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INTEGRAL FORMULAS ON PROJECTIVE SPACE
AND THE RADON TRANSFORM OF
GINDIKIN-HENKIN-POLYAKOV

Bo BERNDTSSON

Abstract

We construct a variant of Koppelman’s formula for (0, g)—forms with val-
ues in a line bundle, O({); on projective space. The formula is then ap-
plied to a study of a Radon transform for (0,q)—forms, introduced by
Gindikin—Henkin-Polyakov. Our presentation follows along the basic lines
of Henkin—Polyakov [3], with some simplifications.

Introduction

In two papers ([2] and [3]), Gindikin—Henkin, and Henkin—Polyakov have
developed a theory of a Radon transform for differential forms on domains in
projective space. The two basic results are that the Radon transform defines
an injective map on the Dolbeault cohomology groups (i.e. that the Radon
transform of a d—-closed differential form is zero if and only if the form is d—
exact), and an inversion formula which, among other things, gives a description
of the image of the map. As a matter of fact [2] and [3] give two different
inversion formulas, of which the latter works in greater generality and at first
looks quite different from the earlier one.

The aim of this paper is to give proofs of those results using weighted integral
formulas (cf.[1]). This is in no way radically different from the methods in [2]
and [3], but in our view it leads to some simplifications. Let us explain briefly
what they consist in.

The starting point in [3] is a “Koppelman’s formula” which represents a
d—closed form, f, as

f =3K(f) + R(f)

so that 8K (f) is “the d-exact part”and R(f) is a remainder which vanishes if
f is B-exact. Then one goes on to show that R(f) can be related to the Radon
transform. Henkin and Polyakov obtain this descomposition by lifting the form
f to (the sphere in) C"**!, by means of the projection map
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8 B. BERNDTSSON

and then using a classical formula in €"*!. Instead of this we will construct
an explicit kernel directly on P"*. What this amounts to is that we don’t need
to integrate over the fibers of the map =, which makes our formula simpler and
more explicit. As it turns out the freedom to chose weight factor enables us
to treat forms with values in the standard line bundles, O(I), on P". From
the form of the kernel one can then read off almost directly the definition of
the Radon transform. We can also give a rather simple proof of the inversion
formula by letting the weight vary. Finally we also note that the different
inversion formulas of [2] and [3] can be viewed as coming from different choices
of weight. ‘

Once again, it should be stressed that we have no results that are basically
new, but that the difference lies mostly in the presentation. Since thus our
aim is partly expository we have tried to make the paper as selfcontained as
possible, starting with a preliminary section with background material about
projective space.

As is the case in [2] and [3] our paper deals with forms of bidegree (0, g) or
(n,q). The construction of integral kernels on P" in the general case of (p, q)
forms is more difficult. In a last section we sketch how a recent idea of C.
Laurent-Thiebaut and J.P. Demailly can be used here. They showed how one
can construct kernels on a complex manifold given a holomorphic connection
on a complex vector bundle over the manifold. In their formalism, however,
there appear certain “parasitary terms”, which depend on the curvature of the
connection. It turns out that, in the case of P™, the curvature that enters
has a particularity simple form, which enables us to push their construction
one step further and get rid of the undesirable terms. We have not applied
this construction to the problem of the Radon transform, but give it mostly as
curiosa.

0. Preliminaries on P"(C)

P"(C) (or briefly P™) is the set of equivalence classes
[2] = (20, y2a], 2#0 in ¢"*!

where
2] = [w]

if there is a nonzero complex number A such that
z = dw.

We say that z = (2, z,) are the homogenous coordinates of the point [z].
A hyperplane in P" is a set of the type

I = {[]; ) _ &2 =0}
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where ¢ € €"*1\ {0}. Similary, a q~dimensional plane in P" is an intersection
of (n — ¢) hyperplanes in general position, i.e. a set of the type

M =M1, gn-o = ([z],Zg"z, =0 , m=1,...,n—gq),
0

where (£™) is linearily independent.
P" is covered by the (n + 1) open sets

Uj = {lz]; 2 # 0},
each of which is biholomorphic to C™ under the map’

20 Zj-1 Rijp1 Z,
(20,.-.52:] — (—,...,-"—,—i+—,...,.—")
Zj 5 % Zj

The complement of U; in P" is the hyperplane {[z]; z; = 0}, sometimes called
the hyperplane at 1nﬁn1ty (relative to U;).

For each integer ! we have a line bundle, O(l), over P™ defined by the tran-
sition functions % - ‘ '
9ik = (—)l on Uj NU;.

Thus a section to O(!) is a funétion f7 on each U; such that
fj = g,'kfk on Uj NU;.

Given such a section

~

f(205...y20) = z;f’([z])
is a well defined function on C**! which is homogenous of degree [ in z. Con-

versely the same equation defines a section to O(l) if f is /~homogenous in z.
Hence we may identify sections to O(!) with I~homogenous functions on C"*1.
In particular a homogenous polynomial of degrée [ defines a holomorphic section
to O() if I > 0.

Next we consider differential forms on (open sets of ) P". Since
€™ S P” (2) = 2]

is surjective, (or rather since dr is surjective) the pullback, 7*, of forms on P"
to C"*! is injective. Therefore we can identify a form on P" with its pullback,
which simply means that we write the form in homogenous coordinates. If for
instance we chose inhomogenous coordinates

21 Zn

vy

29 2.
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on Uj, a (1,0)-form, on U can be written

f=ij :—]
1

where the coefficients f; can be considered as 0-homogenous functions of z.
Thus

f Zf] = Z fJ/ZO dz] ZszJ dZO =: ZFsz]
1 0

Here the coefficients F; satisfy
a) 3o Fjz; =0and
b) F; are homogenous of degree —1 in 2.

If, conversely, F; satisfies a) and b) the same relation can be used to define a
form on Uy and a similar relation works on any U;. Hence a) and b) characterize
the projective forms of bidegree (0,1), i. e. the forms on C"*1! in the image of
7%, More generally we have:

A form f on C"*! of bidegree (p, q) 1s proyectwe if and only if

(1) (f,0|z* Ag) =0 and (f,0l2F Ag) =0

for all forms g, and moreover the coefficients of f are homogenous of degree
(—p, —q)in z and Z respectively.

Here the brackets stand for the scalar product on forms induced by the
standard metric on ¢! (the forms dz; Adz; = dz A ... ,dz,-; A...,dz;, form
an orthonormal basis on (p, ¢) forms if (2o, ...,2,) are orthonormal coordinates
on C"*1, and forms of different bidegree have scalar product zero).

It is enough to verify this claim at a given point p € C"*!, and we can choose
orthonormal coordinates so that [p] = [1,0...,0]. We take

A ‘

w; = — |, i=1,...,n
20

as inhomogenous coordinates on P" near [p]. At p

dz:
dw,~ = —f‘—
20
Hence a projective form will not contain dzy or dzp which means that (1) holds.
If conversely f does not contain dzp, dzs

f= Zfl]dzl Ndzy = Z(f”z{;zg“)dw, A dwy

at p which defines f as a form at [p].
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The operation of interior multiplication is defined by

(h]f,9) = (f R Ng)

if f,h,g are forms. Thus, we see that if f is projective and k is an arbitrary
(r,s) form whose coefficients are homogenous of degree (s, r}, then h|f is again
projective.

Let us finally study forms on P with values in O(l). Such a form can be
thought of as a scalarvalued form f7 on each U; such that

. z
fl = (_k)sz on U; NUg,i. e
2]
Upi _ 0 gk
z[T=2zf
in homogenous coordinates. So, written in homogenous coordinates a form of
bidegree (1,0) with values in O(!) is a form

z": Fydz;
0

where
a) Y 5 Fjz; =0 and
b) F; are homogenous of degree ! — 1 in z.
On U; we can consider the (n,0)-form
w; = (=1) A d=.
= (1) p a2
This is clearly a nonvanishing (n,0)—-form and a simple computation shows that

k
. dzg A d3x N...,dz
pa20 N ... k
by = Y (1) LN oden,
0 , 3

Hence .
— (Zkyn+1
wy; = (z—) Wg on UJ' N Uk.
3

Since any scalarvalued (n,0)~form f can be written
f = fjwj on UJ'
where the f/ must satisfy

f! :(ﬁ)"*“lf" on U; N0
2
we see that the bundle of (n, 0)—forms is isomorphic to O(—(n +1)). Similary a
(n, ¢)—form with values in O(l) can be identified with a (0, ¢)—form with values
in O(l') where
I'=1-(n+1).
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1. Integral kernels on P"

In this section we will construct integral kernels for the d-operator on do-
mains in P". They will operate on forms of bidegree (n, ¢) or (0, ¢) with values
in a line bundle O(I), and satisfy a version of Koppelman’s formula. In [3],
Henkin and Polyakov have obtained such formulas by pulling forms on P™ back
to the sphere in C"*! using n*. Here we will work directly on P™ writing our
kernels in homogenous coordinates. First we recall the construction of weighted
integral kernels in C™ (cf.[1]).

Consider a domain D C C" with smooth boundary. Let

8= (81,..+18p) : Dx D —¢C"
be a C'-function satisfying
I5(6,2)/ < Cls — 2| and (s, — 2)| > clg — #I°
uniformly for ¢ € D and z in any compact subset of D. Here for ¢, n € C™
(m) = gm;.

Then let L
Q:DxD-cC"

be any C'-function. With s and @ we identify the (1,0)—forms

s=Y sid(G —2z), Q=) Qdls —2)
. 1 1

which we denote by the same letters. 'Let G(t) be an holomorphic function of
one complex variable defined in a region such that the following formulas make
sense, and which satisfies G(0) = 1. We then define

S G P YA 1) htaY (1)
(1) K‘Ez PRCAU AR e oy
@) p=EU o (,¢ — ) (@a)"

Here G(¥) is the k—th derivative of G, and the 8 is taken with respect to ¢ and
z. Let K, , be the component of K of bidegree (p, ¢) in z and (n —p,n—g—1)
in ¢, and define P, , in the same way. We then have the following result (cf.
Theorem 1 and Theorem 5 of [1]):
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Theorem. Let f be a (p,q) form in C'(D). Then

(3) 1) = Cpam( [ F()AKpaler2) - /D B1(6) A Ky g(6r2)+

aD

+ (—1)Pteti(a, / FQ)ANKpg_1(¢,2) /f(s ) APy 4(s,2)))-

Here K, 1 =: 0.

To be quite accurate the theorem is stated in [1] only under the assumption
that Q(¢, z) be holomorphic in 2z in which case P, , vanishes for ¢ > 0. However
the same proof gives the result as formulated here.

We refer to (3) as Koppelmans formula and our first objective is to generalize
the construction to domains in projective space. First we consider the case of
(n, g)—forms. The construction follows precisely the same pattern as in the case
of C™. We write the kernels in homogenous coordinates, using two differential
forms s and Q. The novelty is that we must make sure that s and 8Q define
projective forms. Therefore we suppose as given a domain D in P™ and two

functions
5,Q:DxD—cnt?

satisfying:
i) s(¢,2) is homogenous of degree —1 in ¢ and 0 in 2.
i) (s,2) = g 8;2; =0.
iii) |s(¢, 2)| < Cd(¢,2) and |(s,¢)| > cd? (¢, 2)
uniformly for ¢ € D and z in any compact part of D. Here d is any distance
function that behaves like the euclidean distance in local coordinates (a specific
choice will be given later but is unimportant so far).

iv) Q(¢,2) is homogenous of degree —1 in z and 0 in ¢.
v) (@,2z) =1.

As before we denote also by s and @ the forms

k n
s = Zsjdz,- and Q= Z Qjdz;
0 0 :

(since we are dealing with (n, ¢)-forms we use dz; instead of d(¢; — z;)). If

conditions i)-iii) are fullfilled s is a projective (1,0)-form with values in O(1)

when considered as a form in z (cf. a) and b) of sec. 0). As a form in ¢ it is of

degree (0,0) and takes values in O(—1). Clearly Q is not a projective form but

we claim that dQ is. It is enough to prove this in each 7~ ! (U;), so assume e.
_ g. that 2, # 0 and put

~

Q=(Qo-2,01,..., Q).
20



14 B. BERNDTSSON

Then the form

Q= Zéjdzj
0

is a projective form in z with values in 0(0), hence the same holds for E) CNQ,
which equals Q. Note that dQ also takes values in 0(0) as a (0,0)—form in ¢.
In analogy with formulas (1) and (2) we put

- N-kSA(8)" 1 * A (8Q)
“ Z K@ O

(5) P = ()@ GO
Considered as a form in z the k—th term in K takes values in O(l) with
l=-(N-k)+(n—k)=n—N |

and as a form in z in O(-!). As it is easy to see the same goes for P. We can
now state:

Theorem 1. Let f be a (n,q)-form in C'(D) with values in O(I) where
l <n. Put N =n—1 and define K, and P, as the components of bidegree
(n,q) in 2z and (O,n—q¢—1) in¢ ofK and P respectzvely Then

© 10 =Curl [ SN0~ [ 350 Kl
+ 00 @ [ fAK )+ [ 6 ARE)

Proof: The hypothesis quarantees that f A K, etc are scalarvalued as forms
in ¢ so the integrals make sense. By a partition of unity we may assume that
[ has its support in one of the sets U;, say in Uy. We may then also assume z
lies in Uy, since U, is dense in P*. Put .

s =1(s1,.y5)
and define Q', ¢/, 2z’ in the same way. Then ii) implies that
so20 + (s',2') =0

so

1 Z,
(5,6) = so6o + (', 2) = (s, = — =) =
S0 29
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by i). In the same way

(@,¢) = Qoo + <Q’,§'>:= co'(g +(Q, =~y =

20 20
§0 gl Z, SJ Z'
1+ —), = - —)).
Zo( @ (s‘o zo) o 2o >)

We also have
" - 2, 2w ¢ 2oz
s;dz; = 2z s;dL = S; =, )d=2
;J ! 021:]20 S“OZ (§0 )20
and

aZQ,dz, =3(— +zOZQ, a2

_6ZQ, : ZO

Since ¢'/¢o and 2'/2, are inhomogenous coordinates on Uy, (6) follows directly
from Theorem 0, applied to the form {orfom

So far we have considered only (n, g) forms. The case of (0, g) forms is dual.
One way to look at things would be to change the role of the variables. So let

us define ‘ R
5*(6,2) = s(2,6)
Q" (¢ 2) = Q(2,¢)
and K*, P* as
. n-! . L8 A (Bt )T ITE A (EQ*)”‘
N A

so that .

K*(¢,2) = K(z,¢) and P*(¢,2) = P(2,¢).
Then we find, either by repeating the proof of Theorem 1 or just by taklng
duals of (6),

Theorem 1°. Let f be a (0,q)-form in C'(D) with values in O(l) where
l>—n. Le¢e N=n+1. Then

6)  1(2) = Cuad / T AK;(6,2) - /D 37() A K2 (6, )+
_1)+1 (3@ /D FQ) A K (6,2) + /D 1) A P26 2)))

.
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Remark. Recall that the bundle of (n,0)-forms on P™ is isomorphic to
O(—(n + 1)), so that a O(l)-valued (n,g)—form can be considered as a O (I -

(n + 1))-valued (0, g)-form. Then we see that Theorem 1 gives a Koppelman
formula for (0, g)—forms with values in O(l) for I < —1. Hence, together with
Theorem 1’ we have formulas for all the line bundles O(l}, and actually both
formulas work if —n <1< —1.

We shall now exemplify Theorem 1 by giving a choice of s and @ that works
for D =P". As Q we can take

Q; = :—’ sothat Q = dlog|z[®.

To chose s we start by deciding what

(s,¢) =: ®(¢,2)

should be. By analogy with the Bochner-Martinelli formula in C" we take for
® the square of the distance between ¢ and z.

If ¢ an z are in C"*! we put
®=|¢Az

where ¢ A z denotes the exterior product and we take norms in A? C*t!, Thus

%(g,z) = 0 precisely when [¢] = [2]. Then put

.22
J ag.J *
We claim that
(7) C(3,)=® and (5,2)=0.

For this, note that for z fixed disa quadratic form -

®(5,2) = Y ek (2);S-
The corresponding bilinear form is
Zafk (2)w;S, = (WA 2,6 A 2)

where the scalar product is in A?C”*+!. Hence

~

0%
ij—a—a ={wAz¢Az)
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which equals 0 for w = z and ‘I> for w = - ¢. Thus condition ii) is satisfied and
to get also i) we replace s by

~

s
[ ET
Then .
— Q
" l¢]?|2)?

the natural distance function on P™. Using those choices of s and @ we obtain
the following well known corollary to Theorems 1 and 1’ (cf Theorem 1.4 in

[3])-

Corollary. For the Dolbeault cohomology groups of P™ we have:

<s,§> =9

H°(P™,0(1) =0 if

a) 0<g<nandl<Oor
b) 0<¢g<nand —n<l.

In case | > 0 we have the following representation formula for an element of

HO (P, 0(1)

g' 5y n
® ro=c. [ (35) rereareisty.
Proof: If f is O—closed a (n,q)-form and ! < n, Theorem 1 gives

1(2) C{a/f ) A Kqy-1(6,2) /f ) APy (5,2

But P, = 0 if ¢ < n, so a) follows by identifying f with a (0, ¢)—form with
values in O(l — (n +1)). In the same way b) follows from (6°) since P* is of
bidegree (0,0) in 2. Formula (8) follows from (6°) when ¢ = 0. W

2., g—concave domains in P"

Let D be a domain with smooth boundary in P". We say (cf.[3]) that D is
g-concave if for each point [z] € D there is a g-dimensional projective plane
containing [z] that lies entirely within D. We assume moreover that the plane
can be chosen so that it depends smoothly on [z].

Ezample: Let

D, = {{z];]2]* +.. oz > |zq+1|2 +...,|zn|2}.

S
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Write .
2= (20,52 ), 2" = (2g415+++12n)-

We shall describe all the q—planes in D. Any such plane can be given as
I = {[2]}; Az = 0}

where A is (n — ¢) x (n + 1) matrix of maximal rank. Since Il C D

(1) Az =0 2] > |2"]. |

Write ’
.A — (A,,A”)

where A' is of order (n — ¢) x (¢ + 1) and A" of order (n — ¢) X (n — g). Then
Az=A'Z' + A"Z".

From this we see that A" must be nonsingular since otherwise some point
z = (0,2") would lie in D contradicting (1). Hence we may multiply A from
the left by (A")~! which doesn’t change the plane II, i. e. we may assume
A" = I. Then (1) says that ||4'|| < 1. In conclusion we see that the set of
g-planes in D, can be identified with the set of (n — ¢) X (¢ + 1) matrices of
norm strictly less than 1.

Let [¢] be a point in D, and let A} be the matrix corresponding to the linear
map

Since ¢ € Dy, || A ]| < 1. Moreover Aj¢' +¢" = 050 [¢] lies in the plane defined
by A;. Hence D, is g-concave.

We shall now construct a representation formula for (n,r) forms in a ¢
concave domain.

By hypothesis we can find, in a smoth way, for each [2] € D a g-plane, 1I(z),
such that .o
[2] e TI{2) C D.

At least locally, IT can be represented at the set of ¢ such that
(2) <£k(z),§)=Z§_’;(2)§j=0,k:1,...,(n—q),
0

where the functions ¢* are smooth and homogenous of degree 0. Then we can
choose, locally in z, functions ©?,...,¢" ¢ depending on ¢ and 2 such that

n—

D (e* (5, 2) €4 (2),6) 2 0

1
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with equality if and only if [¢] € II(2). One possible choice is

= (&4, )/l

but we shall see later that the choice is not important. Let us note however
that we can also assume that ¢* is homogenous of degree —1 in ¢ and 0 in z.
By means of a partition of unity in z we can finally find a function

s : D, x D, —» ¢!
such that
(3) (s'(¢,2),¢) >0 with equality iff [¢] € II(2).

Moreover s' can be represented as

n—gq

(4) }: (6,2 E" ()

1

locally in z. Hence, for [¢] € 8D s satisfies the requirements i) - iii) of the
previous section. Our next objective is to modify s for [¢] € D so that those
conditions will be satisfied for all [¢] € D.

To this end we let s'' denote the choice of s of the previous section i. e.

0%
n_ = 21,12
SJ - aS.J /|§| I I 3
and let
(5) s=4¢8+p(¢)s"

where p is a function that is positive inside D and vanishes to order 1 on 8D.

Now we can define the kernels K and P by formulas (4) and (5) of section
(1). We will leave the choice of @ open for the time being, requiring however
that Q be independent of ¢ (and homogenous of degree (-1) in z as always).
Recall that this is the case for the “standard choice” @ = dlog|z/|*.

Let us now see what the representation formula in Theorem 1 gives when
r < q (we are dealing with forms of bidegree (n,7) in a g—concave domain). We
also suppose ¢ < n, since ¢ = n means D = P™, which is the case treated in
section 1.

Since the kernel P is of pure bidegree (n,n) in z we have P, , = 0. Hence
the only obstruction to solvability of the d-equation comes from the boundary
integral which we will now evaluate. In our definition of s, (5), the second term
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gives no contribution when ¢ € dD. This is clear if p is not differentiated, but
it also holds for the differentiated term

dpAs,

since f is of full degree in d¢ so that dp can be replaced by dp in the integral,
and dp =0 on 8D.

Hence s can be replaced by s' in the calculation of

[ 10 hKurlsi2)
¢€ap
and we will then use (4). We find
(6) 9s' = 9,5 + 0,8 =
. n—gq _ n—q_-
=2 apt A+ ) 0.+ G0tk
1 1 1

where we write £* also for the form

Y ehdz;.
7=0

We are looking for the component of K that is of degree (n — r — 1) in d¢ and
only the third term in (6) contributes. Hence the part of

Sl A (5sl)n—-k—l
that we are interested in must contain a factor
(7) D ot A (DBt Ak,

which means that we have a product of (n—r) of the forms ¢*, k= 1,...,(n—q).
Thus, if r < ¢, some form ¢* must occur twice, whence

K,; =0 for ¢€dD if r<aq.
From this it follows immediately:
Theorem 2. Let f be a d—closed form of bidegree (n,7) tn the g—concave

domain D, taking values in the line bundle O(l), wherel < n. Assume r < q.
Then f 1s O-ezact and we have

1(2) = ea (@ /D F(6) A K (6,2))
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See also [3, Theorem 2.2]. In other words
H*"(D,0(l)) =0

if r < g, < n. The first bidegree where we have non-vanishing cohomology is
r = ¢ which we shall study in the remainder of this paper.

If r = g, (7) equals

(8) n Wy (@) AET AL 600
where
n,q = (n — g — 1)}(=1)(n 2+ D(r-a)/2
and
n—gq _ )
wh(p) =D ()™ A Bl
1 i#Fm
Our kernel is
n—-1 —_ —_
_ 3s)" k-1 A 3Q
K = N , N—k -1 ks/\( ,
(k )(Q () ( ) (s,g)""‘

x
1]

0

and we are interested in K, , when ¢ € dD. Let us use the notation

(@, 6,6) =D o™Er¢ = (s',¢)
e* = (P )" .., (") if a=(a1,...,Qn_q)
(3€)* = (8€Y)** A ..., (A€ 1)n-0,

Since all the forms £™ occur exactly once in (8), the first term in (6) will not
give any contribution when we compute

sA(9s)" kL,

Hence we find for ¢ € 8D

(9) Kng =
a, ! T eva ANk 1 neg
= an by 4 (Q, V-V NBO A BQP AE Ao ¢
e k+§=q Wk (@) (p, &)k

where a, ¢ is some constant (not the same as before) and

(n—k—-1)!

(10) b ke =

) (="
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Theorem 3. (cf. [3, Theorem 2.2]). Let f be a O-closed form of bidegree
(n,q) in the g—concave domain D, taking values in the line bundle O(l), where
I < n. Assume r < q. Then f is d-ezact if and only if T(f) = 0 where

T(A=)= | f(¢)AKaygls,2)

aD
In that case

§(2) = Bacns /D F(6) A Kngo1(612).

Proof: 1t is clear that if T(f) = O then f is d-exact so all we have to prove
is that if f is d-exact then T'(f) = 0. Assume

f = dq.
Then

g /\ngn,q = (_1)n+q / g /\den,tI‘
ap

FAK,, = (-—1)"+q/

aD aD
But the kernels K and P satisfy

dK =P where ¢# =z
(this is what makes Koppelmans formula true). Considering the components
of bidegree (n,q) in z and (0,n — g — 1) in ¢ we get
dKng+d,Kyq-1=0
if we recall P, , = 0, r < n. But we have already noted that
K,,=0 for ¢€dD and r<gq.

Hence
dK,.,=0 for ¢€9D
and we are done. B

If we put further restrictions on the homogenuity, /, the condition T'(f) =0
can be simplified a lot. We assume that

I<n-—gq
so that
N=n-12>4q.

Actually an analogous discussi_bn could be carried out for all N > 0, but the
case N > ¢ is simpler so we will be content with that case.

Let us look at the term whith k = ¢, =(0,...,0) in (9). The term in
question is then

Ty 1 n—gq aN\e
Const (@ ¢y=e 4L LE Lo TN (O,

Remembering that £ and @ do not depend on ¢ we are led to the following:
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Definition. Let f be a (n,q)-form with values in O(l), ] < n—gq, and let as
before N =n — 1. Then the Fantappié transform of f is defined by

() e = [ LR g

A few comments are in order. First, N is chosen so that the form we integrate
takes values in O(0), so the integral makes sense. Second, if ¢ = n — 1 and
I =0 (so that N = n)

s = [ Do [

aD (‘pa ga §> (€,§>

This is precisely the Fantappié transform of Gindikin-Henkin [2]. In general

F(f) is defined for all
n e Cn+l

and for all
£€= (..., eD,
where D* is the set of £ such that the g—plane II¢, defined by the equations
<£m,§> =0 m= la"'an_qa

lies in D. This quarantees that (f)(¢,n) is well defined and holomorphic in
¢ if we make an appropiate choice of . In case ¢ = n — 1 it is evident that the
definition of 7(f) does not depend on the choice of . We shall now prove:

Proposition 4. The definition of ¥(f) does not depend on p, provided 8f =
=0.

Proof: Assume we have two choices (pr) and (o) m=1,...,n—q. Thus
(©7) are functions of ¢ and ¢ such that

(pa,€,¢) #0 for €€ D*,¢€dD,s=0,1.
If x is a scalarvalued function we have the well known homogenuity property
Wl (xp) = X"~ (). |
Hence we mz;y assume that
(12) (ps,&¢) >0,s=0,1.
Therefore we can define a homotopy
s = sp1 + (1= 8)po 0<s<1

and (12) still holds for 0 < s < 1. We next need the following:
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Lemma 5. Let F(p',...,0" %) be homogemous of degree —(n — q). Then
the form

A = (o)} (0)

1s closed.

Proof of Lemma: By Euler’s formula

Hence

dA = me&’ﬁdtpl Avydp® 4+ (n—q)Fdp* A...,dp"" 7 =0. W

To continue the proof of the proposition we put

w'(ps)
<S03 3 g)n_q

and consider A as a form in ¢ and s for £, ¢ fixed. Then, if we write
A=A, + A

where A, contains ds and A' does not, we have

(13) dy A, +d,A' =0
by Lemma 5. Let
1
#= a.
0
Then (13) implies that
Wlpo)  W'(e1)

1
d H:/ —d, A = .
© 0 <‘p0’£a§>"_q <p1’£’§>n—q

This in turn implies

Wigo) w(en)

afH - (‘pOaé-’g)n_q (@17£’§.)n_q

which immediately gives the proposition. B

For future reference we now note an invariance property of ¥(f). Consider
€= (€,...,6" ") as a (n—¢q) X (n + 1) matrix,  as a row matrix and ¢ as a
colum. Let g be a nonsingular (n — ¢) x (n — ¢) matrix. Then g¢ defines the
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same g-plane as £, so let us see how F(f) changes if we change ¢ to g¢. Note
that

(0,9€,¢) = (09, &:¢)
so we can regard the change £ to g¢ as a change of p to pg. Thus

FUatm = [ LB g, e =

_ -1 f/\w,((pg) N-—g —
= dete /aD (pg, &, ¢)m=1 (’M)‘

= (detg) " 7(f)(&,n)
by Proposition 4. Here we have used the fact
w'(pg) = detg w'(p).

So we have proved
Proposition 6. If g € GL(n — q)
F(£)(9&,n) = (detg)" " 7 (£)(&,m)-

The reason for the introduction of 7(f) was its relation to the operator T(f).
More precisely, the term & = 0 in the definition of T(f) could be written

const.  F(F)(&n)E A .. €A (dn) e=¢(s)-
n=Q(x)

We now note that all the terms in the definition of T(f) can be expressed in
terms of 7(f). If a = (a1,...,x—,) is a multi-index and a = (ao,..-,a,) is
a vector we put '

a a a
4 )2 = (g —)2 .. . apn_g
(l ) (a af) (a’ 861) ’(a afn_q)
where
ad.- - ad
C Gem T L2.% gem

R

Note that

8., 1
(@ 38 Gt g

Thus (9) implies that

n—gq+la—1)! (a,¢)l*lp®
(n—g—-1)! (p,&g)n-atlel’

- (_’.];)lall(

d 1
Kn, = Ay, chyk,a(<Q’§)N_q(Q' _)a n - A
e ? H%:q ¢ (p, &m0
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A'(0) A (BE)* A& AL, ETTA(Q)"),
where
(15)
This in turn implies that

(16) T(f) =
=ng ), Nkl a% CF(F)En)(dE)* A E A ..., €0 A (dn)*

k+lal=¢
where ¢ = £(z) and n = Q(2). Notice that it does not matter if we write d¢,
dn or 3¢, dn since our form is of full degree in dz.

Theorem 7. Let f be a 8-closed (n,q)~form with values in O(l), 1 <n—gq.
Then f is @-ezact if and only if ¥(f) = 0.

Proof: Tt follows from (16) and Theorem 3 that if #(f) = 0 then f is d-exact.
On the other hand if

then F(f) = 0 since
=0

g——0 )
(p, &, ¢)" ¢

by Lemma 5. B

Hence the Fantappié transform induces a one-to—one map on the cohomology
groups H™(D,0(l)) if I <n —gq.

3. The Radon transform

For a 8—closed form the Fantappié transform coincides with the Radon trans-
form which we shall now define.

Let £1,...£" 9 be a linearly independent set which define the g-plane Il¢.
We shall now change the convention of the previous paragraph and identify {™

with the forms n

£ =Y Erdg.

0

Definition 8. Let f be a (n,q)-form in D with values in O(l), 1 < n —q.
Put N = n — . Then the Radon transform of f is defined by
1A, €69 _
1 RO = [ ELeE IO ) gvee,

ne 1E AL €I

Jor ¢ D*, pecnrtl,

Note that since f is of bidegree (n,q), we obtain a form of bidegree (g, q)
after taking inner products with the form & A ... §7~9. Thus integration over
the g-plane II¢ is a well defined operation.
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Theorem 9. Suppose f is a d-closed form of bidegree (n,q) with values in
O0(),l <n—gq. Then

(2) - F(f) = R(S).

Proof: From the definition of R(f) it is clear that R(f) satisfies the same
transformation law under a change of frame as does F(f). Namely, if ¢ €
€ GL(n—gq)

\ R(f)(g¢,n) = (detg) ™' R(f)(¢,n)

| (cf. Prop. 6). Hence we may assume that £!...£"~ ¢ is orthonormal, and we
can chose orthonormal coordinates on C”*1 so that

& = (0,...,1,0...0)

&1 = (0,...0,1)
are the last (n — ¢) elements of a dual basis. If we write

¢ =(S05---¢) ¢ =(G+1s--¢n)
the plane II; is then given by ¢" = 0. In the definition of 7(f) we now take

m

" =™, ¢) = Cumm=1,...(n—q).
wy (¢") -
F(HEn) = /6D Wn-_z—q A f(s‘)(n,g‘)N 1,
Here the integral is d—closed outside the plane
Ie = {[¢];¢" = 0},
so what the theorem amounts to is a calculation of
= wy(s") _
O cen=zg M (S)m )V

near Il; in the sense of currents. This is a purely local question and since the
plane II; is covered by the open sets

U]:{[S‘],S‘] 790} 3 ].20""q,

we can place ourselves in one of them, say U;. We use inhomogenous coordi-

nates w; = ¢; /¢, J = 1,...n,and let w' = (wy...w,), w" = (Wy41,...w,). In
Uo
wy (") -
H = imaag M) )" =
wy (@")

A (w5 ) Ay (1w 0

- |wlI|2n—2q
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But it is well known that

CACH)

|wn|2n—2q

= Cnq@Wys1 A ... dW,dV

where dV is surface measure on II;. From this it follows that
/ 9H = Cnyq / f’(w',O)(n,(l,w{,))N"’dV(w')
Uo

where f' is the coefficient of

dwy A...dwg, Ndwy A ... .dw,

of the form wy ! f. But this is precisely

o [ (@ Ao Ba) £ )
11

3

so we are done. B

_ Proposition 10. Let ¢(€,n) = R(f)(¢,n) be the Radon transform of some
O-closed form f, with values in O(l). Then

a) 9¥(-,n) is holomorphic in £ € D*.
b) ¥(¢,:) is a homogenous polynomial of degree n — q — 1.
c) if g € GL(n —q)
¢(g§’ 7’) = (detg)‘lll’(f,ﬂ) A v
d) If p € C"**1 lies in the linear span of €',...£"79, then P(&,n + p) =

- ¢(§’ 77)'

- Proof: a) follows from Theorem 9, b) and c) are obvious from the definition,
as is d) since (i, ¢) = 0 on I if p lies in the span of £*,... "7 7. W

Let 9 be a function that satisfies a) — d). Property c) leads us to introduce
the form '

0y =9(&m)E AL 071

where from now on we have returned to the old convention of letting

n
£ =Y Erdz;.
0
We consider 1y as being defined on the bundle over D

E = {(((zl,n), 8); ([#hn) € O(~1) ®C™* |p, € € D',

(n,z) =1and ((™,2) =0,m=1,...n —q}.
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Then (1, takes values in O(l). Observe that the condition (¢™,z) = 0 guar-
antees that (1, is projective, and that a section, ¢, to £ is a map

(2] = ([2],n(2), £(2))

where 7(2) is homogenous of degree —1 and £(z) is homogenous of degree 0.
Note also that if g € GL(n — ¢) and we define

g:E—E

by 9([z],n, &) = ([z],n,9¢€), then ¢ () = Ny, by c). In particular the pull-
back of 2, under any section ¢, depends only on the plane II; defined by £ and
not on the choice of frame.

Inspired by formula (16) of section 2 we consider together with £, the form

n 0
3 fQy= ) Nk (17 52) (E (G AE AL €270 A (dn)?
k+la|=g¢
k<N

where still
" CN,k,a =
It is not hard to check that fl¢ also satisfies the invariance property
9" ((y) = 0y
if g is a matrix in GL(n — ¢). As a matter of fact this even holds if g depends

on z, since each differentiation of g produces a factor £™ and we already have
a complete set of those forms.

From this it follows that if ,

t:D—- FE

is a section to E the pullback R
t*(Qy)

only depends on the g-plane defined by £(z), and not on the choice of frame.

In particular, if (¢,) is a set of local sections to E such that the covectors &,
define the same g—planes on overlaps we have that '

te(Qy)
is a global form. In the sequel we will not distinguish between two sections if
they define the same g-planes.

_ From the previous section it is clear that if ¥ = R(f), where f is some
d—closed form, and if ¢ is some section to E then

at*(Qy) =0.

Thus, in addition to the properties a) — d) of Proposition 10, ¢ has to satisfy
a certain differential equation.




30 B. BERNDTSSON

Proposition 11. Let ¢ be a function satisfying properties a} - d} of Propo-
sitton 10. Then the following conditions are equivalent:

e1) If t is any section to E then 3t ({l;) = 0.

e;) On E, d1, =0. '

es) ¥ satisfies the equations

ay 9 oy

4 - 3 - )
“ DErOEr  d¢r o’ deTon 9T on

mk=1,...n—¢,7=0,...n.

“(In case | = n — ¢, ¥ is independent of 1 so the second set of equations is
void. If moreover ¢ = n — 1 the first set of equations is also void.)

It is clear that e; implies e;, since

~

at* (Qy) = dt* (1y) = t* (dfy).

Moreover it will follow from the inversion formula that we shall now prove that
e, implies e3, since it is obvious from the definition of # that any 1 that can
be written

¥ =7(f)

will satisfy e3. What remains to be proved is thus that es implies e;. Since
we have found no slick proof of this fact we have resorted to the method of
brute computation, some indications of which will be given after the inversion
theorem.

In the proof of the inversion formula we assume that D satisfies one extra
assumption.

(A). Let
¢ — I 71=1,2

be two smooth functions that associates to ¢ a g-plane II that lies in D and
contains ¢. Assume II' ts defined in a neighbourhood of 3D and M? in a
neighbourhood of a given g-plane Ily. in D. Then there is a similar function

¢— I ¢ED
such that 1T = II* near 0D and 11 = 1% near I1,.

Clearly assumption (A) holds if the set of all planes passing through a given
point is contractible, which is the assumption in [2]. (Hence in particular it
holds for D = D, see example at the beginning of section 2). In [3] the inversion
theorem is stated without extra assumption but no proof is given.
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Theorem 12. For a function %(€,n) to be reprentable as o = R(f) with
f O-closed it is necessary and sufficient that 1 satisfy properties a) - d) of
Proposition 10 and property e; of Proposition 11. In that case

=cagR(f) with f=1t"(fy)

if t s any section
t:D— E.

Proof: All that remains to prove is that if ¢ satisfies conditions a) — d), e;)
then

"nb:Cn,qR(f) with f:t*(ﬁ‘/l)'

So let t be a section to E and fix a g-plane (o) in D. Say II(o) is given by the
equations

(o) =... (" %) =0
where (p!,...u""?) is orthonormal. We may even choose coordinates so that

(™, ¢) = ¢ttm m=1,...n—gq,

since the construction of (), is invariant if we make dual changes of coordinates
in ¢,z and £,7.
By assumption e;,8f = 0, hence

F(f) = en, g R(S),

by theorem 9. Thus the value of R(f) at u depends only on the choice of ¢
near 3D, so by assumption (A) we can chose t any way we like near Mgy. As
n = n(¢) we take as usual

and as € = £(¢) we will take
£(¢) =p when ¢l =TI,

and then extend this definition of £ to a neighbourhood of II,. This we do as
follows:

For ¢ lying in a neighbourhood of IT, we denote

r =
I = {[2] = [¢, 2"]; 2" = %gu}

where 2' = (29...2,;),2" = (2341,...24). Clearly

=1, if ¢ell, (ieif ¢"=0),

S
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so IIY C D if ¢ is close to II,,. As our frame &(¢) that defines the g—plane IIS
we take £™ so that

(g, 2) = o = 2 o,

l¢'|?

Hence we get for the forms

n

- a
=2 & (5)dss = 255 (€ ()2 =
0
= d§'q+m Sqg+m Z |S"|2 §; d§q+m §q+malog l§ |2

and _ _
FE™ = ¢4 1m0 log [¢' [
By definition

XA pn—a
RN 8) = [ At e,

where

f= ZCN,k'a(n.aié)“w (B A(Bn)EAE AL €m0

Fortunately enough, when ¢ € I, ¢+m = 0 for m = 1,...n — ¢, so the only
term in f that does not vanish on II, is the one with & = 0. When ¢ € II,,

f= CN,q,o¢(f,ﬂ)(53 log |S"|2)q Adgri Ao dgim

and £(¢) = p. Therefore

-

1A, un—1 =
ARARRAL. Jf=cN,q,O«p(u,E%F)(aalogk'ﬁ)q,

|ut AL pnmal?

and .
R(f)(1,6) = cng0 z/)(u, |S‘S;|2 (8", ¢"YN=9(8d log [¢'|*)°.

Recalling that ¢ is a homogenous polynomial of degree n —l —¢=N —gq in
the variable n we find

R(f) (1, 8) = en g%k, 6')
(this is e.g. a consequence of (8) sec. 1). But now property d) gives that

P(u,8') = ¥(u,6)

so the proof is complete. B
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Kn(¢) = ;%? the inversion formula we obtain is close to the one in [3]. But
of course we are free to chose n in many other ways. If ¢ = n — 1 we can take

_ o
(770 ] §)

when ¢ lies close to 8D, if no € D*. Then

n(¢)

an =0

so this time the only non-zero term in {l; is

3 \a n—
(n-gg) YYE A (dE)m .

If we use the Fantappié transform instead of the Radon transform our inversion
formula can be written

— __?_ n-1 n—-1 <6’_$.>N_("_1)
Wd)=e [ g AU e

This formula is the starting point of 2].
Sketch of proof of Proposition 11: As already remarked e; implies e; directly.

Moreover since we only used property e; in the proof of Theorem 12, we have
that e, implies that

f AW (o) (n, )N 0
aD ((pa €,§.>n—q

1/)(6’ 77) =

for some f. But then e; follows directly by differentiation under the integral
sign. Thus all we need to prove is that e; implies e;. Here is an indication of
one way to see this. Let

a _a_ o
P = ("'af) .
Then
(5)  dfly =D enkadg®® A(dE)* AE AL ETIA (dn)t+
k,a
+ Y ennkade, ™ A(dE)* AEL AL €T A (dn)*+
k,a,m

Y enpa (=L)"Y (dE) T Im AE A LLLE™ AL £ A (dn)*
k,a

where we use the notation

a+1ln, =(01,...0m +1,...a).
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Let L* denote the vector field-
Z 817, 8z’

Then
) L)dn =

If la|+k=(g+1)
(dE)* AE AL A (dn)F =0
since a projective form can have at most degree n in dz. Hence

(6) 0=L*|(d€)* A ' A...E" A (dn)* =
= Zam (L* df’")(df)“ tm A EL AL ETTUA (dn)F

+ Z ™ (L [€m)(d€)* A 51 Ao E™NETIA (dn)t+
+ k(L"Jdn)(df) ANEALLETIA (dn)k !
Using e; and homogenuity properties of ¢* we ﬁnd
ii) L* |de™ =(‘k—N—l)de.‘nzp“‘l'"ﬂal+k=q+1).

Using the homogenuity ‘of'zb and the equations’

Yt 5 sm =0 k#m
& 3—,7], =0
which follow from ¢) and d) of Proposition 10 respectiveiy, we find
i)  L*|¢m =(k— N —1any® '™ -(la]+k=qg+1).
Inserting i), ii) and iii) in (6), and uéing the obtained‘rel'ation in (5) we get

dﬁ,/, =0. n
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4. Formulas for (p,q) forms .

To start with, let M be a complex manifold and let E be a holomorphic
vector bundle over M. We suppose E is endowed with some hermitian metric
and let V be the unique holomorphic connection in E compatible with the
metric. Together with F we consider the dual bundle, E*, and denote the
pairing between E* and F by '

E; xE; 3 (&mn) — (§m). €C.

The connection V induces a dual connection in E* (also denoted V), by

d{€,n) = (VE,n) + (€, Vn)

if £ and n are sections to E* and E respectively. The curvature of V is defined
by
Opn = Vin.

The fact that V is holomorphic means that
V=9+V

where V' is an operator of bidegree (1,0). Since V is the canonical connection
of a hermitian metric the fact that 8 =0 implies that

(V') =0."
Hence o
Opn = (V'a+ 6V')17.

If, with respect to some holomorphic frame
Vi=d+0

then

3(V'n) = 89n + (86)n — 6 A 3y = —V'(3n) + (30)n,

so that _
©gpn = (80)n.

Thus ©f operates on a section as multiplication with a matrix of (1,1) forms.
We now make the very restrictive assumption that this matrix is a multiple of
the identity matrix, i. e. that

Ogn =16,

where O is a (scalarvalued) (1,1) form and multiplication is componentwise.
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Ezample: Let L be a hermitian line bundle and let
E=L® (" xM).
If the metric on L is given by h >0 in some holomorphic frame then
0= (0logh)l

and _
© = (80logh)I.

In this very special setting we shall now generalize the construction in [4], .
following the pattern in [1].

Let £ be an arbitrary section to E* and let n be a holomorphic section to E.
Consider the form .
A= (@¢,V'n)".

Since n is holomorphic
34 = el (B, ) A (96, V')" — n(D€,3V'n) A (3E,V'n)" ).

But _
0V'n = 0Ogn =n0O

since dn = 0. Hence
8A = &M ((BE,n) A (BE,V'n)™ — n(3&,m) A (BE,V'n)" " A O).
This leads us to define |
Aj =e&M@e, V"I A0 and
B;:(Ef,n)/\Aj / 7=0,1,...,n.
Using the fact that 3@ = 0 we find that
8A; = B; — (n—j)Bj+1 (where - Bpyy =: 0),

by repeating the same computation as above. Next we put

n

n!
A* = Z (—n‘:k—)"Ak

0

and obtain

8A* = 20: o f’k)!(Bk'— (n — k)Bk+1) = Bo-

Note that the form By conta,ins‘(n + 1) factors 8¢. From this we immediately
get



INTEGRAL FORMULAS ON PROJECTIVE SPACE 37

Lemma 13. Suppose 0¢ takes values in some holomorphic subbundle, F, of
E* where rank (F) <n. Then 3A* = 0.

Now we let s be a global section of E* and replace £ in the definition of A*
by _
E=-As, AE€C.

Then we get a form, still denoted A*, defined on M X C, and we have
(8x +3m)A" =0
provided s takes values in some subbundle of E* of rank not exceeding n. Write
A = Al + A}
where A} is the component of A* that contains dX. Then
dy A} + Oy A} = 0.
We now choose a global holomorphic section, 7, to E, and suppose that
(1) Re(s,n) > 0.
We can then define |

K= AL
A€(0,00)

K is a form of degree (2n—1) defined on the domain in M where strict inequality
holds in (1). When we compute the integral we put dX to the far left in the
form. Then

0K = —/ 04} = +/ "dy A} = — A} =0 = —O™.
A€(0,00) A€(0,00)

We can compute K explicity as follows
=on! . -
K= ZO: RN
where
K* = (n— k)(=1)"* /m e~ (o) ()R- =1\ (s, V') A (3s, V)™ +~1 A ©F.

0

Hence
n—1

_ V'n) A (8s,V'n)""E-1 A OF
K= (c1r-tnrt® ’ :
¥( o (s,mn~*
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This is clearly a generalization of the classical Cauchy-Leray form (take V' =
3,0 =0). o :

The idea to introduce a connection in the Cauchy—Leray form comes from
Demailly and Laurent-Thiebaut [4]. However, thiey consider only the first term
(k = 0) in the expansion of K. In this case

3K = 0(|(s, )|~ ("~ 1)

so that, roughly speaking, dK° = 0 modulo lower order terms. This is less
precise than our formula but on the other hand holds for arbitrary connections.

Following the same method as in:[1] we can now construct weighted formulas.
Then we let @ be another global section to E*. We assume there is a subbundle,
F, of E* with rank (F) < n, such that both s and Q take values in F. Then
we can replace £ in the definition of A* by

E=-As+Q

and define K in the same way as before. We then get by the same computation

n

= n! ' — ‘ ‘
K = —Allr=0 = _Z me(@ﬁ)(a@,vr,’y—k AOF = P.
0 "

Finally, arguing as in [1] we can replace the exponential in our kernels K and
P by any holomorphic function G(t), such that G(0) = 1. We then obtain the
following two kernels:

(s, V') A (Bs, V') A (3Q, V)22 A @

<S,n>}11+1

@ K= Y .c)(@,n)

|a|=n—-1

P=Y DGBI((Q,1))(BQ,V'n)"* nOF2,
[8l=n

where Cy = —(—1)*'n!/(a; + a2 + 1)a! and D = —n!/B;!.
We collect our result so far in: '

Proposition 14. Suppose s and Q are global sections to E* and that 7 is a
holomorphic global section to E. Assume there is a holomorphic subbundle, F,
of E*, with rank (F) < n, such that s and 3Q take values in F. Then, if K
and P are defined as in (2)

0K =P

in M' = {(s,n) # 0}.
(Up to now we have assumed that

Re(s,n) >0,
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but since it follows directly from the formula for K that K is unchanged if we
multiply s by a scalar function, we may drop this assumption).

We are now ready to apply this construction to projective space.
As M we take
M =cz*i\{0} x c2*1\ {0},

and as our vectorbundle E we take
M xc™! sothatalso E*=M >< chtl,
Let .
F={(s,2¢€);(,2) €M and ) 2¢ =0},
0

and consider F as a subbundle of E* (note rank F = n). If n = (no,...,n) is
a section to E (represented in the natural frame) we put

Vi =dn —ndlog[¢[* = (dno — nodloglsl,...,dn. — n.dlog¢|?).
Then V is the canonical connection on E endowed with the metric
Inlf* = > In; [ /I¢ ],
and our curvature form is given by
© = ddlog|¢c|®.
We now choose the sections 7, s, Q and the function G(t) as follows
ni = (¢ — 2), 7=0,...,n

8%
s; = 5;/|g]2|z|2, ®=|¢cAz]* (scesec. (1))
] .

dlog |z|?
Q; = 2L
! az_,,
G(t) = (1+t)N N >o0.

It is verified, as in section 1, that s and 3Q take values in the subbundle F.
Hence Proposition 14 applies.

We now claim that both kernels K and P are projective forms with respect
to both variables ¢ and z. First note that

(s, V'n) Zs]dgJ Zs,dz, —(s,¢)8log [¢|?

since (s, z) = 0. Clearly this form is projective in z and the connection is chosen
so that it also becomes projective in ¢. Hence the same holds for

3(s, V') = (35, V') + (s,7)©
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which implies (ds, V'n) projective, since © is. In a similar way one shows that
(0Q,V'n)

is projective using the same argument as in section 1.

KziK,, : P:ipp
o 0

where K, and P, are the components of degree p in dz. It is easily verified
that K, and P, take values in O(l) with

Now write

l=p-—N
as forms in z and in O(—!) as forms in ¢. We can therefore consider K, and P,
as kernels on P™ acting on forms with values in O(l). Let as before K, 4, P,

denote the components of bidegree (p, ¢} in 2.

Theorem 15. Let f be a differential form on P™ of bidegree (p, q) with values
in O(l), | < p. Define K and P by (2) with N =p~—1. Then

f(z) = c,,{/;ngf/\Kp,q +(-1)P+q52/w FAKyq+ (—1)Pte /P AP}

This follows from Proposition 14 in the same way that Koppelmans formula
is proved in C". This is based on the formula

0K =¢;'[A]+ P
(where [A] stands for the current “integration on the diagonal”) and we already
know that 8K = P outside the diagonal A. The fact that the singularity at the
diagonal gives the same contribution as in the classical case follows since near
the diagonal K equals the classical Cauchy-Leray kernel modulo lower order
terms.

Corollary.

HP(P*,0) =0 for p#gq
Hp’p(P",O) ~C

and HP? is generated by (90 log |z|?)?.
Proof: If 8f = 0 the obstruction to solving

dg=f
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is given by the integral
f(¢) A Ppgls,2).

P
Since I = 0, N = p. This implies that in the definition of P the terms with
B1 > p vanish. Moreover the terms with 8; < p cannot have degree p in dz.
Hence

P, = c(ﬁQ,dz)" AOTTP =
= ¢(8d log |2|*)? A (80 log lcI*)"?,

which immediately gives the statement. W
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