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(ho, h)-BOUNDEDNESS OF THE SOLUTIONS
OF DIFFERENTIAL SYSTEMS WITH IMPULSES

G.K. KurLEv AND D.D. BaiNov

Abstract

In the present paper the question of boundedness of the solutions of sys-
tems of differential equations with impulses in terms of two measures is
considered. In the investigations piecewise continuous auxiliary functions
are used which are an analogue of the classical Lyapunov’s functions. The
ideas of Lyapunov’s second method are combined with the newest ideas
of the theory of stability and boundedness of the solutions of systems of
differential equations.

1. Introduction

Systems of differential equations with impulses represent a natural appara-
tus for mathematical simulation of real processes and phenomena studied in
biology, physics, control theory, etc. For instance, if the population of a given
species is regulated by some impulsive factors acting at certain moments, then
we have no reasons to expect that the process will be simulated by regular con-
trol. On the contrary, the solutions must have jumps at these moments and the
jumps are given beforehand. Moreover, the mathematical theory of the systems
of differential equations with impulses is much richer than the respective theory
of systems without impulses. That is why in the recent years this theory is an
important field of numerous investigations ([1]-[7]).

The usage of classical Lyapunov’s functions in the study of the stability and
boundedness of the solutions of systems of differential equations with impulses
via Lyapunov’s second method constricts the pliability of the method. The fact
that the solutions of such systems are piecewise continuous functions shows
that it is necessary to introduce analogues of Lyapunov’s functions which have
discontinuities of the first kind. The introduction of such functions makes the
application of Lyapunov’s second method for systems with impulses much more
efficient ([1]-[6]). :

In the present paper the boundedness of the solutions of systems of differ-
ential equations with impulses in the terms of two measures is studied. In the
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investigations piecewise continuous Lyapunov’s functions are used which are
combined by the newest ideas of the theory of stability and boundedness of the
solutions of systems of differential equations.

The main results generalize theorems of Yoshizawa {8] and Hara, Yoneyama,
Saitoh, Hirano (9].

2. Preliminary notes and definitions

Consider the following system of differential equations with impulses

{ T = f(t,.’l:), t 74 TR(x);

(1) Az /imrg(z) = Ir(2),

where f € C[R+ x R*,R"], 7r € C[R™,R], Ir € C[R",R"] and Az/i=rp(z) =
z(tt) —z(t7).

Let to € R4 and zo € R®. Denote by z(¢; %o, zo) the solution of system (1)
which satisfies the initial condition z(tg;ts,20) = zo and by J*(to,z0) denote
the maximal interval of the form (fo,w) in which the solution z(t;to,z0) is

defined.

The solutions z(t) = z(¢;%0, o) of system (1) are piecewise continuous func-
tions with points of discontinuity of the first kind, i.e. at the moment tg when
the integral curve of the solution meets the hypersurface

or = {(t,z) € Ry x R" : t = 7Rr(z)}
the following relations hold
2(tg) = (tr), Az/i=tp = a(t}) — 2(tg) = In(z(tr)).

Henceforth we shall always assume that for all z € R" the following relations
are valid

0 <mi(z) < m(z) < <71r(x) < ...andeim Tr(z) = 0

and the integral curve of any solution z(t) = z(¢;to,z0) of system (1) meets
each hypersurface or at most once [7].

In the further considerations we shall use the following classes of functions:

K = {0 € C[R4+,R4] : o is strictly increasing and o(0) = 0}
CK = {0 € C[R},Ry]: o(t,-) € K forany t € R,.}
F'={heCRy xR",R4]: iGIg'"h(t,:r:) =0forany t € Ry}
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Definition 1. Let ho,h € I'. We say that the solutions of system (1) are:
a) (ho, h)-equibounded if

(VO( > 0)(Vt0 € R+)(3,3 = ,3(150,0!) > 0)(V:130 € Rn, ho(to,.’L’o) < a)
(vt > to) : h(t, z(t;t0,20)) < B.

b) (ho, h)-uniformly bounded if the number § of a) does not depend on
to € Ry '
¢) h-ultimately bounded for bound B if

(V(to, z0) € Ry x R™)(3T = T(to,z0) > 0)(Vt > 1o + T) :
h{t,z(t;t0,20)) < B.

d) (ho, h)-equi-ultimately bounded for bound B if

(Yo > 0)(Vto € Ry )(3T = T(to, @) > 0)(Vzo € R™, ho(to, z0) < @)
(Vt > to + T) : h(t,z(t;to, 20)) < B.

e) (ho,h)-uniformly ultimately bounded for bound B if the number T of
d) does not depend on to € R4.
Definition 2. Let the function A : Ry — R4 be measurable. We say that

o0
A(t) is integrally positive if [; A(t) dt = oo whenever I = |J[a;, B8], i < fi <

=1
ai+1 and @i —a; > 6 > 0.

We shall introduce the class Vy of pieceiwse continuous auxiliary functions
which are an analogue of Lyapunov’s functions (3].

Let mo(z) = 0 for z € R™. Consider the sets

Gr={(t,z) Ry xR" : 7p_1(z) <t < 7r(2)} and G = | J Gr
R=1

Definition 3. We say that the function V : Ry x R® — R, belongs to the
class Vy if V(¢,z) is continuous in G, locally Lipschitz continuous with respect
to z in any of the sets Gr and for (t0,29) € or, R = 1,2,... there exist the
limits

V(ty,z0) = lim )V(t,r) , V(td,zo)= lm  V(t,z)

(t,z)—(to,z0 (t,z)—(to,z0)
(t,z)EGr (t,2)EGR41

and, moreover, the equality V(5 ,z0) = V(to,20) holds.
Let V € Vy. For (t,z) € G define the function

Viy(t, ) = lim sup %[V(t +hyz+ R 2)) — V(o).
. h—0+
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We shall note that if z = z(¢) is a solution of system (1), then
Yoy (1)) = DYV (t,2() = limsup ~[V (¢ + h 2(t + ) = V(t,2(0))
h—0+

for t # tp where tp = Tr(z(tRr)).
Definition 4. Let ho,h € T'. The function V € V; is called:

a) h-radially unbounded if there exists a function a € K, a(y) — oo as
v — oo and such that V(t*,z) > a(h(t,z)) for (¢,z) € Ry x R™

b) ho-decrescent if there exist 6 > 0 and a function b € K such that
V(tt,z) < b(ho(t, z)) for ho(t,z) < 6.

c¢) weakly ho-decrescent if there exist 6 > 0 and a function b € CK such
that from ho(t,z) < & it follows that V(t1,z) < b(¢, ho(t, z)).

Let h,hg € T and V,W € V. For the sake of brevity of the formulation
of the main results we shall make a list of some conditions to be used in the
formulation of the subsequent theorems.

A. If for the solution z(;tg, z¢) of system (1) there exists 8o > 0 such that
h(t, z(t;to, o)) < 8o < oo for each ¢ € J*(to,20), then z(¢;to, zo) is defined in
the interval (g, 00).

B1. The function V is h-radially unbounded.

B2. V{y)(t,z) <0 for (t,2) € G.

B3. V(l)(t,z) < —CV(t,z) for (t,z) € G where C > 0 is a constant.

B4. V(l)(t,:c) < =At)C(h(t,z)) for (t,z) € G where A(t) is integrally
positive and C € K.

B5. Viy(t,z) < —C(W(t,z)) + A(t)$(V(¢,z)) for (t,z) € G where C(7) is

nonnegative and continuous in R and

(2) liminf C(y) >0

y—oo

A(t) is nonnegative and continuous in R4 and

(3) / A#)dt < oo
0
#(u) is positive and continuous in R and
> du
4 — =00
®) o B(u)

B6. There exists a constant K such that
(5) A V(t,z) > K for any (t,z) € Ry x R"

B7. V(t*,z + Ig(z)) < V(t,z) for (t,z) € op, R=1,2,... -
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C1. |W(1)(t,w)| < p(t)w(W(t,z)) for (t,z) € G where p(t) is nonnegative
and continuous in R4 and

(6) /t,u(T)d‘rSm(t—s)fortZSZO

where m(v) € K and w(u) is positive and continuous in R and

@) /0°° wﬁ) B

C2. Wy(t,z) < p(t)w(W(t,z)) for (t,z) € G where u(t) and w(u) are the
functions of condition C1.

C3. There exists a function m € K such that for t > s > 0 and for any
piecewise continuous in [s,t] function u(7) with points of discontinuity of the
first kind tg such that tg = Tr(u(tr)) at which u(r) is continuous from the
left, the following inequality holds

(8) ZW(l)(T,u(T))dT < m(t—s).

C4. W(tt,z + Ip(z)) = W(t,z) for (t,z) € op.
C5. W(t,z) is h-radially unbounded.

3. Main results

Theorem 1. Let condition (A) hold and function V € Vo exist for which
conditions B1, B2 and B7 hold. Then the solutions of system (1) are:

1. (ho, h)-equibounded if V is weakly ho-decrescent.
2. (ho, h)-uniformly bounded if V is ho-decrescent.

Proof: Since V is h-radially unbounded, then there exists a function a €
K, a(vy) — oo as v — oo and such that

9) V(tt,z) > a(h(t,z)) for (t,z) € Ry x R™

1. If V is weakly ho-decrescent, then there exist 6o > 0 and a function
b € CK such that

(10), V(tt,z) < b(t, ho(t, z)) for ho(t,z) < 6o
Let a > 0 and tp € Ry(a < &) be given. Choose f = (i, ) > 0 so that

(11) a(B) > b(to, @)
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Let zo € R™, ho(to,z0) < e and let z(t) = z(t;to,z0). Set v(t) =
V(t,z(t)). Since V(¢,z) is locally Lipschitz continuous in any of the sets G,
then from B2 it follows that D¥v(t) < 0 for ¢t € J*t(tp,z0),t # tr where
tr = Tr(z(tr)). From BT it follows that v(t}) < v(tg). That is why the func-
tion v(t) is decreasing in the interval J¥(¢o,2¢). Then from (9), (10) and (11)
we get

a(h(t,z(t)) < v(t*) < o(t) < v(tf) < bto, ho(ta, 20)) < b(to, @) < a(B)

for t € J*(to,z0) which implies that h(t,z(t)) < B. From condition (A) it
follows that J¥(to,z0) = (to, 00).

Thus 1, is proved.

2. If V is ho-decrescent, then (10) and (11) hold for some function b € K
independent of ¢. Hence the number 8 can be chosen independent of ¢o and so
that for ho(to, o) < a we have h(t,z(t)) < 8. This shows that the solutions of
system (1) are (ho, h)-uniformly bounded.

Theorem 1 is proved. W

Corollary 1. Let condition (A) hold and function U € Vo exist which is h-
radially unbounded and such that Uyy(t, =) < Mt)$(U(t, z)) for (t,z) € G where

the function A(t) is nonnegative and continuous in Ry and fooo A(t) dt < oo and
d(u) is positive and continuous in R and [~ du/¢(u) = oo,

U(tt,z + Ip(z)) < U(t,z) for (t,z) € op, R=1,2,...

Then the solutions of system (1) are:

1. (ho, h)-equibounded if U is weakly ho-decrescent.
2. (ho, h)-uniformly bounded if U is ho-decrescent.

Proof: Tt is immediately verified that the function
t .
V(t,z) =exp {—/ A(s)ds + <I>(U(t,:c))} , (t,z) € Ry x R™,
0

where ®(u) = [} du/¢(u) satisfies the conditions of Theorem 1. W

Theorem 2. Let condition (A) hold and a function V € Vo ezist which is
weakly ho-decrescent and for which conditions Bl, BS and B7 hold. Then the
solutions of system (1) are (ho, h)-equi-ultimately bounded.

Proof: From Theorem 1 it follows that the solutions of system (1) are (ho, h)-
equibounded. Hence each solution z(t) = z(t;t0,z0) of (1) is defined in the
interval (g, 00).
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Since V is h-radially unbounded, then there exist B > 0 and a € K, a(y) —
0o as v — oo such that

(12) V(tt,z) > a(h(t,z)) for h(t,z) > B

Since V is weakly ho-decrescent, then there exist 6o > 0 and b € CK such
that (10) holds.

Let o > 0 and 3 € Ry be given, 79 € R™ be such that ko(to,z0) < o and let
z(t) = z(t;to, zo). From B3 and B7 we obtain

(13) V(t,z(t)) < V(tF, x0)exp[—C(t — to)] for t > to.

Set T = T(to,a) > & In[b(to, @)/a(B)]. Then from (12) and (13) it follows
that for t > to + T the following inequalities hold

a(h(t, (1)) < V(E*,2(tY) < V(T,2(0) <
< V(tf,zo)exp[—C(t — to)] < b(to, ho(to,z0)) exp(—CT) < a(B)

Hence h(t,z(t)) < Bfort >ty +T.
Theorem 2 is proved. W

Theorem 3. Let condition (A) hold and a function V € Vy exist which s
ho-decrescent and for which conditions B1, B4 and B7 hold. Then the solutions
of system (1) are (ho, h)-uniformly ultimately bounded.

Proof: From Theorem 1 it follows that the solutions of system (1) are (ho, h)-
uniformly bounded. Hence each solution x(t) = x(¢;t0,z0) of (1) is defined in
the interval (¢g, c0).

Since V is h-radially unbounded, then there exist R > 0 and a € K, a(y) —
o0 as 7 — oo such that '

(14) V(t*,z) > a(h(t,z)) for h(t,2) > R
Since V is ho-decrescent, then there exist g > 0 and b € I¥' such that
(15) V(t*,z) < b(ho(t,z)) for ho(t,z) < bo.

Choose B > R so that a(B) > b(R). Let a > R be given. We shall prove
that there exists T' = T(a) > 0 such that for any solution x(t) = x(t;tg,x0) of
system (1) for which hg¢(to,z0) < a and for some ¢ € [tg,tq + T the following
inequality holds

(16) ho(¢,2(¢)) < R
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Suppose that this is not true. Then for any T > 0 there exists a solution
z(t) = z(t;to,z0) of (1) for which ho(to,z0) < a and such that for all ¢ €
[to,to + T we have

(17) ho(t,z(t)) 2 R
From B4 and B7 it follows that
(18) V(t,z(t)) - V(t§, z0) < / Viy(s,z(s))ds <
to

—[Amamuwm»wJ>m

But the function V(¢,z(t)) is monotonely decreasing in the interval (to,0).
Hence there exists the limit

(19) tlirn Vit,z(t)) =V 20
Then from (15), (17), (18) and (19) we obtain

/ A ho(t, 2(£)) dt < H(R) — Vo

From the integral positivity of -A(t) it follows that there exists T' > 0 such

that ot T ‘
0 (R)-Vo+1
A dt > —————
L )
Then
to+T

b(R) — Vo 2/00 /\(t)C(ho(t,z(t)))dtZ/ A)C(ho(t, 2(t))) dt >

to

to+T
> C(R)/ A(t)dt > b(R) — Vo + 1.

(]

The contradiction obtained shows that there exists T = T(a) > 0 such that
for any solution z(t) = z(t;to,zo) of (1) for which ho(to,z0) < a, there exists
¢ € [to,to + T) such that (16) holds. Then for ¢t > ¢ (hence for any t > to + T
too) the following inequalities hold '

a(h(t,2(0) < V(£ 2(t) < V(t,2(0) < V(CH,5(¢H)) <
< b(ho(C,2(C)) < B(R) < a(B).

Hence the solutions of system (1) are (ho, h)-uniformly ultimately bounded
for bound B. & - :
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Theorem 4. Let condition (A) hold and functions V,W € Vy exzist for which
conditions B5, B6, B7, C1, C4 and C5 hold. Then:

1. V is h-radially unbounded.

2. The solutions of system (1) are h-ultimately bounded.

3. If V is weakly ho-decrescent, then the solutions of system (1) are (ho, h)-
equibounded.

4. If V is ho-decrescent, then the solutions of system (1) are (ho,h) -uni-
formly bounded.

Proof:
1. Assume that the assertion is not true. Then there exists No > 0 such

that for any 4 > 0 there exist 7 € R4 and T € R™ for which A(7,T) > v and
such that V(r+,7) < No.

From (2) it follows that there exist R; > 0 and § > 0 such that for any
v > R, we have C('y) > 6.

Let L = fo t)dt and M = sup{d(u): K <u < & 1(®(No) + L) where
d(u) = f du/é(u )

From C5 it follows that there exists a function a € K, a(y) — ccas v — oo
and such that

(20) W(tt,z) > a(h(t,z)) for (t,z) € Ry x R®

From (4) and the condition a(y) — oo as v — oo it follows that there
exists R > R; such that a(R2) > R; and

a(Ra) g No— K + ML
y o— K+ )
21 il A (P i
(1) /Rl w(7) ( 6

In the above assumption we replace v by Rz. As a result we obtain that
there exist top € Ry and zo € R™ such that k(tg,z¢) > Rz and V(tg',zo) < Ny.

From condition (A) and from C5, C1 and C4 it follows that the solution
z(t) = z(¢; to, zo) of system (1) is defined in the interval (o, 00).

From B5 and B7 it follows that V(l)(t,:v(t)) < AMt)p(V(t,2(2)) for t # tr
where tg = 7r(z(tr)) and V(t},z(t})) < V(tr,z(tr)), whence by integration
we obtain '

C Vay(s,2(5)
@(V(t,x(t)) - (I)(V(tg.,l‘o)) S " m ds S L

Hence K < V(t,z2(t)) < & Y(®(No) + L), whence we conclude that

S(V(t,z(t))) £ M for t > tg.
Assume that W(t,z(t)) > R, for any t > tg. Then from B5 and B7 it

follows that

(22) Vin(t,z(t)) < —8 + MA(t) for t > to, t # tr
(23) Vith,z(t})) < V(tR,:c(tR))
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whence by integration we obtain

Wmm»—wquglmﬂgumag—m—mﬂm{[Mgm

Then
(24) Vi(t,z(t)) < Ng — 6(t —to) + ML, t > to.

But the right-hand side of (24) tends to —oo as t — oo and this contradicts
B6. Hence there exist values of ¢ > to for which W(¢,z(t)) < R;. From
condition C4 it follows that the function W(t,z(t)) is continuous, hence there
exists ¢ > to such that W((,z(¢)) = R1 and W(¢, z(t)) > Ry for t € (o, ().
Since inequalities (22) and (23) are satisfied for ¢ € (2o, (), then

(25) V(¢ 2(¢)) S No = 6(C —to) + ML

From (21), (20), conditions C1 and C4 and (6) we obtain

No— K+ ML a(R>) W(¢,z(¢))
m (BB < [ < | [ argat)
1

W(tg’,zo)
¢ Wyt 2(1))
< / S (8, 2())

<

¢
s[umMSm«—m-

Hence
(26) (No— K +ML)/6 < ¢ — to.

From inequalities (25) and (26) we obtain that V((,z({)) < K which
contradicts B6. Thus assertion 1 is proved.

2. Suppose that the solutions of system (1) are not h-ultimately bounded.
Then there exist (to,z0) € R4 x R™, a solution z(t) = x(t;tg, o) of (1) and
a sequence {Cr} such that (g — oo as R — oo and h((r,z((r)) > a™}(R:)
where R; is the constant defined in the proof of assertion 1. From the h-radial
unboundedness of W we obtain W((g,z({r)) > R;.

From (2) it follows that there exists Ry, 0 < Ry < R; such that for v > Ry
we have C(v) > -g- where 6 is the constant defined in the proof of assertion 1.

As in the proof of assertion 1 we can find a sequence {ng} such that
nr — oo as R — oo and W(np,z(nr)) £ Ro. Choose subsequences of the
sequences {(r} and {nr} which we denote again by {{r} and {nr}, such that
nr < (r < QR+1,MR — 00 as R — co and

(27) W(nr,z(nr)) = Ro, W(Cr,2(Cr)) = Bs
Ry < W(t,z(t)) < R, for t € [r,(R]
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We shall prove that
(28) Y (Cr—nr) =00
R=1

Indeed, if we supppose that ((r — ngr) — 0 as R — oo, then from C1, C4
and (27) we obtain

Rogy SR Wi(t, (1))
0< /R 5 < / oWt z()) 4 < ™R =1R) =0

as R — oo. The contradiction obtained shows that (28) holds.

If we set M = sup{¢(u): K < u < & Y(®(V(t],z0)) + L), as in the proof
of assertion 1 we can prove that ¢(V(t,z(t))) < M for t > to. Then from B5
and B7 it follows that

Cn | ¢n .
V(Cn,2(¢a)) =V (it 20) 5/ Viy(t, z(8)) dt < —/ C(W(t,z(t)))dt+ML.

to

Hence

n

SR
V(Grr2(Ca)) S V(S 20) = Y / C(W(t,z(t)))dt + ML <

R=1vY1TR

- § <
SV(t,20) + ML =5 3 (Cr = 1R)-
R=1

From (28) it follows that the right-hand side of last inequality tends to —oo
as n — oo which contradicts B6. Hence the solution of (1) are h-ultimately
bounded:

3. Let V be weakly hg-decrescent. Then condition B5 and assertion 1
proved above show that the conditions of Corollary 1 are satisfied. Hence the
solutions of system (1) are (hq, h)-equibounded.

4. is proved in the same way.

Thus Theorem 4 is proved. B

Theorem 5. Let condition (A) hold and functions V,W € Vy exist for which
conditions B5, B6, B7, C2, C{ and C5 hold. Then the solutions of system (1)
are h-ultimately bounded.

If, moreover, V and W are weakly ho-decrescent, then the solutions of system
(1) are (ho, h)-equibounded.

Proof: Conditions C2, C4 and C5 and (A) imply the global existence of the
solutions of system (1). '
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The h-ultimate boundedness of the solutions of (1) is proved as in the proof
of assertion 2 of Theorem 4. That is why we shall prove only the second part
of Theorem 5.

Suppose that the solutions of system (1) are not (ho, h)-equibounded. Then
there exist ag > 0 and to € R, such that for any 8 > 0 there exists T € R”
for which ho(#0,T) < ao, a solution z(t;¢0,%) of (1) and T > 0 such that
W(T, 2(T;t0,7)) 2 6.

Let Ry, 6 and L be the constants defined in the proof of Theorem 4.

Since V and W are weakly ho-decrescent, then there exist b,b; € CK
such that V(t*,2) < b(¢, ho(t z)) and W(t+,w) < bl(t ho(t,z)). Then for
ho(to,F) < ap we have V(tF,%) < b(to, o) and W(tf,7) < bl(to,ao) We set
N = max{b(to, ao), b1(to,x0)} and M = sup{¢(u) : K < u < &7 ($(N) + L)
where ®(u) = [, dv/é(7).

Condition C5 implies the existence of a function a € K, a('y) — 00 as 'y — 00
such that W(tt,z) > a(h(t,z)) for (¢,z) € Ry x R™.

From (4) and the condition a(y) — oo as ¥ — oo it follows that we can
choose By > ap such that a(fy) > N and

N—K+ML) /“U’o) dvy
29 m|—— == < —.
(29) G v e

We replace in the above assumption # by ;. As a result we obtain that
there exists o € R™ for which ho(tp,z0) < ao, a solution z(t) = z(t;t0,20)
of system (1) and 3 > to such that h(ts,z(t3)) > ﬁo Then W(ta,m(t3)) >
a(h(ts, z(t3))) 2 a(fy). Moreover, it is clear that V(td,zo) < N and W(tf, o)
<N.-
From condltlon C4 it follows that the function W(t, z(t)) is continuous, hence
there exist ¢, 2, to < t1 <t < t3 such that W(t1,2z(t1)) = N, W(tz,x(tg)) = ‘
a(fo) and N < W(t,z(t)) < a(fo) for t € (t1,%2). ‘
As in the proof of assertion 1 of Theorem 4 it can be proved that ¢(V (¢, z(t)))
< N for t > tg. :
Then from conditions B5 and B7 we obtain

V(tz,x(tg))—V(t;r,zo)S/tzwl)(t,m(t))dtg _[C(W(t,x(t)))dt,

vl

[

whence it follows that
(30) V(t2,l’(t2)) < N—(S(tz —t1)+ML
From conditions C2 and C4 and from (29) it follows that

m(_u(ﬁﬂ></“(ﬂo)%s
N w

“ Vo) o [
S/ W (a@) < [ ult)dt < m(tz ~ 1)

t




DIFFERENTIAL SYSTEMS WITH IMPULSES 237

whence we obtain
(31) _ (N-K+ML)/6 <ty — t

From (30) and (31) we get that V(t3,z(t2)) < K which contradicts B6.
Hence the solutions of system (1) are (ho, h)-equibounded. B

Theorem 6. Let condition (A) hold and functions VW € Vy ezist for which
conditions B5, B6, B7, C3, C4 and C5 hold. Then assertions 1, 2, 3 and § of

Theorem 4 are valid.

Proof:

1. Suppose that V is not h-radially unbounded. Then there exists No > 0
such that for any v > 0 there exist 7 € Ry and T € R™ such that h(7,T) > v
and V(r%,7) < Nq.

Let Ry,6, L and M be the constants defined in the proof of Theorem 4 and
a € K, a(y) — oo as 7 — oo be such that (20) holds.

Choose Ry > R; so that

No—-K+ML
(32) a(Ry) > Ry +m (L—é*”—-)
v Let to € Ry and 2o € R™ be such that h(to,zo) > R and V(t§,z0) < No
and let z(t) = z(t;10, To).
As in the proof of Theorem 4 it is proved that there exists ( > g such
that W(¢{,z(¢)) = Ry and W(t,z(t)) > R; for t € (t,() and

(33) V¢, 2(¢)) < No — 6(¢C — to) + ML.

Moreover, W (tg,z¢) > a(h(te,z0)) > a(Rz). Then from (32) and C3 it
follows that .

(NO—K—}-ML
m(=2—=T""

: ) < a(Ry) = Ry < W(t}, z0) - W(C,2(¢)) <

¢ .
< / W(l)(t,:c(t)) dt} < m(¢ — o).
to
Hence
(34) (No — K +ML}/6 < ¢ —to.

From (33) and (34) it follows that V({,z(¢)) < K which contradicts B6.
Hence V is h-radially unbounded.
The proof of assertions 2, 3 and 4 is carried out as in the proof of Theorem
4. 1
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Theorem 7. Let the following conditions be fulfilled:
a) Condition (A) holds.
b) There ezist functions V,W € Vo which satisfy conditions B5, B6, B7,
C} and C5.
c) The function h is locally Lipschitz continuous with respect to z.
d) [limsup, .o+ Lh(t+s, 245 f(t )~ h(t, 2)]| < p(tho(hit, 2)) for (t,2) €
Ry x R™, where u(t) and w(y) are the functions of condition CI.

Then the assertions 1-4 of Theorem 4 are valid.
The proof of Theorem 7 is analogous to the proof of Theorem 4.

Theorem 8. Let the conditions of Theorem 7 hold, condition d) being re-
placed by condition e):

€) There exists m € K such that for t > s > 0 and for any piecewise
continuous n [s,t] function u(r) with points of discontinuity of the first
kind tg where tg = Tr(u(tR)) at which it is continuous from the left,
the following inequality holds

{lisn_lztip %[h(r + s,u(r +8)) — h(r,u(r)))} dr| < m(t — s)

Then assertions 1-4 of Theorem 4 are valid.

The proof of Theorem 8 is analogous to the proof of Theorem 4.
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