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APPROXIMATION PROBLEMS IN MODULAR
SPACES OF DOUBLE SEQUENCES

ALEKSANDER WASZAK

Abstract

Let X denote the space of all real, bounded double sequences, and let
®, ¢, T be p-functions. Moreover, let ¥ be an increasing, continuous func-
tion for u > 0 such that ¥(0) = 0.

In this paper we consider some spaces of double sequences provided with
two-modular structure given by generalized variaticns and the translation
operator.

We apply the v(ig, §,)-convergence in X(®,¥) in order to obtain an
approximation theorem by means of the (m,n)-translation, i.e. a result
of the form (7mnz — z) — 0 in an Orlicz sequence space {T.

1. Notation

1.1. A function ¢ defined in the interval [0, 00), continuous and nondecreas-
ing for v > 0 and such that @(u) > 0 for u > 0,p(u) — oo as u — oo and
@(0) = 0, is called a p-function. We will consider three p-functions @, and I'.
Moreover, let ¥ be a nonnegative, nondecreasing function of u > 0 such that
U(u) — 0 as u — 0+, (see [3]).

1.2. Let X be the space of all real, bounded double sequences. Throughout
this paper sequences belonging to X will be denoted by @ = (,,) = ((¢)uv) or
(b)) = (@) Famo a0 Ja] = (It )y ¥ = (s,), 2P(81,) for p= 1,2,
By a convergent sequence we shall mean a double sequence converging in the
sense of Pringsheim. The symbols X4 or X; denote subspaces of the space X
such that, for every fixed i and for every fixed ¥ the sequences (t3,) and (t,7)
are nonincreasing or nondecreasing, respectively.

1.3. Let p, : X — (0,00) be a functional generated by the ¢-function ¢
such that for arbitrary z,y € X and o, 3 > 0.
I py(0) = 0,
1” py(z) = 0 implies z = 0,
2’ p<p(_x) = ka(‘r)w
3 polaz + By) < py(z) + ppy), fora+ =1,
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3 p(az + By) < apy(z) + Bpgy), for a+ f =1,
37 py(az + y) < a®pgl() + 7pp(y), for a¥ + = 1,0<T< 1.

The functional p,, is called pseudomodular or modular, if satisfies the condi-
tions 1’, 2’, 3’ or 1°, 17, 2", 3", respectively. If in place of 3’ there holds 3”7, then
py is called convex psedomodular or conves modular, respectively. In the case
when in place of 3’ there holds 3"’ then we have 3-convez pseudomodular or
3-convez modular, respectively. Let us remark, that if p,, is pseudomodular or
modular in X, then X,, = {z € X : pp(Az) 2 0as A — 0+} is called a modu-
lar space. Evidently, X, is a vector subspace of X if po(z) = Z:?u:O e(ltusl)
then p,, is modular and moreover the modular space X, is the Orlicz sequence
space [¥.

It is well know that if p,, is convex modular, then a sequence z? = (), p=
1,2,... of elements of X, is p,-bounded if, and only if, there exists a positive
constant k such that p,(kz?) < 1 for p = 1,2,... . Modular convergence

2 % Te in X,, means that p,(k(zf —z)) — 0 as p — oo for a k>0
depending on the sequence (zP), (compare (2], [3] and also [4]).

1.4. Now we shall consider a two-modular space (X, p, p'}), where p is con-
vex modular and p' is modular. A sequence (zP) of elements X is called -

convergent to z € X, if 2? £, 2 as p — co and (z?) is p-bounded. We denote

this by z? o) 4 o shortly z? 5 z. A sequence (z?) of elements of X satisfies
the p'-Cauchy condition, if there exists a constant k > 0 with the property that
for every £ > 0 there is an N such that p'(k(z? — z%)) < ¢ for p,¢ > N. The
two-modular space (X, p, p') will be called -complete, if for every fixed p-ball K
in X,(K={ze€X: p(koz) £ My, kg and M, are some positive numbers }),
any sequence (z”) of elements of K satisfying the p'-Cauchy condition, is v-

convergent to an element of K, (see for instance {4] and [6]).

2. Some subspaces of the space of double sequences

2.1. The (m,n)-translation of the sequence z is defined as a sequence
{((Tmn)u») Where

v for p < mand v < n,

( ) tutmw for p > mand v < n,
TonT) gy =

mnsIky tuutn forp <mandv2n,

tytmuptn fOrp2zm and v 2> n.

The @-modulus of the sequence z is defined by the formula

we(z;7, s) = 511>P S‘;P sup p([(#)py — (Tmo®)py — (T0n2) o + (TranZ)ppl)-
m>rn>s pv
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An easy computation shows that

wy(z;7,8) = sup sup sup sup @(|t,,y — tytmy — tpptn + tytm,vtn])-

m2rn2sp>2m>n

Let the function ¥ and the convex y-function ¢ be given. The functional
po(®) = sup rsW(wy (i, )

defined for every z € X is pseudomodular in X, and in consequence we may
define the modular space X,, and the respective F-norm ||z||,, = inf{e > 0:

po(%) < €}, (compare [5]).

2.2. The ®-variation vs of the sequence z is defined by

[o <]

ve(z) = sup Z Q(ltm,‘_l,ﬂu—l —tm, 1m0 — tmymua +tm,‘,nu‘)7
1

mu)x(nv) wove=

where the supremum runs through all increasing subsequences (m,) and (n, ) of
indices. It is easily seen that ve is pseudomodular, defined in X. The symbols
|l - lve and Xvs = Xe denote respectively an F-norm and a modular space,
(see for instance [2] and [5]).

2.3. In the following we shall define two vector subspaces of the space X:

X (¥) = {z € X : rsT(wy(Az;7,5)) — 0 as r,s — oo for a A > 0},
X(@,0) = X (8, 1) = Xp(T) N Ko

We see at once that X,(®,¥) C X,(¥) C X,,.

2.4. In the sequel, € denotes the space of all double sequences = = (t,,)3%, =0
such that t,0 = to, = afor all u,v, and t,, =bfor > 1 and v > 1, where a
and b are two arbitrary numbers.

It is easy to check that:

(a) if py(z) = 0 then p,(2z) =0 for all z € X,

(b) for z,y € X, such that z,y € € we have the inequality py(z) < p,(2y),

where ¢ is convex,

(c) the condition z € T implies that z is convergent,

(d) e={z € X : p,(z) =0} C X,(2,¥),

(e) z €€ if and only if ||z{|,, = 0.

Applying results of [1] we shall consider quotient spaces

X, = Xp, /% Xo(¥) = X,(¥/¢ and X(2,0) = X(,0)/c

Their elements will be denoted by %, g, etc. Moreover, applying the properties
of , pps v, || ||, , We may define the modular functionals py(2) = inf{py(y) :
y € 3}, s(&) = inf{ve(y) : y € &} and the norm ||Z||,, = ||z||,,; we have also
the formula f(pp = (X”V’/E)ihp’ (compare [5]).



262 A. WASZAK

3. Completeness of a two-modular space

3.1. We are now going to investigate the completeness of two-modular space

(X(®,¥), s, py,). The theorems on completeness of the spaces X,, and X (T)

with respect to the F-norm || - ||,, or the modular functional p, have been
obtained in [7] (compare also [5]). Let us remark that the space X(®,¥) is
not complete with respect to || - |l,, and pe, respectively. Indeed, consider the

following example. v
Let Q(u) = Iul) (P(u) = |u|7 \I’(u) = _u2 and z = (tMV)Zc,’V=O’wp = (t];)ut)ﬁo,u=0’
p=1,2,..., where

t —{ ;1+1)1u+1 for u=v, t” _{t,“, for p < p and v < p,
py =

0 elsewhere , *¥ 1o elsewhere .
Since
w‘,,(z";r,s) < sup sup sup sup 2 < 2 ,
m>ra>sp>p>mpr>n (:u + 1)(1/ + 1) (7‘ + 1)(3 + 1)
4
rs¥ (wy(zf;r,8)) < —(—T—+—1m —Qasr,s > 00
and '
U@(mp): Z (tll,"+tu—1,1’—1)=1+( _:1)2 +2§( il)Z < 00,
1<p,v<p p n=1 #

then z? € X(®, V). Further, if 7 < p and s < p, we have
{87 = 257,9) € (g W = 59 S
if r > p and s > p, we have
we(z? —z;7,8) < m%m, rs¥(wy(z? — z;7,8)) <
4 4
SEIeTD S prIp

and in consequence we obtain

4
po(a? —x) = s:f) rsP(wy(z? — z;1,8)) < m — 0 as p — oo.
This shows that z? — z in the F-norm of X,(¥). Moreover, we have
4

rs¥(we(z;r,s)) < —0asr,s — o0,

(r+1)(s+1)
and so z € X,(¥). However

[o] oo 1
= tyttumr |22 Y 5 = %,
’Uq;(;'C) Z | B, + w—1, ll ”21 (/1+1)(V+1) S

whence z ¢ Xo. Finally 2P € X(2,¥), pp(a? — z) — 0 as p — oo, but
z ¢ X(9,9). '

C

pv=1
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3.2. In the sequel, for a given sequence z € X we define a new sequence
= (tus)pv=0 by the formulas

T

tyo+a, forp=20,1,2,... andv =0,
t,=X{ tow+a, forp=0andv=12,...,
tyy+b, forp>landv>1,

where the constants a and b can be of the form a = t,, — tuo, b= to, — g0
(¢, v > 0 are arbitrary indices). In the following we shall consider the sequence
7 defined by the constants a = t3; — t19 and b = 291 — tgo-

Remark. The following identity holds #¢(%) = ve(T).

Proof: Since T € &, then by definition of ¥¢(%) we have
(+) Ue(%) € ve(T).
Now, let y = (s,,)0,=0 € %, then s,0 = tu0 + 4, 50, = to, + 4 for p =
0,,2,...,v =12,... and s, = t,, + B for p > 1 and v > 1, where A
and B are two arbitrary numbers. In the following we may define the sequence
T = (Suu)ty=0s Where 5,0 = tyo+A+a, for p =0,1,2,..., 5, = to, +A+a, for
v=12,...,and5,, =t,,+B+bfory >1landv > 1, witha =t;;+B—t;0—-A
and b = to1 = tgo. Obviously, ve(y) > ve(y) and ve(y) = ve(T). Hence,
ve(y) = v&(Z) for every y € £. In consequence

(++) e(Z) 2 va(T).
Finally, by (+) and (++) we obtain 8(2) = v¢(Z). R

3.3. Theorem. Let ®,p be p-functions and let ¥ be the function defined
as in 1.1., which satisifies the condition:

there exists a ug > 0 such that for every & > 0 there is an n > 0 satisfying
the inequality ¥(nu) < 6¥(u) for all 0 < u < up.

Then, the two-modular space (X(@,‘I’),'ﬁq,,ﬁ,p) 18 y-complete.

Proof: Let us suppose that K is a 9g-ball in X’(@,\II) and let 3 € K for
p=1,2,...,(&7) be a p,-Cauchy sequence. It is easily seen that the sequence
(&) is p,-convergent to an element & € X,(¥), (see [7] or compare [5]). In
consequence &P —» z, where v = ¥(0s, pp). Next, we show that & € K. Taking
the sequence (z?), such that z? € P, z? € X¢ we may define the sequence

(z?). Of course, we have
U(b(k‘oip) S Mo

for some positive numbers kg and My. If 27 = t’;,,), then

)SMO

%
Z 7P 7P 7P 7P
¢ (k‘o ltmu-ly"u—l - tmu-lyﬂu - tmv;"v-l + tmur"”
1

wv=
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for all mcreasmg sequences (m,) and (n,) of positive integers and for p =
1,2,... . Since t — 1, as p — oo for every p and v, where (1,,) =T, then
we easdy obtam

oo .
Z @ (ko |zm,,_1,n,,_1 _.t—mp—lynll ——t-mp,nu—l +—t-mp:nu ) S MO
=1

for (m,),(n,), p as previously. Therefore vg(koZ) < Mo. Applying the above
remark, we obtain g (k¢Z) < Mp, and consequently Z € K. &

4. A theorem of approximation type

4.1. Let ®,¢, ¥, T be the functions defined as in part 1.1. We shall consider
an Orlicz sequence space I' and the space X (®,7), and we shall apply the v-
convergence in X (@, ¥) in order to formulate a theorem of the forrn TmnT —Z —
0 in the space I'.

Let us denote T(z,m,n, i,v) = |(TmnZ)uy — (2)p| and M(z,m,n,p,v) =
|tu+m,v+n - tu_*.m,,, - t“’,,_’.n + tﬂ,l/l’ for all m,n, i,V

Lemma.

(a) If z € X4, then T(z,m,n, ,v)
(b) If z € Xi, then T(z,m,n, pu,v)

< M(z,m,n,p,v) for all m,n, u and v.
< M(z,m,n,pu,v) for allm,n,p and v.

Proof (a): For y < m and v < n we have T(z,m,n,u,v) = 0.

If p > mand v < n, then T(z,m,n, 4, v) = fptmp — tup| < |(tupin =
tutmv4n) + (tutm,p — tu,u)| = M(z,m,n,p,v)

If g < mand v > n, then T(z,m,n,p,v) = [tpptn — tupl < |Gugm,y —
tytmutn) + (Gppin — tuw)l = M(z,m,n, pu,v).

For g > m and v > n we have T(z,m,n, 4, v) = |tutmuptn — tuul
|(tu+m,u+n - tu’u)_ + (tu,u - tu+m,u) + (t;;,u - tu,u+n) = M(m,m,n, 1y V)-

Finally T(z,m,n; u,v) < M(z,m,n,u,v) for all m,n,p and v. B

Proof (b): For p < m and v < n, (TmnZ)uy = tuy, then T(z,m,n, u,v) = 0.

Ifu>mandv < n,thenT(z,m,n, 1, v) = ltutmp—tuw] <t —tutmw)+
(tu+m,u+n - tu,u+n)l = M(z,m,n,pu, v).

If u < mandv > n,then T(z,m,n, g, v) =ty vtn—tup| < |1(Euw —tuvin)+
(tutmptn — tusmw)| = M(z,m,n, pu,v).

For ¢ > m and v > n we have T(z,m,n, 4, ) = [tptmutn = tuw| < [(tup —
t#+m.v+n) + (tuptn — tu,ﬂ) + (tptmy — t“,,,)| = M(z,m,n, p,v).

Thus T(z,m,n,p,v) < M(z,m,n,u,v) for all m,n,y and v. &
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4.2. Let us suppose that the functions ®,¢,I" and ¥ satisfy the following
condition:
(i) There exist positive constants a, b, ug such that
I'au) < 5@ (u)¥(p(u)) for 0 < u < up.

First let us remark that the condition (i) is equivalent to the following one:
(ii) For every u; > 0 there exists a constant ¢ > 0 such that

I(cu) < b®(u)¥(p(u)) for 0 < u < uy, (for a proof see [5]).

4.3. Let the functions @, ¢, ¥, satisfy the assumptions 1.1. and 4.2., and
let vg(Az) < oo for a A > 0.

Theorem 1. Ifz € X4 or z € X, then
(*) Z LA |(rre)uy — (2)un]) S brs¥(wy(Az; 7, s))ve(Az)
wy .
for all nonnegative integers r and s, where ¢ and b are some positive constants.

Proof: We limit ourselves to the case when ¢ € X4. By Lemma we have
[(Tmn)pw — (@) pw] £ [tup — tptmw — tuptn + tutmpen| for arbitrary m,n, pu
and v. Let a positive constant A and integers r and s be given. Since z is
a bounded sequence, taking u; = 4Asup, , |t, .|, and choosing m > r,n > s
arbitrary, by (i) we obtain

T(eAM(z,m,n, u,v)) <b®(AM(z,m,n,u,v))¥(e(AM(z,m,n, u,v)))
for all m,n,u, v such that AM(z,m,n, g, v) < u;. We have

Z LP(eA(Tmn@)uw = (2)pw) <
@,v=0
< b (sup sup sup sup p(AM(z,mym i) 3 BAM(z,m,m, ) =
m2rn2su>mvy2n u>mudn
0o (k+1)m—1(I+1)n—1
=bU(w,(rirys) Do D D OAM(z,mn,pv)) =
k=1 p=km v=Iin
oo 2m-12n-1
= b\I/(UJ‘P(/\:L';T', 3)) Z Z Z (I)(/\Itkm+u,ln+v _tkm+u,(l—l)n+v_

k,l=1 u=m v=n

~ tk=1)mtu,lntv + Ek=1)mtu,(I-1)n4u|) =

2m—-12n—-1 oo

= b\I/(w‘,,(/\a:;r,s)) Z Z Z q’(’\ltkm+u,ln+v = tkmtu,(I-1)nt+v—

u=m v=n k,l=1

- t(k—l)m+u,ln+v + t(k-—l)m+u,(l—l)n+u') <
2m—12n-1
< bW (wy(Az;r,8)) Z Z ve(Az) = bmn¥(w,(Az;r, s))ve(Az).

u=m v=n
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Finally we obtain

S D(A(Fma@)us — (2)ul) S bmn¥(wg(Az; 7, 5))ve (Az)

p,v=0

for some positive constants ¢, b, A and for all m > r,n > s, where r,s are
nonnegative integers. Hence, taking m = r and n = s, we get the inequality
(%).

Theorem 2. Let ®,p,T be o-functions (® convex) and let ¥ have the same
properties as in the previous theorem. Let z € & € X(®,¥) and z € X4 (or
z € Xi). Then 12—z € I for all r,s > 0, and 7z — x — 0 in the sense of
modular convergence in IF.

Proof: First, let us remark that the condition z € X(®,¥) implies that
ve(Az) < oo and rs¥(wy(Az;r,s)) < ¢ for sufficiently small A > 0 and for
sufficiently large r and s, where ¢ is an arbitrary positive number. But, an easy
computation shows that if the p-function @ is convex then the conditions z €
X and ve(kz) < oo for some positive constant k are equivalent. Applying this
observation and Theorem 1, we conclude that 7.,z — z € I* for all nonnegative
integers r and s. In order to get the condition 7.,z —z — 0 in the sense
of modular convergence in [T, it will be necessary to take r,s — oo, in the
inequality (*). W

Theorem 3. Leta? = (t8,)70,_y € Xe, thy = t§, =0forp=1,2,... where
v =0,1,2,..., and let z?,p = 1,2,... belong to the ve-ball in X¢, where
® i3 an increasing p-function. Then the set of sequences (aP) is uniformly

bounded.

Proof: By assumption ve(kozP) < My for p = 1,2,..., where ko, My are
some positive constants. In consequence, we have *

@(kolth,|) = ®(kolthy — t5, — tho +thu]) < va(koz?) < Mo.

Now, applying the properties of ¢-function ® we obtain that there exists a
positive constant M such that |t5,| < M for y,v =0,1,2,... . ®

Theorem 4. Let T, ®,¢ be p-functions (& and ¢ are conver) and let ¥
be o nonnegative, nondecreasing function of u > 0 such that ¥(u) — 0 as
u — 0+. Let us suppose that the functions ®,, ¥ and ' satisfy the condi-
tion 4.2.(i). Moreover, let (z?) be o sequence such that t’;o =th, = 0 for
pv=001,2..,p=12...,2°" €&, & € X(® V), i 50 asp — 0o in
(X(@,@),f)@,@ﬁ. Then 1,42P — 2P — 0 with respect to modular convergence
wn T, as p — 00, uniformly for r > 0 and s > 0.

Proof: The condition # - 0 implies that 37 € K, where K is a ¥g-ball,
with parameters ko, My, and by Theorem 3 we have |t,| < M for all y,v,p
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with an M > 0. Choosing u; = 4AM, c = a2, where 0 < A < ko, and applying
the inequality (%), we obtain

oo

(+) Z F(C/\I(Trswp)pu - (zp)uul) S bp&p(/\xp)vé(/\zp) S bM0P¢(/\$p)-

M7V=0

By assumption there exists a A > 0 such that for every ¢ > 0 there is an integer
P for which '

Po(2X237) = inf{p,(y) 1 y € 2A3P} < ¢

for all p > P. In consequence there exist y? € 2A%?, such that

(++) po(y?) < e forp > P.
Since
P 4 (2aP — yP 1
o) = pp (LHEZ L) < (2) 4 pofe0e — 3470

and )
ZyP — )P € e
2?/ ¥ €c,

then we have

(+++) pe(Az”) < py(y”), for p > P.

By the inequalities {(++) and (+++) we obtain
pe(Az?) <e

for sufficiently large p. Finally, the condition (+) implies that 7.,2? — 2P — 0
with respect to modular convergence in I* as p — oo, uniformly for r,s > 0.
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