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REGULARITY OF VARIETIES
IN STRICTLY PSEUDOCONVEX DOMAINS

FRANC FORSTNERIC

Abstract

We prove a theorem on the boundary regularity of a purely p-dimensional
complex subvariety of a relatively compact, strictly pseudoconvex domain
in a Stein manifold. Some applications describing the structure of the
polynomial hull of closed curves in C" are also given.

‘Introduction

Let X be a complex manifold, M C X a connected (2p — 1)-dimensional
submanifold of X of class C* (k > 1, p > 1), and A a closed complex subvariety
of X\M of pure dimension p such that A ¢ A U M. Then either A4 is a
complex subvariety of X or else there exists a closed subset E C A of (2p—1)-
dimensional Hausdorff measure ¥z, ;(E) = 0 such that the pair (4\E, M\E)
is a C* submanifold with boundary (2, p.190]. In the second case A has locally
finite 2p dimensional volume in X, and M can be oriented suych that the pair
(4, M) satisfies the theorem of Stokes {2, p.192], [6], [8]. Consequently M is
a maximally complex submanifold of X, i.e., the maximal complex subspace
TS M of the real tangent space T.M to M at z has real codimension one in
T.M.

There is a converse of this due to Harvey and Lawson [6]: If X is a Stein
manifold and M is a closed, compact, maximally complex submanifold of X of
dimension 2p—1 (p > 2), then M bounds (in the sense of currents) a purely p-
dimensional complex subvariety A C X\ M, with boundary regularity as above.

We are interested in the boundary regularity of a purely p-dimensional com-

plex subvariety of a relatively compact, strictly pseudoconvex domain 2 C X
with C? boundary. We shall give a simple proof of the following
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Theorem 1. Assume that

(1) X is a Stein manifold;

(2) Q 1s a relatively compact strictly pseudoconvez domam with C? bound-
ary in X;

(3) M is a closed (2p—1)-dimensional submanifold ofX of class C* (p > 1,
k > 2) contained in the boundary b of QI;

(4) A is a purely p-dimensional complez subvanety of N such that A C
C AU M, and A intersects every connected component of M.

Then there exists an open neighborhood U of M such that the pair (ANU,M)
is a C* manifold with boundary, and A intersects bSl transversely in the set M.

Consequently A has at most finitely many singularities in {2. The manifold
M is maximally complex, and its tangent space T, M is not contained in the
maximal complex tangent space TC bQ to the boundary of 1 for any z € M.

We obtain an interesting consequence concerning holomorphic convexity of
closed curves. We shall state the result only for X = C™. Recall that the
polynomially convez hull of a compact set K CC™is =~

K={zec" |f(z)| < sup | f] for all holomorphic i)olynomials f}.
K

If M is a rectifiable closed Jordan curve in C", then either M is polynomially
convex, M = M, or else A = M\M is a purely one-dimensional analytic variety
according to Wermer [10], [11, p.71], Stolzenberg (9], and Alexander [1].

Corollary 2. Let Q be a bounded C? .strictly pseudoconvezr domain in C™
with polynomially convez closure, and let M be a simple closed curve of class
C’c k > 2, contained in the boundary of 1. If M is not polynomially convez,
then the one- dzmenstonal complez variety A= - M\M has at most finitely many -
singularities.

Proof: Since 11 is'polynomidlly conv,ei, Ais contained in . Every point
p € bQ) is a peak point for (1, so the maximum principle implies that A is
contained in 2. Therefore the corollary follows from Theorem 1. H

We shall say that a submanifold M C b of class C! is complez tangential at
the point z € M if

(1) T.M is contained in T bQ2.
Here, TS bQ = T,b02 N v/—1T,b02. We shall say that M is complex transverse

at z if it is not complex tangential.’

Corollary 3. Let 1 G C™ be as in Corollary 2. If M C b} ts a simple
closed curve of class C? that is complez tangentzal at least at one point, then
M 1is polynomially convez.

Proof: If M is not polynomially convex, Theorem 1 implies that the polyno-
mial hull M = AUM C 1 is a complex variety with smooth boundary near
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every point z € M, and M intersects b0 transversely in M. This implies that
M is complex transverse in b} and the corollary follows. B

Example. If M is a simple closed C? curve in the sphere {z € C":|z] = 1}
parametrized by the map r(t) = (7'1 (t)s-.- srn (t)) with nonvanishing derivative,
and if

> A0 =0

for some value of the parameter t, then M is polynomially convex

It seems rather surprising that a condition at one point of the curve guar-
anties its polynomial convexity, as long as the curve stays inside the given
strictly pseudoconvex boundary.

Remarks.

1. Theorem 1 is stated in [2, p.203], but the proof given there does not
appear to be complete.

2. If one knows already that M is the boundary of A= M \M in the sense
of currents and if p > 2, then Theorem 1 is a special case of Theorem 10.3 in
[6, p.275].

3. In the case when p = 1 and the variety A is a proper holomorphic image
of the unit disc A = {z € C:|z| < 1}, Theorem 1 follows from the more
general results of Cirka [3] concerning the regularity of one-dimensional complex
varieties in the complement of a totally real submanifold of the ambient space.

4. In the case p > 2, Theorem 1 was proved by the author in [4]. Our new
proof is simpler and includes the case p = 1 when M ‘is a curve. We first show
that the pair (A, M) is a manifold with boundary in a neighborhood of each
point z € M at which M is complex transversal, i.e., the condition (1) fails.
The proof in this case is the same as in [4]. The main difficulty in (4] was
to show that M can not be complex tangential at any point if it bounds a p-
dimensional variety. In this paper we prove this by a very simple perturbation
argument.

Acknowledgement. 1 wish to thank Josip Globevnik for several stimulating
discussions on this subject.

Proof of Theorem 1

By the embedding theorem of Fornaess and Khenkin [7, p.112] we may assume
that X = C" and Q is a strictly convex domain in C".

It suffices to prove that each point 2° € AN M has an open neighborhood
U such that the pair (ANU, M NU) is a smooth manifold with boundary. We
first prove this in the case when M is complex transverse at 2°, i.e., condition
(1) fails. This part of the argument is the same as in [4]. We include it for the
convenience of the reader.

By an affine change of coordinates in C" we may assume that
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(i) 2° =0,
(i) Tob = {Rez; =0} and T b0 = {2, = 0}, and
(iii) the domain 0 is contained in {®e 2, > 0}.

Recall that Ty M is a real (2p — 1)-dimensional subspace of {®e 2, = 0} that
is not contained in {z; = 0}. Thus the orthogonal projection of ToM onto
the z; axis is a real line, and the intersection W = ToM N {z; = 0} has real
dimension 2p — 2.

We can choose a complex (p — 1)-dimensional subspace L contained in {z; =
= 0} such that the orthogonal projection C* — L maps W surjectively onto L.
After a unitary change of coordinates 2;,... , z, we may assume that L = {z; =
=Zpt1 =...= 2z, =0}.

Let m:C™® — C? = {z,41 = 0,...,2, = 0} be the orthogonal projection.

Since b} is strictly convex, we can find an open polydisc neighborhood U =
=U'xU" of 0in C™, with U' C C? and U" C C"~P, such that m: UNQ — U’
is a proper mapping. Our choice of L implies that m: ToM — C? is injective.
Shrinking U if necessary it follows that # maps M N U diffeomorphically onto
a real hypersurface T C U' of class C* that splits U'\T in two connected
components I't and I'~. Let I'* be the region contained in {Rez; > 0}.
Since M NU is contained in the strictly convex boundary QN U and C? x {0}
contains the normal vector (1,0, ... ,0) to (2 at 0, the projection 7(MNU) =T
is hypersurface in CP which is strictly convex from the side I'*, provided that
the neighborhood U is sufficiently small.

Since m: QN U — U' is proper and the set (A U M) NU is closed in U, the
restriction

m(AUM)NU - U'

is also proper. The convexity of I't along I' implies that 7#(ANU) is contained
in 't according to the maximum principle. Hence the mapping

(2) mANU - Tt

is an analytic cover [5, p.101].

Denote by s the number of sheets of this analytic-cover, i.e., the number of
points in the generic fiber. Notice that all sheets converge to the common edge
M as we approach I'. We claim that this implies s = 1. We only give a sketch
of proof since the details can be found in [4].

Let z = (2',2"), where 2’ = (21,...,2,) and 2" = (2,41,... ,2n). Thereis a
linear function w = w(2") that separates points of 7~ !(2')NANU for all points
2" € T* outside a proper complex subvariety ¢ C I'". For each 2! € Tt\o we
denote by w; (2'),... ,w,(2') the values of w at the points of 77 1(z') N ANU.
Let P(w,2') be the polynomial in w defined by

P(w,2') = H (w—w;(2)) =w +a(2)w "1+ +Vas (z'), 2 eI\
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Its coefficients a;(2') are bounded holomorphic functions on I'*\g, so they
extend to bounded functions on I't. The discriminant §(2') of P(.,2') is also a
bounded holomorphic function on I'* since it is a polynomial expression in the
coefficients a; of P. Recall that §(z') = 0 if and only if P(.,2') has multiple
roots.

If s > 1, the hypothesis A C AU M implies that the nontangential boundary
values of § on T equal zero almost everywhere since the different sheets of (2)
converge together to M. This implies § = 0 on 't a contradiction. Thus s = 1
as claimed.

It follows that the projection (2) is a bijection, so (AU M) N U is a graph of
the form
(AuM)nU = {(, f(z')): 2 €Tt UT}.

Since A is complex analytic and M is of class C*, it follows that f is holomorphic
on I'* and of class C* on I'. Clearly f is also continuous on I'* UT. The
regularity theorem [6, p.249] implies that f is of class C¥ on I't UT'. This proves
that (AUM)NU is a C* manifold with boundary intersecting b} transversely.

It remains to show that the manifold M is complex transverse at each point
2z € M N A so that the first part of the proof applies. The following argument is
considerably simpler than the one in [4], and it also applies in the case p = 1.

Assume that the condition (1) is satisfied for some z = 2° € M N A. Let
AC Tfo bQ1 be the smallest complex subspace of C" containing T,o M. Since
T,oM is not a complex subspace, there is a vector b € A\T,o M. We can choose
a function k of class C?, supported on a neighborhood of z° in C”*, such that
h|pm =0, but the derivative of h at 2° in the direction b is nonzero.

Let p be a strictly convex defining function of class C? for 2,50 1 = {z €
€ C":p(2) < 0} and dp # 0 on bQ. If € > 0 is sufficiently small, the domain

0. = {z€C":p(z) +€h(z) <0}

is of class C? and strictly convex. Fix such an e. Since h vanishes on M, M is
contained in the boundary of .. Thus we have A C M C Q= Q., and the
maximum principle implies A C ..

Our choice of h implies that T, 502, does not contain A, so Tfo b0, does not
contain T,o M. This means that M is complex transverse in b{), at the point
2. By the first part of the proof, with 0 replaced by (1., the set 4 is a local
C* manifold with boundary M near 2°.

We have proved that the pair (4, M) is a local manifold with boundary near
every point z € AN M. This implies that A N M is an open and closed subset
of M. Since we assumed that A intersects every connected component of M,
it follows that A = AU M.

It remains to show that A intersects 50 transversely. The restriction p' = pI;
of the plurisubharmonic defining function p of (2 to A4 is a negative subharmonic
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function of class C? on the complex manifold with boundary A. The Hopf
lemma implies : .
p(z) < —cdist(z,M), z€ A

for some ¢ > 0. Here, dist denotes the Euclidean distance. Since —p(2) is pro-
portional to the distance of z to b1, we conclude that dist(z, M) is proportional
to dist(z,b01) for z € A. Hence A intersects b{) transversely at each point of
M. Thus the condition (1) fails and M is everywhere complex transverse.
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