence in l^{Γ} , as $p \to \infty$, uniformly for $r \geq 0$ and $s \geq 0$.

Proof: The condition $\tilde{x}^p \xrightarrow{\gamma} 0$ implies that $\tilde{x}^p \in \tilde{K}$, where \tilde{K} is a \tilde{v}_{Φ} -ball, with parameters k_0, M_0 , and by Theorem 3 we have $|t^p_{\mu\nu}| \leq M$ for all μ, ν, p

with an M > 0. Choosing $u_1 = 4\lambda M$, $c = a\frac{u_0}{u_1}$, where $0 < \lambda < k_0$, and applying the inequality (*), we obtain

$$(+) \qquad \sum_{\mu,\nu=0}^{\infty} \Gamma(c\lambda|(\tau_{rs}x^{p})_{\mu\nu} - (x^{p})_{\mu\nu}|) \leq b\rho_{\varphi}(\lambda x^{p})v_{\Phi}(\lambda x^{p}) \leq bM_{0}\rho_{\varphi}(\lambda x^{p}).$$

By assumption there exists a $\lambda > 0$ such that for every $\varepsilon > 0$ there is an integer P for which

$$\tilde{\rho}_{\varphi}(2\lambda \tilde{x}^p) = \inf\{\rho_{\varphi}(y) : y \in 2\lambda \tilde{x}^p\} < \varepsilon$$

for all p > P. In consequence there exist $y^p \in 2\lambda \tilde{x}^p$, such that

Since

$$\rho_{\varphi}(\lambda x^p) = \rho_{\varphi}\left(\frac{y^p + (2\lambda x^p - y^p)}{2}\right) \leq \rho_{\varphi}(y^p) + \rho_{\varphi}(2(\lambda x^p - \frac{1}{2}y^p))$$

and

$$\frac{1}{2}y^p - \lambda x^p \in \overline{c},$$

then we have

By the inequalities (++) and (+++) we obtain

$$\rho_{\varphi}(\lambda x^p) < \varepsilon$$

for sufficiently large p. Finally, the condition (+) implies that $\tau_{rs}x^p - x^p \to 0$ with respect to modular convergence in l^{Γ} as $p \to \infty$, uniformly for $r, s \ge 0$.

References

- 1. T.M. JEDRYKA AND J. MUSIELAK, Some remarks on F-modular spaces, Functiones et Approximatio 2 (1976), 83-100.
- 2. J. MUSIELAK, "Orlicz spaces and modular spaces," Lecture Notes in Math. 1034, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
- 3. J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65.
- 4. J. MUSIELAK AND A. WASZAK, On two modular spaces, *Comment. Math.* 23 (1983), 63-70.

- 5. J. MUSIELAK AND A. WASZAK, Generalized variation and translation operator in some sequence spaces, *Hokkaido Math. Journal* 17 (1988), 345–353.
- 6. A. WASZAK, On convergence in some two-modular spaces, General topology and its relations to modern analysis and algebra, V, Heldermann Verlag Berlin 1982, 667–678.
- 7. A. WASZAK, On some modular spaces of double sequences I, Commentationes Math. (in print).

Keywords. Sequence spaces, modular spaces 1980 Mathematics subject classifications: 46A45, 46E30

> Institute of Mathematics Adam Mickiewicz University ul. Matejki 48/49 60-769 Poznan POLAND

Rebut el 16 de Juny de 1989